Systems and methods for preventing distortion due to supply-based modulation index changes in an audio playback system

Information

  • Patent Grant
  • 9955254
  • Patent Number
    9,955,254
  • Date Filed
    Wednesday, November 25, 2015
    9 years ago
  • Date Issued
    Tuesday, April 24, 2018
    6 years ago
Abstract
In accordance with embodiments of the present disclosure, a method may include receiving a digital input signal at a first integrated circuit from a second integrated circuit, receiving a supply voltage at the first integrated circuit from the second integrated circuit, generating an analog output signal from the digital input signal, predicting a distortion of the analog output signal based on the digital input signal and the supply voltage, and controlling a gain applied to at least one of the digital input signal and the analog output signal based on the predicting.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to circuits for audio devices, including without limitation personal audio devices such as wireless telephones and media players, and more specifically, to systems and methods for reducing signal distortion in an audio signal path in an audio device.


BACKGROUND

Personal audio devices, including wireless telephones, such as mobile/cellular telephones, cordless telephones, mp3 players, and other consumer audio devices, are in widespread use. Such personal audio devices may include circuitry for driving a pair of headphones or one or more speakers. Such circuitry often includes a power amplifier for driving an audio output signal to headphones or speakers.


In some personal audio devices, changes in a modulation index of a signal processing circuit may lead to signal distortion, such as a signal being clipped by a supply voltage providing power to the signal processing circuit.


SUMMARY

In accordance with the teachings of the present disclosure, one or more disadvantages and problems associated with existing approaches to avoiding signal distortion in a signal processing system may be reduced or eliminated.


In accordance with embodiments of the present disclosure, a signal processing system may include a digital input for receiving a digital input signal, a digital-to-analog conversion stage powered from a reference voltage and coupled to the input gain control stage configured to convert the digital input signal into an intermediate analog signal, a modulation stage coupled to the digital-to-analog conversion stage wherein the digital-to-analog conversion stage controls the modulation stage to generate a pre-driver signal, a driver stage powered from a supply voltage via at least one supply voltage terminal and coupled to the modulation stage and configured to generate the analog output signal from the pre-driver signal; and a predictor configured to predict a distortion of the analog output signal and control a gain applied to at least one of the digital input signal and the analog output signal based on the prediction such that the predicted distortion is averted. The predictor may predict the distortion of the analog output signal based on at least one of the digital input signal, the reference voltage, the supply voltage, a current of the at least one supply voltage terminal, a reference voltage frequency, a supply voltage frequency, a current frequency of the current, and an impedance of a load coupled to an output of the driver stage.


In accordance with these and other embodiments of the present disclosure, a method may include predicting a distortion of an analog output signal generated from a digital input signal and controlling a gain applied to at least one of the digital input signal and the analog output signal based on the prediction such that the predicted distortion is averted. Predicting the distortion may comprise of the analog output signal based on at least one of the digital input signal, a reference voltage for powering a digital-to-analog conversion stage coupled to the input gain control stage configured to convert the digital input signal into an intermediate analog signal that is input to a modulation stage such that the digital-to-analog conversion stage controls the modulation stage to generate a pre-driver signal, a supply voltage for powering a driver stage coupled to the modulation stage and configured to generate the analog output signal from the pre-driver signal (wherein the driver stage is powered from the supply voltage via at least one supply voltage terminal), a current of the at least one supply voltage terminal, a reference voltage frequency, a supply voltage frequency, a current frequency of the current, and an impedance of a load coupled to an output of the driver stage.


In accordance with these and other embodiments of the present disclosure, a method may include receiving a digital input signal at a first integrated circuit from a second integrated circuit, receiving a supply voltage at the first integrated circuit from the second integrated circuit, generating an analog output signal from the digital input signal, predicting a distortion of the analog output signal based on the digital input signal and the supply voltage, and controlling a gain applied to at least one of the digital input signal and the analog output signal based on the predicting.


Technical advantages of the present disclosure may be readily apparent to one skilled in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1 is an illustration of an example personal audio device, in accordance with embodiments of the present disclosure;



FIG. 2 is a block diagram of selected components of an example signal processing system of a personal audio device, in accordance with embodiments of the present disclosure;



FIG. 3 illustrates a flow chart of an example method for reducing distortion in a personal audio device, in accordance with embodiments of the present disclosure;



FIG. 4 illustrates an example graph of waveforms for a digital input signal and a supply voltage showing an example of predicting distortion and avoiding such distortion in the signal processing system of FIG. 2, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

In accordance with embodiments of the present disclosure, an integrated circuit for use in an audio device, such as a personal audio device (e.g., mobile telephone, portable music player, tablet computer, personal digital assistant, etc.), may include a signal path having a digital path portion (e.g., an audio compressor) and an analog path portion (e.g., an audio expander). The analog path portion may include an amplifier to receive an analog signal generated by the digital path portion and apply a gain to the analog signal to generate an output signal, wherein said output signal may be communicated to a loudspeaker for playback and/or to other circuitry for processing.


The integrated circuit described above may be used in any suitable system, device, or apparatus, including without limitation, a personal audio device. FIG. 1 is an illustration of an example personal audio device 1, in accordance with embodiments of the present disclosure. FIG. 1 depicts personal audio device 1 coupled to a headset 3 in the form of a pair of earbud speakers 8A and 8B. Headset 3 depicted in FIG. 1 is merely an example, and it is understood that personal audio device 1 may be used in connection with a variety of audio transducers, including without limitation, headphones, earbuds, in-ear earphones, and external speakers. A plug 4 may provide for connection of headset 3 to an electrical terminal of personal audio device 1. Personal audio device 1 may provide a display to a user and receive user input using a touch screen 2, or alternatively, a standard liquid crystal display (LCD) may be combined with various buttons, sliders, and/or dials disposed on the face and/or sides of personal audio device 1. As also shown in FIG. 1, personal audio device 1 may include an audio integrated circuit (IC) 9 for generating an analog audio signal for transmission to headset 3 and/or another audio transducer. In addition, personal audio device 1 may include digital IC 6 for generating a digital audio signal. Digital IC 6 may include any suitable number and type of digital components, including for example one or more processors, controllers, memories, etc.



FIG. 2 is a block diagram of selected components of a signal processing system 10 of personal audio device 1, wherein the signal processing system comprises digital IC 6 and example audio IC 9, in accordance with embodiments of the present disclosure. As shown in FIG. 2, digital IC 6 may supply a digital audio signal DIG and a supply voltage VDD to audio IC 9. As shown in FIG. 2, parasitic impedances (e.g., parasitic resistance 26 and parasitic capacitance) may be present on a transmission line for supply voltage VDD which may cause degradation in the supply voltage within audio IC 9. A microcontroller core 18 may perform digital processing on digital audio signal DIG and output a digital audio input signal DIG_IN to a gain element 12 to apply a digital gain controlled by predictor 20 to the digital input signal DIG_IN. The amplified digital audio input signal may be communicated to a digital-to-analog converter (DAC) 14, which may convert the digital audio input signal to an intermediate analog signal. DAC 14 may comprise any suitable system, device, or apparatus configured to convert a digital signal into a corresponding analog signal indicative of the digital signal. In some embodiments, DAC 14 may comprise a delta-sigma modulator. As shown in FIG. 2, DAC 14 may be powered from a reference voltage VREF. In some embodiments, supply voltage VDD provided by digital IC 6 may be low-pass filtered by low-pass filter 24 to generate reference voltage VREF. Such low-pass filtering may provide for reference voltage VREF to have less variation than that of supply voltage VDD. Together, gain element 12 and DAC 14 may be referred to herein as a digital signal path portion of the signal path from the input node for digital audio input signal DIG_IN to the output node for output voltage signal VOUT depicted in FIG. 2.


DAC 14 may supply the intermediate analog signal to a Class-D modulator 15, such that the intermediate analog signal controls Class-D modulator 15 in order to generate an analog pre-driver signal. For example, in some embodiments, Class-D modulator 15 may generate the pre-driver signal as a pulse-width modulated signal, wherein the pulse widths of the pre-driver signal are a function of the intermediate analog signal. As shown in FIG. 2, Class-D modulator 15 may be powered from supply voltage VDD provided by digital IC 6 via at least one supply voltage terminal of Class-D modulator 15.


A Class-D driver 16 may receive the pre-driver signal and output an analog signal that may be filtered by a low-pass filter 22 to generate analog output signal VOUT, which may be driven to a transducer (e.g., one or more of speakers 8A and 8B) for playback of audio sound. Thus, together Class-D driver 16 and low-pass filter 22 form a driver stage configured to generate analog output signal VOUT from the pre-driver signal output by Class-D modulator 15. As shown in FIG. 2, Class-D driver 16 may be powered from supply voltage VDD provided by digital IC 6 via at least one supply voltage terminal of Class-D driver 16. As also shown in FIG. 2, Class-D driver 16 may have an analog gain applied to analog output signal VOUT, wherein such analog gain is controlled by predictor 20. Although the embodiment in FIG. 2 depicts an analog gain applied by Class-D driver 16, in other embodiments, an analog gain may be applied at any other portion of the analog path portion comprising Class-D modulator 15, Class-D driver 16, and low-pass filter 22.


As depicted in FIG. 2, audio IC 9 may include a current monitor 28, which may include any system, device, or apparatus configured to detect a current flowing to a power supply input to Class-D driver 16. Current monitor 28 may communicate a signal indicative of such monitored current to predictor 20.


As shown in FIG. 2, audio IC 9 may include a predictor 20. Predictor 20 may be configured to predict a distortion (e.g., signal clipping) of analog output signal VOUT and control one or both of a digital gain applied to at least one of the digital input signal DIG_IN (e.g., by gain element 12) and an analog gain applied to analog output signal VOUT (e.g., by Class-D driver 16) based on the prediction such that the predicted distortion is averted. Predictor 20 may predict the distortion based on at least one of a digital audio input signal DIG_IN, reference voltage VREF, supply voltage VDD, a current of at least one supply voltage terminal of Class-D modulator 15 or Class-D driver 16, a frequency associated with reference voltage VREF, a frequency associated with supply voltage VDD, a frequency associated with the current of the at least one supply voltage terminal of Class-D modulator 15 or Class-D driver 16, and an impedance of a load coupled to an output of audio IC 9. In some embodiments, predictor 20 may predict distortion based on current and/or previously-detected values (e.g., stored in a memory not explicitly shown in FIG. 2) of one or more of the various parameters listed in the previous sentence. For example, based on one or more of these parameters, predictor 20 may predict that analog output signal VOUT is likely to exceed supply voltage VDD, thus causing signal clipping if the distortion is not averted by reducing signal gain. To make such prediction, predictor 20 may rely on present instantaneous values of digital audio input signal DIG_IN and supply voltage VDD and/or may rely on one or more previous values of such parameters to predict whether distortion is imminent based on a rate of change of such parameters.



FIG. 3 illustrates a flow chart of an example method 50 for reducing distortion in a personal audio device, in accordance with embodiments of the present disclosure. According to one embodiment, method 50 may begin at step 52. As noted above, teachings of the present disclosure may be implemented in a variety of configurations of signal processing system 10.


At step 52, predictor 20 may determine if distortion is likely. If distortion is imminent, method 50 may proceed to step 54. Otherwise, if distortion is not imminent, method 50 may proceed to step 56. An example of predicting distortion is shown in FIG. 4, which illustrates an example graph of waveforms for digital audio input signal DIG_IN and supply voltage VDD taken at a power supply input of Class-D driver 16, showing an example of predicting distortion and avoiding such distortion in signal processing system 10, in accordance with embodiments of the present disclosure. FIG. 4 depicts digital audio input signal DIG_IN having an increasing magnitude and a supply voltage VDD decreasing in magnitude. Thus, based on envelope 42 of digital audio input signal DIG_IN and envelope 44 of supply voltage VDD, predictor 20 may at time t1 predict a future distortion event (e.g., overload or clipping of an audio signal somewhere in the audio signal path) could occur based on such envelopes. Accordingly, as a result of such predicted distortion, predictor 20 may decrease one or both of the digital gain and the analog gain to reduce the likelihood of signal distortion. As a result, analog output signal VOUT may avoid distortion (e.g., signal clipping as shown by dotted line for output signal VOUT in FIG. 4) that may have otherwise occurred due to the decreasing supply voltage VDD.


Although the foregoing paragraph contemplates that a priori indications of digital audio input signal DIG_IN and supply voltage VDD may be used to predict and avoid future distortion (e.g., clipping or other audio artifact), other a priori measurements (e.g., at least one of digital audio input signal DIG_IN, reference voltage VREF, supply voltage VDD, a current of at least one supply voltage terminal of Class-D modulator 15 or Class-D driver 16, a frequency associated with reference voltage VREF, a frequency associated with supply voltage VDD, a frequency associated with the current of the at least one supply voltage terminal of Class-D modulator 15 or Class-D driver 16, and an impedance of a load coupled to an output of audio IC 9) may be used to predict and avoid future distortion.


Turning again to FIG. 3, at step 54, in response to a prediction of distortion, predictor 20 may decrease one or both of the digital gain and the analog gain to reduce the likelihood of signal distortion. After completion of step 54, method 50 may proceed again to step 52.


At step 56, in response to predicting absence of distortion, predictor 20 may increase one or both of the digital gain and the analog gain, subject to a maximum gain level for each. After completion of step 56, method 50 may proceed again to step 52.


Although FIG. 3 discloses a particular number of steps to be taken with respect to method 50, method 50 may be executed with greater or lesser steps than those depicted in FIG. 3. In addition, although FIG. 3 discloses a certain order of steps to be taken with respect to method 50, the steps comprising method 50 may be completed in any suitable order.


Method 300 may be implemented using signal processing system 10 or any other system operable to implement method 300. In certain embodiments, method 300 may be implemented partially or fully in software and/or firmware embodied in computer-readable media.


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the exemplary embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the exemplary embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present inventions have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.

Claims
  • 1. A signal processing system comprising: a digital input for receiving a digital input signal;a digital-to-analog conversion stage coupled to an input gain control stage configured to convert the digital input signal into an intermediate analog signal, wherein the digital-to-analog conversion stage is configured to be powered from a reference voltage;a modulation stage coupled to the digital-to-analog conversion stage wherein the digital-to-analog conversion stage is configured to control the modulation stage to generate a pre-driver signal;a driver stage coupled to the modulation stage and configured to generate an analog output signal from the pre-driver signal, wherein the driver stage is configured to be powered from a supply voltage via at least one supply voltage terminal; anda predictor configured to predict a clipping distortion of the analog output signal based at least in part on a predicted decline in the supply voltage and control a gain applied to at least one of the digital input signal and the analog output signal based on the predicted clipping distortion such that the predicted clipping distortion is averted, wherein the clipping distortion is further predicted based at least in part on a previously detected value of at least one of the digital input signal, the reference voltage, the supply voltage, a current of the at least one supply voltage terminal, a reference voltage frequency, a supply voltage frequency, a current frequency of the current, or an impedance of a load coupled to an output of the amplifier.
  • 2. The signal processing system of claim 1, wherein the digital-to-analog conversion stage comprises a delta-sigma modulator.
  • 3. The signal processing system of claim 1, wherein the modulation stage comprises a Class D modulator configured to generate the pre-driver signal as a pulse-width modulated signal.
  • 4. The signal processing system of claim 3, wherein the driver stage comprises a Class D driver.
  • 5. The signal processing system of claim 1, wherein the supply voltage is configured to be low-pass filtered to generate the reference voltage.
  • 6. The signal processing system of claim 1, wherein the supply voltage and the reference voltage are distinct.
  • 7. The signal processing system of claim 1, wherein: the signal processing system is integral to a first integrated circuit; andthe first integrated circuit is configured to receive the digital input signal and the supply voltage from a second integrated circuit.
  • 8. A method comprising: predicting a clipping distortion of an analog output signal generated by an amplifier from a digital input signal;controlling a gain applied by at least one stage of the amplifier to at least one of the digital input signal and the analog output signal based on the prediction such that the predicted clipping distortion is averted, wherein the at least one stage is powered by a supply voltage; andgenerating a reference voltage by applying a low-pass filter to the supply voltage;wherein the predicting the clipping distortion of the analog output signal comprises predicting based at least in part on a predicted decline in the supply voltage and further based at least in part on a monitored voltage difference between the supply voltage and the reference voltage.
  • 9. The method of claim 8, wherein the amplifier includes a delta-sigma modulator.
  • 10. The method of claim 8, wherein the amplifier includes a Class D modulator configured to generate a pre-driver signal as a pulse-width modulated signal.
  • 11. The method of claim 10, wherein a driver stage configured to receive the pre-driver signal comprises a Class D driver.
  • 12. The method of claim 8, wherein the monitored voltage difference between the supply voltage and the reference voltage is an instantaneous voltage difference.
  • 13. The method of claim 8, wherein a switching amplifier is integral to a first integrated circuit and the method further comprises the first integrated circuit receiving the digital input signal and the supply voltage from a second integrated circuit.
  • 14. The method of claim 8, further comprising predicting the clipping distortion of the analog output signal based on a previously-detected value of at least one of the digital input signal, a reference voltage, the supply voltage, a current of at least one supply voltage terminal, a reference voltage frequency, a supply voltage frequency, a current frequency of the current, or an impedance of a load coupled to an output of the amplifier.
  • 15. A method comprising: receiving a digital input signal at a first integrated circuit from a second integrated circuit;receiving a supply voltage at the first integrated circuit from the second integrated circuit;generating an analog output signal from the digital input signal;predicting a clipping distortion of the analog output signal based on the digital input signal and a predicted decline in the supply voltage, wherein the clipping distortion is further predicted based at least in part on a previously detected value of at least one of the digital input signal, a reference voltage, the supply voltage, a current of at least one supply voltage terminal, a reference voltage frequency, a supply voltage frequency, a current frequency of the current, or an impedance of a load coupled to an output of the amplifier; andcontrolling a gain applied to at least one of the digital input signal and the analog output signal based on the predicting.
  • 16. The method of claim 15, wherein generating the analog output signal from the digital input signal comprises: converting the digital input signal into an intermediate analog signal by a digital-to-analog conversion stage, wherein the digital-to-analog conversion stage is powered from a reference voltage;generating a pre-driver signal by a modulation stage coupled to the digital-to-analog conversion stage wherein the digital-to-analog conversion stage controls the modulation stage to generate the pre-driver signal; andgenerating the analog output signal from the pre-driver signal by a driver stage coupled to the modulation stage, wherein the digital-to-analog conversion stage is powered from the supply voltage via at least one supply voltage terminal.
  • 17. The method claim 16, wherein the digital-to-analog conversion stage comprises a delta-sigma modulator.
  • 18. The method of claim 16, wherein the modulation stage comprises a Class D modulator configured to generate the pre-driver signal as a pulse-width modulated signal.
  • 19. The method of claim 18, wherein the driver stage comprises a Class D driver.
  • 20. The method claim 16, wherein the supply voltage is low-pass filtered to generate the reference voltage.
US Referenced Citations (156)
Number Name Date Kind
4446440 Bell May 1984 A
4493091 Gundry Jan 1985 A
4890107 Pearce Dec 1989 A
4972436 Halim et al. Nov 1990 A
4999628 Kakaubo et al. Mar 1991 A
4999830 Agazzi Mar 1991 A
5077539 Howatt Dec 1991 A
5148167 Ribner Sep 1992 A
5198814 Ogawara et al. Mar 1993 A
5321758 Charpentier et al. Jun 1994 A
5323159 Imamura et al. Jun 1994 A
5343161 Tokumo et al. Aug 1994 A
5550923 Hotvet Aug 1996 A
5600317 Knoth et al. Feb 1997 A
5714956 Jahne et al. Feb 1998 A
5719641 Mizoguchi Feb 1998 A
2810477 Abraham et al. Sep 1998 A
5808575 Himeno et al. Sep 1998 A
6088461 Lin Jul 2000 A
6201490 Kawano et al. Mar 2001 B1
6271780 Gong et al. Aug 2001 B1
6333707 Oberhammer et al. Dec 2001 B1
6353404 Kuroiwa Mar 2002 B1
6542612 Needham Apr 2003 B1
6683494 Stanley Jan 2004 B2
6745355 Tamura Jun 2004 B1
6768443 Willis Jul 2004 B2
6822595 Robinson Nov 2004 B1
6853242 Melanson et al. Feb 2005 B2
6888888 Tu et al. May 2005 B1
6897794 Kuyel et al. May 2005 B2
7020892 Levesque et al. Mar 2006 B2
7023268 Taylor et al. Apr 2006 B1
7061312 Andersen et al. Jun 2006 B2
7167112 Andersen et al. Jan 2007 B2
7216249 Fujiwara et al. May 2007 B2
7279964 Bolz et al. Oct 2007 B2
7302354 Zhuge Nov 2007 B2
7312734 McNeill et al. Dec 2007 B2
7315204 Seven Jan 2008 B2
7365664 Caduff et al. Apr 2008 B2
7403010 Hertz Jul 2008 B1
7440891 Shozakai et al. Oct 2008 B1
7522677 Liang Apr 2009 B2
7583215 Yamamoto et al. Sep 2009 B2
7671768 De Ceuninck Mar 2010 B2
7679538 Tsang Mar 2010 B2
7893856 Ek et al. Feb 2011 B2
8060663 Murray et al. Nov 2011 B2
8130126 Breitschaedel et al. Mar 2012 B2
8298425 Kanbe Oct 2012 B2
8330631 Kumar et al. Dec 2012 B2
8362936 Ledzius et al. Jan 2013 B2
8462035 Schimper et al. Jun 2013 B2
8483753 Behzad et al. Jul 2013 B2
8508397 Hisch Aug 2013 B2
8717211 Miao et al. May 2014 B2
8786477 Albinet Jul 2014 B1
8836551 Nozaki Sep 2014 B2
8873182 Liao et al. Oct 2014 B2
8878708 Sanders et al. Nov 2014 B1
8952837 Kim et al. Feb 2015 B2
9071267 Schneider et al. Jun 2015 B1
9071268 Schneider et al. Jun 2015 B1
9118401 Nieto et al. Aug 2015 B1
9148164 Schneider et al. Sep 2015 B1
9171552 Yang Oct 2015 B1
9210506 Nawfal et al. Dec 2015 B1
9306588 Das et al. Apr 2016 B2
9337795 Das et al. May 2016 B2
9391576 Satoskar et al. Jul 2016 B1
9503027 Zanbaghi Nov 2016 B2
9525940 Schneider et al. Dec 2016 B1
9543975 Melanson et al. Jan 2017 B1
9584911 Das et al. Feb 2017 B2
9596537 He et al. Mar 2017 B2
9635310 Chang et al. Apr 2017 B2
20010001547 Delano et al. May 2001 A1
20010009565 Singvall Jul 2001 A1
20040078200 Alves Apr 2004 A1
20040184621 Andersen et al. Sep 2004 A1
20050258989 Li et al. Nov 2005 A1
20050276359 Xiong Dec 2005 A1
20060056491 Lim et al. Mar 2006 A1
20060064037 Shalon et al. Mar 2006 A1
20060098827 Paddock et al. May 2006 A1
20060284675 Krochmal et al. Dec 2006 A1
20070026837 Bagchi Feb 2007 A1
20070057720 Hand et al. Mar 2007 A1
20070092089 Seefeldt et al. Apr 2007 A1
20070103355 Yamada May 2007 A1
20070120721 Caduff et al. May 2007 A1
20070123184 Nesimoglu et al. May 2007 A1
20080030577 Cleary et al. Feb 2008 A1
20080114239 Randall et al. May 2008 A1
20080143436 Xu Jun 2008 A1
20080159444 Terada Jul 2008 A1
20080198048 Klein et al. Aug 2008 A1
20080292107 Bizjak Nov 2008 A1
20090021643 Hsueh et al. Jan 2009 A1
20090058531 Hwang et al. Mar 2009 A1
20090084586 Nielsen Apr 2009 A1
20090220110 Bazarjani et al. Sep 2009 A1
20100183163 Matsui et al. Jul 2010 A1
20110013733 Martens et al. Jan 2011 A1
20110025540 Katsis Feb 2011 A1
20110029109 Thomsen et al. Feb 2011 A1
20110063148 Kolze et al. Mar 2011 A1
20110096370 Okamoto Apr 2011 A1
20110136455 Sundstrom et al. Jun 2011 A1
20110150240 Akiyama et al. Jun 2011 A1
20110170709 Guthrie et al. Jul 2011 A1
20110188671 Anderson et al. Aug 2011 A1
20110228952 Lin Sep 2011 A1
20110242614 Okada Oct 2011 A1
20110268301 Nielsen et al. Nov 2011 A1
20110285463 Walker et al. Nov 2011 A1
20120001786 Hisch Jan 2012 A1
20120047535 Bennett et al. Feb 2012 A1
20120133411 Miao et al. May 2012 A1
20120177201 Ayling et al. Jul 2012 A1
20120177226 Silverstein et al. Jul 2012 A1
20120188111 Ledzius et al. Jul 2012 A1
20120207315 Kimura et al. Aug 2012 A1
20120242521 Kinyua Sep 2012 A1
20120250893 Carroll et al. Oct 2012 A1
20120263090 Porat et al. Oct 2012 A1
20120280726 Colombo et al. Nov 2012 A1
20130095870 Phillips et al. Apr 2013 A1
20130106635 Doi May 2013 A1
20130129117 Thomsen et al. May 2013 A1
20130188808 Pereira et al. Jul 2013 A1
20130241753 Nozaki Sep 2013 A1
20130241755 Chen et al. Sep 2013 A1
20140044280 Jiang Feb 2014 A1
20140105256 Hanevich et al. Apr 2014 A1
20140105273 Chen et al. Apr 2014 A1
20140126747 Huang May 2014 A1
20140135077 Leviant et al. May 2014 A1
20140184332 Shi et al. Jul 2014 A1
20140269118 Taylor et al. Sep 2014 A1
20140368364 Hsu Dec 2014 A1
20150170663 Disch et al. Jun 2015 A1
20150214974 Currivan Jul 2015 A1
20150214975 Gomez et al. Jul 2015 A1
20150249466 Elyada Sep 2015 A1
20150295584 Das et al. Oct 2015 A1
20150381130 Das et al. Dec 2015 A1
20160072465 Das et al. Mar 2016 A1
20160080862 He et al. Mar 2016 A1
20160080865 He et al. Mar 2016 A1
20160173112 Das et al. Jun 2016 A1
20160286310 Das et al. Sep 2016 A1
20160365081 Satoskar et al. Dec 2016 A1
20170047895 Zanbaghi Feb 2017 A1
20170150257 Das et al. May 2017 A1
Foreign Referenced Citations (23)
Number Date Country
0966105 Dec 1999 EP
1575164 Sep 2005 EP
1753130 Feb 2007 EP
1798852 Jun 2009 EP
2207264 Jul 2010 EP
1599401 Sep 1981 GB
2119189 Nov 1983 GB
2307121 Jun 1997 GB
2507096 Apr 2014 GB
2527637 Dec 2015 GB
2527677 Oct 2016 GB
2539517 Dec 2016 GB
2008294803 Dec 2008 JP
WO0054403 Sep 2000 WO
0237686 May 2002 WO
2008067260 Jun 2008 WO
2014113471 Jul 2014 WO
2015160655 Oct 2015 WO
2016040165 Mar 2016 WO
2016040171 Mar 2016 WO
2016040177 Mar 2016 WO
2016160336 Oct 2016 WO
2016202636 Dec 2016 WO
Non-Patent Literature Citations (30)
Entry
International Search Report and Written Opinion, International Application No. PCT/US2015/056357, dated Jan. 29, 2015, 13 pages.
Combined Search and Examination Report, GB Application No. GB1514512.1, dated Feb. 11, 2016, 7 pages.
International Search Report and Written Opinion, International Application No. PCT/US2015/048609, dated Mar. 23, 2016, 23 pages.
International Search Report and Written Opinion, International Application No. PCT/US2016/022578, dated Jun. 22, 2016, 12 pages.
Combined Search and Examination Report, GB Application No. GB1600528.2, dated Jul. 7, 2016, 8 pages.
Combined Search and Examination Report, GB Application No. GB1602288.1, dated Aug. 9, 2016, 6 pages.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2016/065134, dated Mar. 15, 2017.
Combined Search and Examination Report, GB Application No. GB1603628.7, dated Aug. 24, 2016, 6 pages.
International Search Report and Written Opinion, International Application No. PCT/EP2016/062862, dated Aug. 26, 2016, 14 pages.
Thaden, Rainer et al., A Loudspeaker Management System with FIR/IRR Filtering; AES 32nd International Conference, Hillerod, Denmark, Sep. 21-23, 2007; pp. 1-12.
Thaden, Rainer et al., A Loudspeaker Management System with FIR/IRR Filtering; Slides from a presentation given at the 32nd AES conference “DSP for Loudspeakers” in Hillerod, Denmark in Sep. 2007; http://www.four-audio.com/data/AES32/AES32FourAudio.pdf; 23 pages.
GB Patent Application No. 1419651.3, Improved Analogue-to-Digital Convertor, filed Nov. 4, 2014, 65 pages.
Combined Search and Examination Report, GB Application No. GB1506258.1, dated Oct. 21, 2015, 6 pages.
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/025329, dated Aug. 11, 2015, 9 pages.
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/048633, dated Dec. 10, 2015, 11 pages.
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/048591, dated Dec. 10, 2015, 11 pages.
Combined Search and Examination Report, GB Application No. GB1510578.6, dated Aug. 3, 2015, 3 pages.
Combined Search and Examination Report under Sections 17 and 18(3) of the UKIPO, Application No. GB1620427.3, dated Jun. 1, 2017.
Combined Search and Examination Report under Sections 17 and 18(3) of the UKIPO, Application No. GB1620428.1, dated Jul. 21, 2017.
Combined Search and Examination Report under Sections 17 and 18(3) of the UKIPO, Application No. GB1700371.6, dated Aug. 1, 2017.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2016/040096, dated Mar. 24, 2017.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2017/014240, dated Apr. 24, 2017.
Groeneweg, B.P., et al., A Class-AB/D Audio Power Amplifier for Mobile Applications Integrated Into a 2.5G/3G Baseband Processo1016r, IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 57, No. 5, May 2010, pp. 1003-1016.
Chen, K., et al., A High-PSRR Reconfigurable Class-AB/D Audio. Amplifier Driving a Hands-Free/Receiver. 2-in-1 Loudspeaker, IEEE Journal of Solid-State Circuits, vol. 47, No. 11, Nov. 2012, pp. 2586-2603.
Chen, Kuo-Hsin, et al., A 106dB PSRR Direct Battery Connected Reconfigurable Class-AB/D Speaker Amplifier for Hands-Free/Receiver 2-in-1 Loudspeaker, Solid State Circuits Conference (A-SSCC), 2011 IEEE Asian, Nov. 14, 2011, pp. 221-224.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2017/045861, dated Nov. 14, 2017.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2017/046083, dated Nov. 14, 2017.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1708546.5, dated Nov. 22, 2017.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1708544.0, dated Nov. 28, 2017.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2017/052439, dated Dec. 14, 2017.
Related Publications (1)
Number Date Country
20170150257 A1 May 2017 US