The present invention relates, generally, to methods and apparatus for preloading antifriction bearings in drive trains, particularly, to preloading and adjusting bearings while monitoring the preload being applied.
Various means have been devised to simplify the adjustment of axle bearings, specifically, truck axle bearings. It is generally accepted that in some bearing installations, for example, axle bearings, the life of the bearing will be optimized if the adjustment is made for a slight axial compressive deflection, for example, about 0.003 inches (where this amount is the compressive deflection of the two bearings combined), which is often referred to as “a three thousandths preload.” Typical prior art methods of creating these preloads are obtained by applying specified torques to the bearing assembly, for example, by tightening the nut that retains the bearings. However, for several reasons, it is typically extremely difficult to achieve such preload settings under actual in-field conditions, such as in a mechanic shop. For example, the assembly of a heavy truck wheel onto a wheel hub assembly is a relatively cumbersome procedure that hinders the mechanic. Moreover, the wheel hub assembly always includes at least one inner seal, usually a lip type of seal, which can impose a resistive drag torque component to the preload torque, particularly when the seal is new.
Lock nut systems are often utilized to retain a wheel or hub assembly, including axle bearings, on a shaft. Such lock nut systems may be connected to a shaft and inhibit rotation of a retaining nut relative to such shafts. For example, such systems are often utilized on motor vehicles, such as axles and wheel ends. Typically, a lock nut will be engageable with a locking member or keeper which inhibits movement of the nut relative to the shaft. The locking member may include a protruding portion which extends into a slot or receiving portion of a shaft. The locking member may also engage the nut such that there is little or no movement between the nut and shaft.
It is important that teeth of a locking member engage teeth of the lock nut such that the locking member is positioned to allow it to engage a slot of the shaft. The nut must be aligned to allow such engagement by selective rotation of the nut to a particular position such that the teeth of the nut and the teeth of the locking member when engaged allow an engaging portion of the locking member to engage a slot of the shaft. Rotation of the nut may be performed during the preloading of a bearing and the degree of rotation allowed may depend on the amount of compressive force applied to a bearing or hub during the preloading of the bearing and the method of application of such force.
Once an adjustment has been made to axle bearings to maximize the life of such bearings it is important to maintain the adjustment made. Further, it is desirable to ascertain from a visual inspection whether the adjustment has been altered without the need for actual measurement of a bearing's preload. The ability to maintain a proper preload and to verify that no additional adjustment has been made allows an original equipment manufacturer (i.e., OEM), such as an auto manufacturer, to provide a warranty on bearing systems which have not been adjusted after they have left the factory.
Thus, a need exists for providing accurate and repeatable procedures and devices for providing and adjusting bearing preload and for adjusting lock nut systems configured to retain preloaded bearings.
The present invention provides, in a first aspect, an apparatus for use in connecting a cover member to a retaining member coupled to a nut mounted to a shaft includes a body portion, arms, and a plurality of pressing members. The arms extend from the body portion relative to the nut such that contacting portions of the arms contact a rear side of the nut to connect the body portion to the nut. The plurality of pressing members extend from the body portion and is alignable with the plurality of tabs of a cover member when the cover member is located between the body and the nut. The body portion includes a press mechanism configured to cause a first pressing member of the pressing members to contact a first tab of the cover member to deform the first tab toward a retaining member coupled to the nut mounted on the shaft.
The present invention provides, in a second aspect, a method for use in providing a load on a bearing mounted to a shaft includes engaging a keeper with a nut mounted on shaft to inhibit movement of the keeper relative to the nut. A retaining member connected to a keeper is engaged with the nut to hold the keeper engaged with the nut. Arms are extended from a body portion of a tool and relative to the nut mounted on the shaft such that contacting portions of the arms contact a rear side of the nut to connect the tool to the nut. A first pressing member of a plurality of pressing members of the tool is aligned with a first tab of a plurality of tabs of a tamper indicating member when the tamper indicating member is located between the body and the nut.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention will be readily understood from the following detailed description of aspects of the invention taken in conjunction with the accompanying drawings in which:
In accordance with the principals of the present invention, system and methods for adjusting bearings mounted on a shaft and aligning lock nuts for retaining such bearings are provided.
In an exemplary embodiment depicted in
Wheel hub assembly 10 is an assembly that would typically be found on a front or rear axle of a cab or tractor of a tractor-trailer, or an axle of a trailer. However, aspects of the invention are not limited to use for vehicle bearings. As will generally be understood by those skilled in the art, aspects of the invention may be used to service bearings and bearing assemblies in any machine or device that employs bearings, including, but not limited to: power trains, transmissions, machine components, on and off-road vehicles, aircraft wheels, marine drives, spacecraft, conveyor rolls, and windmills, among others. According to aspects of the present invention, preload apparatus 20 may be used in these and any other assembly for which bearing preload and/or endplay is desired, for example, any assembly that utilizes thrust and radial load carrying bearings that are indirectly mounted.
As shown in
As shown in
As depicted in
Nut 11 may include a plurality of engaging teeth 511 extending circumferentially around an inner radial surface of nut 11 as depicted in
As depicted in
Keeper retaining member 540 (
Retaining member 540 (
Also, first leg 542 may include a protruding portion 560 which protrudes radially relative to a rounded portion 565 of retaining member 540. Similarly, second leg 543 may include a protruding portion 562. Protruding portion 560 and protruding portion 565 may extend into slot 561 to engage retaining member 540 with slot 561. Further, protruding portion 560 may include a groove 566 and protruding portion 562 may include a groove 567 as depicted in
A cover member (e.g., a tamper evident plate), such as a cover plate 750 (
In particular, cover plate 750 is configured (e.g., shaped, dimensioned and formed of a material) such that a user could not remove the cover plate from the retaining member (and reinstall it) without it being evident upon a visual inspection that the system had been tampered with, i.e., the cover plate had been removed and reapplied. The damage to the cover plate would therefore provide an indication via visual inspection that retaining member 540 was accessed and nut 11 may have been adjusted, thereby adjusting a preload of the bearing. This indication of tampering (i.e., indication of damage to cover plate 750) allows a seller or manufacturer of wheel bearing systems, such as an OEM of vehicle or car parts, to provide a warranty on bearing systems utilizing the described cover plate since it would be evident upon visual inspection that a nut (e.g., nut 11) holding a wheel bearing may have been tampered with due to the condition of the cover plate. The cover member or cover plate 750 may be of a variety of shapes and sizes, but preferably covers at least a portion of a retaining member (e.g., retaining member 540).
Tabs 720 of cover plate 750 may be L-shaped having radial extending portions 722 and circumferential portions 724 connected thereto, as depicted in
Radial extending portions 722 (
Arms 910 may be biased by resilient members 945 (e.g., springs), such that the arms remain in an open position as depicted in
As indicated above, arms 910 may be biased in an open position, and as depicted in
Prior to connecting tool 900 to nut 11, cover plate 750 may be coupled to tool 900 via aligning posts 1110 (
Legs 710 of installation tool 900 may be circumferentially spaced pressing members (e.g., four such members) extending axially from a circumferential base 705 of body portion 930, as depicted in
Axial member 760 may be configured (e.g., shaped and dimensioned) to be received in an opening 624 created in cover plate 650 and one of notches 600 of retaining member 540 when each leg 702 contacts each of tabs 720 to deform the tab toward the retaining member (e.g., retaining member 540) and toward a nut (e.g., nut 11) as depicted in
After legs 710 deform tabs 720, radial extending portion 722 may be received in notches 600 of retaining member 540 while circumferential extending portions 724 may be located on an opposite side of retaining member 540 relative to remainder 656 of cover plate 650 such that ends 723 of circumferential extending portions 724 extend circumferentially outside notches 600 thereby inhibiting movement of the tabs through the notches in a direction away from nut 11. The extension of the circumferential portion outside the notch may inhibit separation of the retaining member from the cover plate (i.e., due to contact of circumferential extending portions 724 with retaining member 540) thereby providing a visible indication when such separation is attempted, and tabs 720 are thereby deformed or damaged. As depicted in
In another example depicted in
In other examples, cover plates (e.g., cover plate 750) could include tabs formed in any shape which inhibits separation of the cover plate from the retaining member and provides a visual indication when such separation is attempted. Further a tool (e.g., tool 900) could include any number of legs or pressing members configured to deform tabs of a cover plate to inhibit separation of the cover plate from a corresponding retaining member and provides a visual indication when such separation is attempted and/or has occurred. Moreover, the features of the cover plates (e.g., cover plate 750) described, such as tabs (e.g., tabs 720) openings (e.g., opening 711 and opening 712), could be located in different positions relative to each other such the features correspond to appropriate features of a retaining member to facilitate engagement of the cover plates and retaining members and to inhibit separation of one from another. Further, the features of the cover plates and retaining members may be located to facilitate engagement of an installation tool (e.g., tool 900) to one and/or the other. Similarly, features of an installation tool (e.g., tool 900) may be located to align such features (e.g., legs 710) with appropriate features (e.g., tabs 720, openings 711 and 712) of a cover plate and/or retaining member.
For example, the retaining members described above (e.g., retaining member 540) may be formed of stamped sheet metal, and may have a thickness in a range between 0.040-0.050 inches, as will be understood by those skilled in the art. Alternatively, the retaining members could be formed of other materials (e.g., powdered metal) and/or formed in other shapes to allow the retaining members to be received in slot 561 and to be connected to a keeper (e.g., keeper 540, keeper 1030) via a projection (e.g., projection 535). Further, the keepers may be formed or molded of powdered metal, for example. Alternatively, the keepers and retaining members could be formed integral or monolithic relative to one another.
Cover plates (e.g., cover plate 750) as described above may be formed of stainless steel. Further, keeper 530 and/or nut 11 may be fabricated from any one or more of the structural metals, for example, carbon steel or stainless steel. Nut 11 may be fabricated by machining from a billet or plate, by forging or casting and then finished machining, or fabricated by conventional powder metallurgy techniques. In one aspect, when formed by powder metallurgy, the material may be FC 0208, or its equivalent. Nut 11 may also be surface hardened for example, induction hardened, carburized, or nitrided, among other surface hardening methods; in one aspect, the exposed surfaces on outer surface 522 of nut 11 may be hardened, for example, induction hardened.
Although the tools above include drive mechanisms that are manually operated (e.g., screw mechanism 922, shaft 965, and handle 960) or pneumatic based (e.g., pneumatic mechanism 1010), other ways of causing legs (e.g., legs 710) to contact and deform the tabs (e.g., tabs 720) of a cover plate or tamper indicating member (e.g., cover plate 750) are envisioned including hydraulic, mechanical, or other ways of causing movement of such legs to deform tabs to connect a retaining member to a cover or tamper indicating member.
Returning to
Rod 40 may be configured to attach to exposed end 13 of shaft 14, for example, by collar 46, though other attachment means may be used. Press mechanism 44 may include an adjustment nut 48 which may be threaded to rod 40 (e.g., on external threads 41 (
As shown in
As depicted in FIGS. 10-11 of indicated co-owned U.S. Pat. No. 8,316,530, loading adapter 210 includes a plate 211 and at least two extensions, fingers, or arms 212, 213 extending from plate 211. In this aspect of the invention, extensions 212 and 213 are adapted to transmit the load applied to plate 211, for example, by the compression of nut 48, to the bearing 16. Plate 211 typically includes a through hole or bore 214 that is adapted to receive rod 40. Plate 211 may also include a raised boss 215 adapted to contact press mechanism 44, for example, adapted to contact piston 54 or bearing 64 (
As further illustrated in the indicated co-owned patent, arms or extensions 212, 213 may include projections 225, 226, respectively, for example, arcuate projections adapted to engage the arcuate shape of bearing 16 (e.g., an inner race thereof). Loading adapter 210 may also include an aligning arm 205 configured (e.g., shaped and dimensioned) to engage shaft slot 5 (
Press mechanism 44 may be any means that is configured to provide a compressive load (e.g., utilizing nut 48) to outboard bearing 16 (e.g., an inner race thereof). Further, press mechanism 44 may include a load sensor or any means for monitoring the compressive load transferred to bearing 16. For example, the indication of the compressive load transferred by press mechanism 44 may be provided mechanically, for example, by compression springs having a known spring constant, for example, coil springs or disc springs, and a deflection indicator, for example, a dial indicator, as is known in the art. In this aspect, the dial indicator may be mounted to detect and indicate the compression of one or more springs positioned in press mechanism 44 due to the advancement of nut 48, and the compression load calculated from the deflection indicated and the known spring constant of the springs used. This aspect of the invention may provide a reliable and repeatable means for monitoring the preload provided to inner race 15 of outboard bearing 16. The load sensor may be wired to an appropriate processor and display to, for example, provide a digital readout of the compressive load to the mechanic operating preload device 20. The transmission of signals from the sensor may also be practiced wirelessly, for example, by means of an RF signal. This aspect of the invention may also provide a reliable and repeatable means for monitoring the preload provided to bearing 16.
In one aspect of the invention, preload apparatus 20 may be used to apply and monitor a preload to outboard bearing 16. In a typical procedure, a wheel (not shown) may be dismounted from hub assembly 10, for example, which was mounted to studs on hub 10, as exemplified by stud 100 in FIGS. 1-4 of the indicated co-owned patent, U.S. Pat. No. 8,316,530. Apparatus 20 may be prepared by assembly and filling cavity 56 with a fluid, for example, oil, through an access port (not shown) similar to that occupied by pressure indicator 60. Nut 11 may be loosened or hand tightened prior to mounting apparatus 20, though any light load on nut 11 will typically be relieved with application of tension to spindle 14 by means of rod 40. Apparatus 20 is then mounted to hub assembly 10 by attaching rod 40 to spindle 14 by means of collar 46. As a result, extensions 212, 213 are brought into contact with bearing 16 (e.g., an inner race thereof). Assuming a desired compressive deflection for bearing 16, for example, 0.003 inches, and a corresponding preload, L, the desired target pressure in cavity 56 can be calculated as described in co-owned U.S. Pat. No. 8,316,530.
The loading of bearing 16 may be initiated by advancing, that, is tightening, nut 48, against housing 52 via bearing 62, for example, by means of arms 50. The buildup of pressure in cavity 56 as indicated by pressure indicator 60 may be monitored by the mechanic. The tightening of nut 48 continues until the target pressure is achieved. The hub assembly may be rotated at least once to provide proper seating of the rollers in bearing 16. For example, nut 48 including arm 50 may be rotated three revolutions and such nut handle may then be counter-rotated slightly to arrive at a desired pressure as indicated on a pressure sensor (e.g., gauge 60). Once the target pressure is achieved in cavity 56, and the desired preload is applied to bearing 16, nut 11 may be tightened (e.g., by hand) against inner race 15 to maintain the preload after apparatus 20 is removed. The desired tightening of nut 11 may be determined by positioning one or more of markings 510 on nut 11 relative to aligning arm 205. Also, the hub assembly may be rotated at least once to provide proper seating of the rollers in bearing 16. Upon completion of the preloading, apparatus 20 may be removed from wheel hub assembly 10 and, keeper 530 and retaining member 540 may be engaged with retaining nut 11 and spindle 14 such that keeper teeth 520 engage teeth 511 of nut 11 and engaging member 534 of keeper 530 engage shaft slot 5 of spindle 14. As indicated above, nut 11 may be selectively rotated based on markings 510 and aligning arm 205 such that keeper teeth 520 and engaging teeth 511 engage one another and engaging member 534 engages shaft slot 5 in a manner to inhibit movement of spindle 14 relative to retaining nut 11. As described above, a cover plate or locking member (e.g., cover plate 750) may be utilized to allow a visual inspection of any potential tampering of the endplay of the wheel hub assembly. The wheel may then, for example, be remounted. Variations on this procedure while not deviating from the desired results may be apparent to those of skill in the art.
Another example of a press mechanism usable to provide a compressive load on a bearing is described in co-owned U.S. application Ser. No. 15/071,570, filed Mar. 16, 2016, and titled “Systems and Methods For Preloading A Bearing And Aligning A Lock Nut”.
The preloading of the bearings as described above is advantageous relative to endplate adjustment but was rarely recommended prior to the invention disclosed in co-owned U.S. Pat. No. 8,316,530, due to the difficulty of creating and verifying a correct preload site. The use of a load sensor such as a pressure indicator or gauge 60 along with the selective positioning of retaining nut 11 on spindle 14 (e.g., using arm 205 and markings 510) provide for a repeatable correct and accurate preload setting.
Aspects of the invention may also be used to evaluate the preload or endplay on an existing bearing or bearing assembly. For example, an existing truck hub assembly may be evaluated for its existing preload and compared to the desired preload, and, if necessary, adjusted accordingly. First, the truck may be jacked up, if needed. (The hub may be allowed to cool, if necessary). Apparatus 20 may then be mounted to bearing 16 and spindle 14 (with reference to
Although aspects of the present invention were described above with respect to their application to wheel hub assemblies, for example, truck wheel hub assemblies, it is understood that aspects of the present invention may be applied to any vehicle, machine, or component having at least one bearing. Further, although press mechanism 44 is described above as applying a compressive load to an inner race of a bearing, such load could be applied elsewhere to the bearing or wheel assembly 10 such that a frictional or other load on a retaining nut is reduced to allow rotation of a retaining nut. Such rotation may allow teeth of the nut and teeth of a keeper to be aligned with each other to allow engagement of a shaft engaging portion of the keeper with a shaft, (e.g., a shaft slot thereof) to inhibit rotation of the nut relative to the shaft.
While several aspects of the present invention have been described and depicted herein, alternative aspects may be effected by those skilled in the art to accomplish the same objectives. Accordingly, it is intended by the appended claims to cover all such alternative aspects as fall within the true spirit and scope of the invention.
This application is a Continuation of U.S. Divisional patent application Ser. No. 15/399,473 filed on Jan. 5, 2017 titled “Systems and Methods for Preloading a Bearing and Installing a Tamper Indicating Member”, which is a Divisional of U.S. Ser. No. 15/399,473, filed on Jan. 5, 2017, titled “Systems and Methods for Preloading a Bearing and Installing a Tamper Indicating Member” now U.S. Pat. No. 9,566,699 issued on Feb. 14, 2017, the entire disclosures of which are incorporated herein by reference. This application relates to U.S. Ser. No. 14/455,143 filed on Aug. 8, 2014, titled “Systems And Methods For Preloading A Bearing And Aligning A Lock Nut”, now U.S. Pat. No. 9,217,461 issued on Dec. 22, 2015, which claims priority to U.S. Provisional Patent Application Ser. No. 61/970,795, filed on Mar. 26, 2014, titled “Systems And Methods For Preloading A Bearing And Aligning A Lock Nut”, the entire disclosures of which are incorporated herein by reference. This application relates to U.S. Ser. No. 11/029,521, filed on Jan. 5, 2005, titled “Lock Nut System” now U.S. Pat. No. 7,303,367 issued Dec. 4, 2007, the entire disclosure of which is incorporated herein by reference. This application relates to U.S. Ser. No. 11/738,041, filed on Apr. 20, 2007, titled “Lock Nut System” now U.S. Pat. No. 7,625,164 issued Dec. 1, 2009, the entire disclosure of which is incorporated herein by reference. This application relates to U.S. application Ser. No. 11/341,948, filed on Jan. 27, 2006, titled “Method And Apparatus For Preloading A Bearing,” U.S. Pat. No. 7,559,135 issued Jul. 14, 2009, the entire disclosure of which is incorporated herein by reference. This application relates to U.S. application Ser. No. 11/354,513, filed Feb. 15, 2006, and titled “Method, Apparatus, And Nut For Preloading A Bearing”, issued as U.S. Pat. No. 7,389,579 on Jun. 24, 2008, the entire disclosure of which is incorporated herein by reference. This application relates to U.S. application Ser. No. 12/492,826, filed Jun. 26, 2009, and titled “Systems And Methods For Preloading A Bearing And Aligning A Lock Nut”, issued as U.S. Pat. No. 8,316,530 on Nov. 27, 2012, the entire disclosure of which is incorporated herein by reference. This application relates to U.S. Divisional application Ser. No. 15/885,988, filed Feb. 1, 2018, titled “Systems And Methods For Preloading A Bearing And Aligning A Lock Nut”, and U.S. application Ser. No. 15/071,570, filed Mar. 16, 2016, now U.S. Pat. No. 9,908,223 issued Mar. 6, 2018 and titled “Systems And Methods For Preloading A Bearing And Aligning A Lock Nut”, the entire disclosure of which is incorporated herein by reference. This application relates to U.S. Divisional application Ser. No. 15/416,683, filed Jan. 26, 2017, titled “Systems And Methods For Preloading A Bearing”, and U.S. application Ser. No. 15/071,584, filed Mar. 16, 2016, now U.S. Pat. No. 9,599,164 issued Mar. 21, 2017 and titled “Systems And Methods For Preloading A Bearing”, the entire disclosure of which is incorporated herein by reference. This application relates to U.S. Design application Ser. No. 29/558,261, filed Mar. 16, 2016, and titled “Retaining Ring Pliers”, the entire disclosure of which is incorporated herein by reference. This application relates to U.S. application Ser. No. 15/071,753, filed Mar. 16, 2016, now U.S. Pat. No. 9,764,453 issued Sep. 19, 2017 and titled “Systems And Methods For Preloading A Bearing”, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
518328 | Oakey | Apr 1894 | A |
578276 | Strauss | Mar 1897 | A |
1352643 | Young | Sep 1920 | A |
1366273 | Nettlefold | Jan 1921 | A |
1373489 | Royal-Cochran | Apr 1921 | A |
1384655 | Allmon | Jul 1921 | A |
1440938 | Sieroslawski | Jan 1923 | A |
1648189 | Ottinger | Nov 1927 | A |
1755807 | Boles | Apr 1930 | A |
1758515 | Heiermann | May 1930 | A |
2301786 | Millermaster | Nov 1942 | A |
2426219 | Jackson | Aug 1947 | A |
2755698 | Wurzel | Jul 1956 | A |
2769360 | Woodford | Nov 1956 | A |
2813732 | Hird | Nov 1957 | A |
3144909 | Hart et al. | Aug 1964 | A |
3241409 | Raptis | Mar 1966 | A |
3316952 | Hollinger | May 1967 | A |
3464474 | Jansen | Sep 1969 | A |
3480300 | Jeffrey et al. | Nov 1969 | A |
3522830 | Blizard | Aug 1970 | A |
3581609 | Greenwood | Jun 1971 | A |
3664226 | Gonzalez | May 1972 | A |
3678981 | Heyworth | Jul 1972 | A |
3742568 | Hahlbeck | Mar 1973 | A |
3762455 | Anderson, Jr. | Oct 1973 | A |
3844323 | Anderson, Jr. | Oct 1974 | A |
3986750 | Trent et al. | Oct 1976 | A |
4048897 | Price, Jr. | Sep 1977 | A |
4054999 | Harbottle | Oct 1977 | A |
4210372 | McGee et al. | Jan 1980 | A |
4305438 | Spinosa et al. | Dec 1981 | A |
4436468 | Ozaki et al. | Mar 1984 | A |
4593924 | Cabeza | Jun 1986 | A |
4812094 | Grube | Mar 1989 | A |
4958941 | Imanari | Sep 1990 | A |
4971501 | Chavez | Nov 1990 | A |
5011306 | Martinie | Apr 1991 | A |
5058424 | O'Hara | Oct 1991 | A |
5070621 | Butler et al. | Dec 1991 | A |
5129156 | Walker | Jul 1992 | A |
5180265 | Weise | Jan 1993 | A |
5251995 | Chi | Oct 1993 | A |
5362111 | Harbin | Aug 1994 | A |
5348349 | Sloane | Sep 1994 | A |
5349736 | Rubino et al. | Sep 1994 | A |
5366300 | Deane et al. | Nov 1994 | A |
5533849 | Burdick | Jul 1996 | A |
5535517 | Rode | Jul 1996 | A |
5573311 | Clohessy | Nov 1996 | A |
5597058 | Ewer | Jan 1997 | A |
5749386 | Samuel, Jr. | May 1998 | A |
5877433 | Matsuzaki et al. | Feb 1999 | A |
5882044 | Sloane | Mar 1999 | A |
5934853 | Junkers | Aug 1999 | A |
6042273 | Thrasher | Mar 2000 | A |
6058767 | Calvin | May 2000 | A |
6065920 | Becker et al. | May 2000 | A |
6095735 | Weinstein et al. | Aug 2000 | A |
6135642 | Burch | Oct 2000 | A |
6186032 | Raines | Feb 2001 | B1 |
6286374 | Kudo et al. | Sep 2001 | B1 |
6520710 | Wells | Feb 2003 | B2 |
6598500 | Chivington-Wells | Jul 2003 | B1 |
6601503 | Scholzig et al. | Aug 2003 | B2 |
6622397 | Knoble | Sep 2003 | B1 |
6637297 | Mlynarczyk | Oct 2003 | B1 |
6665919 | Kurtz | Dec 2003 | B1 |
6749386 | Harris | Jun 2004 | B2 |
6857665 | Vyse et al. | Feb 2005 | B2 |
6886227 | Hedrick | May 2005 | B1 |
6971802 | Vezina | Dec 2005 | B2 |
6976817 | Grainger | Dec 2005 | B1 |
6988832 | Dewachter | Jan 2006 | B2 |
6993852 | Russell et al. | Feb 2006 | B2 |
7303367 | Rode | Dec 2007 | B2 |
7343836 | Ward | Mar 2008 | B1 |
7346985 | Strait | Mar 2008 | B1 |
7389579 | Rode | Jun 2008 | B2 |
7428779 | Smith et al. | Sep 2008 | B2 |
7559135 | Rode | Jul 2009 | B2 |
7625164 | Rode | Dec 2009 | B2 |
7927052 | Varden | Apr 2011 | B1 |
8006573 | Rode | Aug 2011 | B1 |
8316530 | Rode | Nov 2012 | B2 |
8328486 | Cox | Dec 2012 | B2 |
8650757 | Rode | Feb 2014 | B2 |
8739377 | Shen | Jun 2014 | B2 |
8904646 | Rode | Dec 2014 | B2 |
8961090 | Rode | Feb 2015 | B2 |
9217461 | Rode | Dec 2015 | B2 |
9566699 | Rode et al. | Feb 2017 | B1 |
9599164 | Rode et al. | Mar 2017 | B1 |
9764453 | Rode et al. | Sep 2017 | B1 |
9908223 | Rode et al. | Mar 2018 | B2 |
20020110414 | Wells | Aug 2002 | A1 |
20030035699 | Harris | Feb 2003 | A1 |
20040086354 | Harris | May 2004 | A1 |
20040089113 | Morgan | May 2004 | A1 |
20050025604 | Slesinski | Feb 2005 | A1 |
20050207865 | Disantis et al. | Sep 2005 | A1 |
20060008340 | Cox | Jan 2006 | A1 |
20090003963 | Winker et al. | Jan 2009 | A1 |
20100326205 | Rode | Dec 2010 | A1 |
20110097174 | Varden | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
102699875 | Oct 2012 | CN |
3905385 | Aug 1990 | DE |
1367299 | Dec 2003 | EP |
990553 | Apr 1965 | GB |
2286231 | Feb 1995 | GB |
2435499 | Aug 2007 | GB |
2434621 | Oct 2008 | GB |
0208618 | Jan 2002 | WO |
2008003919 | Jan 2008 | WO |
2015147903 | Oct 2015 | WO |
Entry |
---|
“STEMCO Pro-Torq ® Advanced Axle Spindle Nuts 09-571-0006,” Instruction guide, Copyright Aug. 2003, 2 pages. |
“STEMCO Pro-Torq(R) 571-2970,” Copyright 2005 STEMCO LP, 2 pages. |
“Timkin Products—Bearings,” vol. 1, Issue 6; 2 pages, [http://www.timken.com/products/bearings/techtips/tip6.asp]. |
Timkin Tech Tips: Promoting Safe, Proper Bearing Handling Practices for the Heavy-Duty Market; “Preload in Wheel Bearings” vol. 6, Issue 3, 2 pages, [http://www.Timkin.com/products/bearings/techtipsPDFs/Vol6No3.pdf#search='Bearing%20Preloa. |
“Forming and Shaping Processes Compaction and Sintering (Pulvepresning),” Copyright Institut for Precesteknik Danmarks Tekniske Universitet 1996, (http://www.ipt.dtusdk/-ap/ingpro/ forming/ppm/htm). |
STEMCO, PRO-TORQ, An Axle Spindle Nut System for Today's Fleets. Mar. 2003; download from http://www.stemco.com, pp. 38-41. |
STEMCO, PRO-TORQ, An Axle Spindle Nut System for Today's Fleets. Mar. 2003; download from http://www.stemco.com, pp. 57-64. |
GB Intellectual Property Office Search Report Under Section 17, dated Aug. 25, 2010, from corresponding GB Application No. 1008927.4. |
What is Powder Metallurgy? Dec. 2004, 2 pages. (https://www.mpif org/technology/whatis.html). |
Stemco, Quick Reference Catalog 572-0011 Rev. Date Apr. 2010. |
Stemco—Pro-Torq, Axle Spindle Nuts, An Axle Spindle Nut System for Today's Commercial Fleets (http://www.stemco.com/product/pro-torz-axle-spindle-nuts/. |
Stemco—Pro-Torq Advanced Axle Spindle Nuts, Installation Procedure and Wheel Bearing Adjustment, 2 pages. |
PCT/ISA/220—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Jul. 30, 2018, for corresponding PCT International Application No. PCT/US2018/026525. |
PCT/ISA/210—International Search Report, dated Jul. 30, 2018, for corresponding PCT International Application No. PCT/US2018/026525. |
PCT/ISA/237—Written Opinion of the International Searching Authority, dated Jul. 30, 2018, for corresponding PCT International Application No. PCT/US2018/026525. |
Number | Date | Country | |
---|---|---|---|
20190001471 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15153020 | May 2016 | US |
Child | 15399473 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15399473 | Jan 2017 | US |
Child | 16110715 | US |