The present disclosure relates in general to circuits for audio devices, including without limitation personal audio devices such as wireless telephones and media players, and more specifically, to systems and methods for reducing signal distortion in an audio signal path in an audio device.
Personal audio devices, including wireless telephones, such as mobile/cellular telephones, cordless telephones, mp3 players, and other consumer audio devices, are in widespread use. Such personal audio devices may include circuitry for driving a pair of headphones or one or more speakers. Such circuitry often includes a power amplifier for driving an audio output signal to headphones or speakers.
In some personal audio devices, changes in a modulation index of a signal processing circuit may lead to signal distortion, such as a signal being clipped by a supply voltage providing power to the signal processing circuit.
In accordance with the teachings of the present disclosure, one or more disadvantages and problems associated with existing approaches to avoiding signal distortion in a signal processing system may be reduced or eliminated.
In accordance with embodiments of the present disclosure, a signal processing system may include a digital input for receiving a digital input signal, a digital-to-analog conversion stage powered from a reference voltage and coupled to the input gain control stage configured to convert the digital input signal into an intermediate analog signal, a modulation stage coupled to the digital-to-analog conversion stage wherein the digital-to-analog conversion stage controls the modulation stage to generate a pre-driver signal, a driver stage powered from a supply voltage via at least one supply voltage terminal and coupled to the modulation stage and configured to generate the analog output signal from the pre-driver signal; and a predictor configured to predict a distortion of the analog output signal and control a gain applied to at least one of the digital input signal and the analog output signal based on the prediction such that the predicted distortion is averted. The predictor may predict the distortion of the analog output signal based on at least one of the digital input signal, the reference voltage, the supply voltage, a current of the at least one supply voltage terminal, a reference voltage frequency, a supply voltage frequency, a current frequency of the current, and an impedance of a load coupled to an output of the driver stage.
In accordance with these and other embodiments of the present disclosure, a method may include predicting a distortion of an analog output signal generated from a digital input signal and controlling a gain applied to at least one of the digital input signal and the analog output signal based on the prediction such that the predicted distortion is averted. Predicting the distortion may comprise of the analog output signal based on at least one of the digital input signal, a reference voltage for powering a digital-to-analog conversion stage coupled to the input gain control stage configured to convert the digital input signal into an intermediate analog signal that is input to a modulation stage such that the digital-to-analog conversion stage controls the modulation stage to generate a pre-driver signal, a supply voltage for powering a driver stage coupled to the modulation stage and configured to generate the analog output signal from the pre-driver signal (wherein the driver stage is powered from the supply voltage via at least one supply voltage terminal), a current of the at least one supply voltage terminal, a reference voltage frequency, a supply voltage frequency, a current frequency of the current, and an impedance of a load coupled to an output of the driver stage.
In accordance with these and other embodiments of the present disclosure, a method may include receiving a digital input signal at a first integrated circuit from a second integrated circuit, receiving a supply voltage at the first integrated circuit from the second integrated circuit, generating an analog output signal from the digital input signal, predicting a distortion of the analog output signal based on the digital input signal and the supply voltage, and controlling a gain applied to at least one of the digital input signal and the analog output signal based on the predicting.
Technical advantages of the present disclosure may be readily apparent to one skilled in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
In accordance with embodiments of the present disclosure, an integrated circuit for use in an audio device, such as a personal audio device (e.g., mobile telephone, portable music player, tablet computer, personal digital assistant, etc.), may include a signal path having a digital path portion (e.g., an audio compressor) and an analog path portion (e.g., an audio expander). The analog path portion may include an amplifier to receive an analog signal generated by the digital path portion and apply a gain to the analog signal to generate an output signal, wherein said output signal may be communicated to a loudspeaker for playback and/or to other circuitry for processing.
The integrated circuit described above may be used in any suitable system, device, or apparatus, including without limitation, a personal audio device.
DAC 14 may supply the intermediate analog signal to a Class-D modulator 15, such that the intermediate analog signal controls Class-D modulator 15 in order to generate an analog pre-driver signal. For example, in some embodiments, Class-D modulator 15 may generate the pre-driver signal as a pulse-width modulated signal, wherein the pulse widths of the pre-driver signal are a function of the intermediate analog signal. As shown in
A Class-D driver 16 may receive the pre-driver signal and output an analog signal that may be filtered by a low-pass filter 22 to generate analog output signal VOUT, which may be driven to a transducer (e.g., one or more of speakers 8A and 8B) for playback of audio sound. Thus, together Class-D driver 16 and low-pass filter 22 form a driver stage configured to generate analog output signal VOUT from the pre-driver signal output by Class-D modulator 15. As shown in
As depicted in
As shown in
At step 52, predictor 20 may determine if distortion is likely. If distortion is imminent, method 50 may proceed to step 54. Otherwise, if distortion is not imminent, method 50 may proceed to step 56. An example of predicting distortion is shown in
Although the foregoing paragraph contemplates that a priori indications of digital audio input signal DIG_IN and supply voltage VDD may be used to predict and avoid future distortion (e.g., clipping or other audio artifact), other a priori measurements (e.g., at least one of digital audio input signal DIG_IN, reference voltage VREF, supply voltage VDD, a current of at least one supply voltage terminal of Class-D modulator 15 or Class-D driver 16, a frequency associated with reference voltage VREF, a frequency associated with supply voltage VDD, a frequency associated with the current of the at least one supply voltage terminal of Class-D modulator 15 or Class-D driver 16, and an impedance of a load coupled to an output of audio IC 9) may be used to predict and avoid future distortion.
Turning again to
At step 56, in response to predicting absence of distortion, predictor 20 may increase one or both of the digital gain and the analog gain, subject to a maximum gain level for each. After completion of step 56, method 50 may proceed again to step 52.
Although
Method 300 may be implemented using signal processing system 10 or any other system operable to implement method 300. In certain embodiments, method 300 may be implemented partially or fully in software and/or firmware embodied in computer-readable media.
This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the exemplary embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the exemplary embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.
All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present inventions have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4446440 | Bell | May 1984 | A |
4493091 | Gundry | Jan 1985 | A |
4890107 | Pearce | Dec 1989 | A |
4972436 | Halim et al. | Nov 1990 | A |
4999628 | Kakaubo et al. | Mar 1991 | A |
4999830 | Agazzi | Mar 1991 | A |
5077539 | Howatt | Dec 1991 | A |
5148167 | Ribner | Sep 1992 | A |
5198814 | Ogawara et al. | Mar 1993 | A |
5321758 | Charpentier et al. | Jun 1994 | A |
5323159 | Imamura et al. | Jun 1994 | A |
5343161 | Tokumo et al. | Aug 1994 | A |
5550923 | Hotvet | Aug 1996 | A |
5600317 | Knoth et al. | Feb 1997 | A |
5714956 | Jahne et al. | Feb 1998 | A |
5719641 | Mizoguchi | Feb 1998 | A |
2810477 | Abraham et al. | Sep 1998 | A |
5808575 | Himeno et al. | Sep 1998 | A |
6088461 | Lin | Jul 2000 | A |
6201490 | Kawano et al. | Mar 2001 | B1 |
6271780 | Gong et al. | Aug 2001 | B1 |
6333707 | Oberhammer et al. | Dec 2001 | B1 |
6353404 | Kuroiwa | Mar 2002 | B1 |
6542612 | Needham | Apr 2003 | B1 |
6683494 | Stanley | Jan 2004 | B2 |
6745355 | Tamura | Jun 2004 | B1 |
6768443 | Willis | Jul 2004 | B2 |
6822595 | Robinson | Nov 2004 | B1 |
6853242 | Melanson et al. | Feb 2005 | B2 |
6888888 | Tu et al. | May 2005 | B1 |
6897794 | Kuyel et al. | May 2005 | B2 |
7020892 | Levesque et al. | Mar 2006 | B2 |
7023268 | Taylor et al. | Apr 2006 | B1 |
7061312 | Andersen et al. | Jun 2006 | B2 |
7167112 | Andersen et al. | Jan 2007 | B2 |
7216249 | Fujiwara et al. | May 2007 | B2 |
7279964 | Bolz et al. | Oct 2007 | B2 |
7302354 | Zhuge | Nov 2007 | B2 |
7312734 | McNeill et al. | Dec 2007 | B2 |
7315204 | Seven | Jan 2008 | B2 |
7365664 | Caduff et al. | Apr 2008 | B2 |
7403010 | Hertz | Jul 2008 | B1 |
7440891 | Shozakai et al. | Oct 2008 | B1 |
7522677 | Liang | Apr 2009 | B2 |
7583215 | Yamamoto et al. | Sep 2009 | B2 |
7671768 | De Ceuninck | Mar 2010 | B2 |
7679538 | Tsang | Mar 2010 | B2 |
7893856 | Ek et al. | Feb 2011 | B2 |
8060663 | Murray et al. | Nov 2011 | B2 |
8130126 | Breitschaedel et al. | Mar 2012 | B2 |
8298425 | Kanbe | Oct 2012 | B2 |
8330631 | Kumar et al. | Dec 2012 | B2 |
8362936 | Ledzius et al. | Jan 2013 | B2 |
8462035 | Schimper et al. | Jun 2013 | B2 |
8483753 | Behzad et al. | Jul 2013 | B2 |
8508397 | Hisch | Aug 2013 | B2 |
8717211 | Miao et al. | May 2014 | B2 |
8786477 | Albinet | Jul 2014 | B1 |
8836551 | Nozaki | Sep 2014 | B2 |
8873182 | Liao et al. | Oct 2014 | B2 |
8878708 | Sanders et al. | Nov 2014 | B1 |
8952837 | Kim et al. | Feb 2015 | B2 |
9071267 | Schneider et al. | Jun 2015 | B1 |
9071268 | Schneider et al. | Jun 2015 | B1 |
9118401 | Nieto et al. | Aug 2015 | B1 |
9148164 | Schneider et al. | Sep 2015 | B1 |
9171552 | Yang | Oct 2015 | B1 |
9210506 | Nawfal et al. | Dec 2015 | B1 |
9306588 | Das et al. | Apr 2016 | B2 |
9337795 | Das et al. | May 2016 | B2 |
9391576 | Satoskar et al. | Jul 2016 | B1 |
9503027 | Zanbaghi | Nov 2016 | B2 |
9525940 | Schneider et al. | Dec 2016 | B1 |
9543975 | Melanson et al. | Jan 2017 | B1 |
9584911 | Das et al. | Feb 2017 | B2 |
9596537 | He et al. | Mar 2017 | B2 |
9635310 | Chang et al. | Apr 2017 | B2 |
20010001547 | Delano et al. | May 2001 | A1 |
20010009565 | Singvall | Jul 2001 | A1 |
20040078200 | Alves | Apr 2004 | A1 |
20040184621 | Andersen et al. | Sep 2004 | A1 |
20050258989 | Li et al. | Nov 2005 | A1 |
20050276359 | Xiong | Dec 2005 | A1 |
20060056491 | Lim et al. | Mar 2006 | A1 |
20060064037 | Shalon et al. | Mar 2006 | A1 |
20060098827 | Paddock et al. | May 2006 | A1 |
20060284675 | Krochmal et al. | Dec 2006 | A1 |
20070026837 | Bagchi | Feb 2007 | A1 |
20070057720 | Hand et al. | Mar 2007 | A1 |
20070092089 | Seefeldt et al. | Apr 2007 | A1 |
20070103355 | Yamada | May 2007 | A1 |
20070120721 | Caduff et al. | May 2007 | A1 |
20070123184 | Nesimoglu et al. | May 2007 | A1 |
20080030577 | Cleary et al. | Feb 2008 | A1 |
20080114239 | Randall et al. | May 2008 | A1 |
20080143436 | Xu | Jun 2008 | A1 |
20080159444 | Terada | Jul 2008 | A1 |
20080198048 | Klein et al. | Aug 2008 | A1 |
20080292107 | Bizjak | Nov 2008 | A1 |
20090021643 | Hsueh et al. | Jan 2009 | A1 |
20090058531 | Hwang et al. | Mar 2009 | A1 |
20090084586 | Nielsen | Apr 2009 | A1 |
20090220110 | Bazarjani et al. | Sep 2009 | A1 |
20100183163 | Matsui et al. | Jul 2010 | A1 |
20110013733 | Martens et al. | Jan 2011 | A1 |
20110025540 | Katsis | Feb 2011 | A1 |
20110029109 | Thomsen et al. | Feb 2011 | A1 |
20110063148 | Kolze et al. | Mar 2011 | A1 |
20110096370 | Okamoto | Apr 2011 | A1 |
20110136455 | Sundstrom et al. | Jun 2011 | A1 |
20110150240 | Akiyama et al. | Jun 2011 | A1 |
20110170709 | Guthrie et al. | Jul 2011 | A1 |
20110188671 | Anderson et al. | Aug 2011 | A1 |
20110228952 | Lin | Sep 2011 | A1 |
20110242614 | Okada | Oct 2011 | A1 |
20110268301 | Nielsen et al. | Nov 2011 | A1 |
20110285463 | Walker et al. | Nov 2011 | A1 |
20120001786 | Hisch | Jan 2012 | A1 |
20120047535 | Bennett et al. | Feb 2012 | A1 |
20120133411 | Miao et al. | May 2012 | A1 |
20120177201 | Ayling et al. | Jul 2012 | A1 |
20120177226 | Silverstein et al. | Jul 2012 | A1 |
20120188111 | Ledzius et al. | Jul 2012 | A1 |
20120207315 | Kimura et al. | Aug 2012 | A1 |
20120242521 | Kinyua | Sep 2012 | A1 |
20120250893 | Carroll et al. | Oct 2012 | A1 |
20120263090 | Porat et al. | Oct 2012 | A1 |
20120280726 | Colombo et al. | Nov 2012 | A1 |
20130095870 | Phillips et al. | Apr 2013 | A1 |
20130106635 | Doi | May 2013 | A1 |
20130129117 | Thomsen et al. | May 2013 | A1 |
20130188808 | Pereira et al. | Jul 2013 | A1 |
20130241753 | Nozaki | Sep 2013 | A1 |
20130241755 | Chen et al. | Sep 2013 | A1 |
20140044280 | Jiang | Feb 2014 | A1 |
20140105256 | Hanevich et al. | Apr 2014 | A1 |
20140105273 | Chen et al. | Apr 2014 | A1 |
20140126747 | Huang | May 2014 | A1 |
20140135077 | Leviant et al. | May 2014 | A1 |
20140184332 | Shi et al. | Jul 2014 | A1 |
20140269118 | Taylor et al. | Sep 2014 | A1 |
20140368364 | Hsu | Dec 2014 | A1 |
20150170663 | Disch et al. | Jun 2015 | A1 |
20150214974 | Currivan | Jul 2015 | A1 |
20150214975 | Gomez et al. | Jul 2015 | A1 |
20150249466 | Elyada | Sep 2015 | A1 |
20150295584 | Das et al. | Oct 2015 | A1 |
20150381130 | Das et al. | Dec 2015 | A1 |
20160072465 | Das et al. | Mar 2016 | A1 |
20160080862 | He et al. | Mar 2016 | A1 |
20160080865 | He et al. | Mar 2016 | A1 |
20160173112 | Das et al. | Jun 2016 | A1 |
20160286310 | Das et al. | Sep 2016 | A1 |
20160365081 | Satoskar et al. | Dec 2016 | A1 |
20170047895 | Zanbaghi | Feb 2017 | A1 |
20170150257 | Das et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
0966105 | Dec 1999 | EP |
1575164 | Sep 2005 | EP |
1753130 | Feb 2007 | EP |
1798852 | Jun 2009 | EP |
2207264 | Jul 2010 | EP |
1599401 | Sep 1981 | GB |
2119189 | Nov 1983 | GB |
2307121 | Jun 1997 | GB |
2507096 | Apr 2014 | GB |
2527637 | Dec 2015 | GB |
2527677 | Oct 2016 | GB |
2539517 | Dec 2016 | GB |
2008294803 | Dec 2008 | JP |
WO0054403 | Sep 2000 | WO |
0237686 | May 2002 | WO |
2008067260 | Jun 2008 | WO |
2014113471 | Jul 2014 | WO |
2015160655 | Oct 2015 | WO |
2016040165 | Mar 2016 | WO |
2016040171 | Mar 2016 | WO |
2016040177 | Mar 2016 | WO |
2016160336 | Oct 2016 | WO |
2016202636 | Dec 2016 | WO |
Entry |
---|
International Search Report and Written Opinion, International Application No. PCT/US2015/056357, dated Jan. 29, 2015, 13 pages. |
Combined Search and Examination Report, GB Application No. GB1514512.1, dated Feb. 11, 2016, 7 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2015/048609, dated Mar. 23, 2016, 23 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2016/022578, dated Jun. 22, 2016, 12 pages. |
Combined Search and Examination Report, GB Application No. GB1600528.2, dated Jul. 7, 2016, 8 pages. |
Combined Search and Examination Report, GB Application No. GB1602288.1, dated Aug. 9, 2016, 6 pages. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2016/065134, dated Mar. 15, 2017. |
Combined Search and Examination Report, GB Application No. GB1603628.7, dated Aug. 24, 2016, 6 pages. |
International Search Report and Written Opinion, International Application No. PCT/EP2016/062862, dated Aug. 26, 2016, 14 pages. |
Thaden, Rainer et al., A Loudspeaker Management System with FIR/IRR Filtering; AES 32nd International Conference, Hillerod, Denmark, Sep. 21-23, 2007; pp. 1-12. |
Thaden, Rainer et al., A Loudspeaker Management System with FIR/IRR Filtering; Slides from a presentation given at the 32nd AES conference “DSP for Loudspeakers” in Hillerod, Denmark in Sep. 2007; http://www.four-audio.com/data/AES32/AES32FourAudio.pdf; 23 pages. |
GB Patent Application No. 1419651.3, Improved Analogue-to-Digital Convertor, filed Nov. 4, 2014, 65 pages. |
Combined Search and Examination Report, GB Application No. GB1506258.1, dated Oct. 21, 2015, 6 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/025329, dated Aug. 11, 2015, 9 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/048633, dated Dec. 10, 2015, 11 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/048591, dated Dec. 10, 2015, 11 pages. |
Combined Search and Examination Report, GB Application No. GB1510578.6, dated Aug. 3, 2015, 3 pages. |
Combined Search and Examination Report under Sections 17 and 18(3) of the UKIPO, Application No. GB1620427.3, dated Jun. 1, 2017. |
Combined Search and Examination Report under Sections 17 and 18(3) of the UKIPO, Application No. GB1620428.1, dated Jul. 21, 2017. |
Combined Search and Examination Report under Sections 17 and 18(3) of the UKIPO, Application No. GB1700371.6, dated Aug. 1, 2017. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2016/040096, dated Mar. 24, 2017. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2017/014240, dated Apr. 24, 2017. |
Groeneweg, B.P., et al., A Class-AB/D Audio Power Amplifier for Mobile Applications Integrated Into a 2.5G/3G Baseband Processo1016r, IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 57, No. 5, May 2010, pp. 1003-1016. |
Chen, K., et al., A High-PSRR Reconfigurable Class-AB/D Audio. Amplifier Driving a Hands-Free/Receiver. 2-in-1 Loudspeaker, IEEE Journal of Solid-State Circuits, vol. 47, No. 11, Nov. 2012, pp. 2586-2603. |
Chen, Kuo-Hsin, et al., A 106dB PSRR Direct Battery Connected Reconfigurable Class-AB/D Speaker Amplifier for Hands-Free/Receiver 2-in-1 Loudspeaker, Solid State Circuits Conference (A-SSCC), 2011 IEEE Asian, Nov. 14, 2011, pp. 221-224. |
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2017/045861, dated Nov. 14, 2017. |
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2017/046083, dated Nov. 14, 2017. |
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1708546.5, dated Nov. 22, 2017. |
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1708544.0, dated Nov. 28, 2017. |
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2017/052439, dated Dec. 14, 2017. |
Number | Date | Country | |
---|---|---|---|
20170150257 A1 | May 2017 | US |