In recent years, precision micromachining and its improvement of process development to meet customer demand to reduce the size, weight and material cost of leading-edge devices has led to fast pace growth in high-tech industries in flat panel displays for touch screens, tablets, smartphones and TVs. Ultrafast industrial lasers are becoming important tools for applications requiring high precision micromachining.
There are various known ways to cut glasses. In conventional laser glass cutting processes, the separation of glass relies on laser scribing or perforation followed by separation with mechanical force or thermal stress-induced crack propagation. Nearly all current laser cutting techniques exhibit one or more shortcomings. For example, glass cutting by laser processes employing Gaussian laser beams require a large number of pulses to create the desired damage lines within the glass substrate due to the tight focus of the laser beam. Such laser cutting processes may be time consuming and therefore limit throughput.
The embodiments disclosed herein relate to methods and systems that create small (few micron and smaller) “holes” in transparent materials (glass, sapphire, etc.) for the purpose of drilling, cutting, separating, perforating, or otherwise processing the materials. More particularly, an ultrashort (i.e., from 10−10 to 10−15 second) pulse laser beam (wavelengths such as 1064, 532, 355 or 266 nanometers) is focused to a line focus having an energy density above the threshold needed to create a defect in the region of focus at the surface of or within the transparent material. The length and diameter of the line focus is adjusted according to the type and thickness of the transparent material. By repeating the process, a series of laser-induced defects aligned along a predetermined path can be created. By spacing the laser-induced features sufficiently close together, a controlled region of mechanical weakness within the transparent material can be created and the transparent material can be precisely fractured or separated (immediately, or later with additional mechanical or thermal separation step) along the path defined by the series of laser-induced defects. In the case of high internal stress materials such as chemically strengthened glasses, the material may immediately fracture and separate along the path defined by the laser induced defects. In the case of low stress materials such as glasses made for TFT (thin film transistor) display applications, an additional separation step may be needed. Hence the ultrashort, line focus laser pulse(s) may be optionally followed by a carbon dioxide (CO2) laser or other source of thermal stress to effect fully automated separation of a transparent material or part from a substrate, for example.
In one embodiment, a system for processing a transparent material includes a laser source operable to emit a pulsed laser beam, and an optical assembly disposed within an optical path of the pulsed laser beam. The optical assembly is configured to transform the pulsed laser beam into a laser beam focal line having an adjustable length and an adjustable diameter. At least a portion of the laser beam focal line is operable to be positioned within a bulk of the transparent material such that the laser beam focal line generates an induced multi-photon absorption within the transparent material. The induced multi-photon absorption produces a material modification within the transparent material along the laser beam focal line.
In another embodiment, a method of processing a transparent material includes focusing a pulsed laser beam to form a laser beam focal line along a beam propagation direction, wherein the laser beam focal line has a length and a diameter. The method further includes adjusting at least one of the length of the laser beam focal line and the diameter of the laser beam focal line, and directing the laser beam focal line into the transparent material such that at least a portion of the laser beam focal line is within a bulk of the material. The laser beam focal line generates an induced multi-photon absorption within the transparent material. The induced multi-photon absorption produces a material modification within the material along the laser beam focal line.
The foregoing will be apparent from the following more particular description of the example embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the representative embodiments.
Embodiments described herein relate to methods and systems for optically producing high precision cuts in or through transparent materials. Sub-surface damage from the cutting process may be limited to the order of 60 microns in depth or less, and the cuts may produce only low debris. Cutting of a transparent material with a laser in accordance with the present disclosure may also be referred to herein as drilling or laser drilling or laser processing. A material is substantially transparent to the laser wavelength when the absorption is less than about 10%, preferably less than about 1% per mm of material depth at this wavelength.
Generally, a laser beam is transformed to a laser beam focus line that is positioned within the bulk of a material, such as glass, to create damage lines within the material. The material may then be separated along these damage lines. The laser beam focus line may also be utilized to fabricate holes in a material, such as hole in an interposer of a semiconductor device assembly. Systems and methods for adjusting the length and the diameter of the laser line focus are described herein. The length and/or diameter of the laser line focus may be adjusted according to different types of materials as well as materials of different thicknesses.
In accordance with methods described below, in a single pass, a laser can be used to create highly controlled full line perforation through the material, with extremely little (<75 μm, often <50 μm) subsurface damage and debris generation. This is in contrast to the typical use of spot-focused laser to ablate material, where multiple passes are often necessary to completely perforate the glass thickness, large amounts of debris are formed from the ablation process, and more extensive sub-surface damage (>100 μm) and edge chipping occur.
Thus, it is possible to create a microscopic (i.e., <0.5 μm and >100 nm in diameter) elongated “hole” (also called a perforation or a defect line) in transparent material using a single high energy burst pulse. According to the exemplary embodiments described herein a typical perforation will have a diameter of >100 nm and less than 5 micrometer, for example 0.2 to 2 microns, 0.2 to 1 micron, or therebetween; and a length of 50 microns or greater (e.g., 0.1 mm to 100 mm, 150 microns to 2 mm, or 150 microns to 5 mm, or 150 microns to 10 mm). These perforations, defect regions, damage tracks, or defect lines are generally spaced from 1 to 25 microns apart, in some embodiments 1-15 microns apart (for example, 2-12 microns, 5-10 microns), but in some embodiments 15-25 microns apart. These individual perforations can be created at rates of several hundred kilohertz (several hundred thousand perforations per second, for example). Thus, with relative motion between the source and the material these perforations can be placed adjacent to one another (spatial separation varying from sub-micron to several microns as desired). This spatial separation is selected in order to facilitate cutting. In some embodiments, the defect line is a “through hole”, which is a hole or an open channel that extends from the top to the bottom of the transparent material. In some embodiments the defect line may not be a continuous channel, and may be blocked or partially blocked by portions or sections of solid material (e.g., glass). As defined herein, the internal diameter of the defect line is the internal diameter of the open channel or the air hole. For example, in the embodiments described herein the internal diameter of the defect line is <500 nm, for example ≤400 nm, or ≤300 nm. The disrupted or modified area (e.g., compacted, melted, or otherwise changed) of the material surrounding the holes in the embodiments disclosed herein, preferably has diameter of <50 μm (e.g., <10 μm).
Micromachining and selective cutting of a stack of transparent materials is accomplished with precise control of the depth of cut through selection of an appropriate laser source and wavelength along with beam delivery optics, and the placement of a beam disruption element at the boundary of a desired layer. The beam disruption element may be a layer of material or an interface. The beam disruption element may be referred to herein as a laser beam disruption element, disruption element or the like. Embodiments of the beam disruption element may be referred to herein as a beam disruption layer, laser beam disruption layer, disruption layer, beam disruption interface, laser beam disruption interface, disruption interface, or the like.
The beam disruption element reflects, absorbs, scatters, defocuses or otherwise interferes with an incident laser beam to inhibit or prevent the laser beam from damaging or otherwise modifying underlying layers in the stack. In one embodiment, the beam disruption element underlies the layer of transparent material in which laser drilling will occur. As used herein, the beam disruption element underlies the transparent material when placement of the beam disruption element is such that the laser beam must pass through the transparent material before encountering the beam disruption element. The beam disruption element may underlie and be directly adjacent to the transparent layer in which laser drilling will occur. Stacked materials can be micromachined or cut with high selectivity by inserting a layer or modifying the interface such that a contrast of optical properties exists between different layers of the stack. By making the interface between materials in the stack more reflective, absorbing, and/or scattering at the laser wavelengths of interest, cutting can be confined to one portion or layer of the stack.
The wavelength of the laser is selected so that the material within the stack to be laser processed (drilled, cut, ablated, damaged or otherwise appreciably modified by the laser) is transparent to the laser wavelength. In one embodiment, the material to be processed by the laser is transparent to the laser wavelength if it absorbs less than 10% of the intensity of the laser wavelength per mm of thickness of the material. In another embodiment, the material to be processed by the laser is transparent to the laser wavelength if it absorbs less than 5% of the intensity of the laser wavelength per mm of thickness of the material. In still another, the material to be processed by the laser is transparent to the laser wavelength if it absorbs less than 2% of the intensity of the laser wavelength per mm of thickness of the material. In yet another embodiment, the material to be processed by the laser is transparent to the laser wavelength if it absorbs less than 1% of the intensity of the laser wavelength per mm of thickness of the material.
The selection of the laser source is further predicated on the ability to induce multi-photon absorption (MPA) in the transparent material. MPA is the simultaneous absorption of multiple photons of identical or different frequencies in order to excite a material from a lower energy state (usually the ground state) to a higher energy state (excited state). The excited state may be an excited electronic state or an ionized state. The energy difference between the higher and lower energy states of the material is equal to the sum of the energies of the two or more photons. MPA is a nonlinear process that is several orders of magnitude weaker than linear absorption. In the case of two-photon absorption, it differs from linear absorption in that the strength of absorption depends on the square of the light intensity, thus making it a nonlinear optical process. At ordinary light intensities, MPA is negligible. If the light intensity (energy density) is extremely high, such as in the region of focus of a laser source (particularly a pulsed laser source), MPA becomes appreciable and leads to measurable effects in the material within the region where the energy density of the light source is sufficiently high. Within the focal region, the energy density may be sufficiently high to result in ionization, breaking of molecular bonds, and vaporization of material.
At the atomic level, the ionization of individual atoms has discrete energy requirements. Several elements commonly used in glass (e.g., Si, Na, K) have relatively low ionization energies (˜5 eV). Without the phenomenon of MPA, a wavelength of about 248 nm would be required to create linear ionization at ˜5 eV. With MPA, ionization or excitation between states separated in energy by ˜5 eV can be accomplished with wavelengths longer than 248 nm. For example, photons with a wavelength of 532 nm have an energy of ˜2.33 eV, so two photons with wavelength 532 nm can induce a transition between states separated in energy by ˜4.66 eV in two-photon absorption (TPA), for example.
Thus, atoms and bonds can be selectively excited or ionized in the regions of a material where the energy density of the laser beam is sufficiently high to induce nonlinear TPA of a laser wavelength having half the required excitation energy, for example. MPA can result in a local reconfiguration and separation of the excited atoms or bonds from adjacent atoms or bonds. The resulting modification in the bonding or configuration can result in non-thermal ablation and removal of matter from the region of the material in which MPA occurs. This removal of matter creates a structural defect (e.g. a defect line or “perforation”) that mechanically weakens the material and renders it more susceptible to cracking or fracturing upon application of mechanical or thermal stress. By controlling the placement of perforations, a contour or path along which cracking occurs can be precisely defined and precise micromachining of the material can be accomplished. The contour defined by a series of perforations may be regarded as a fault line and corresponds to a region of structural weakness in the material. In one embodiment, micromachining includes separation of a part from the material processed by the laser, where the part has a precisely defined shape or perimeter determined by a closed contour of perforations formed through MPA effects induced by the laser. As used herein, the term closed contour refers to a perforation path formed by the laser line, where the path intersects with itself at some location. An internal contour is a path formed where the resulting shape is entirely surrounded by an outer portion of material.
Perforations can be accomplished with a single “burst” of high energy short duration pulses spaced close together in time. The laser pulse duration may be 10−10 s or less, or 10−11 s or less, or 10−12 s or less, or 10−13 s or less. These “bursts” may be repeated at high repetition rates (e.g. kHz or MHz). The perforations may be spaced apart and precisely positioned by controlling the velocity of a substrate or stack relative to the laser through control of the motion of the laser and/or the substrate or stack.
As an example, in a thin transparent substrate moving at 200 mm/sec exposed to a 100 kHz series of pulses, the individual pulses would be spaced 2 microns apart to create a series of perforations separated by 2 microns. This defect (perforation) spacing is sufficient close to allow for mechanical or thermal separation along the contour defined by the series of perforations.
Thermal Separation:
In some cases, a fault line created along a contour defined by a series of perforations or defect lines is not enough to separate the part spontaneously, and a secondary step may be necessary. If so desired, a second laser can be used to create thermal stress to separate it, for example. In the case of sapphire, separation can be achieved, after the creation of a fault line, by application of mechanical force or by using a thermal source (e.g., an infrared laser, for example a CO2 laser or a CO laser) to create thermal stress and force a part to separate from a substrate. The optional thermal separation can be achieved, for example, with a defocused CO2 laser continuous wave (cw) laser emitting at 10.6 μm and with power adjusted by controlling its duty cycle. Focus change (i.e., extent of defocusing up to and including focused spot size) is used to vary the induced thermal stress by varying the spot size. Defocused laser beams include those laser beams that produce a spot size larger than a minimum, diffraction-limited spot size on the order of the size of the laser wavelength. For example, spot sizes of about 7 mm, 2 mm and 20 mm can be used for CO2 lasers, for example, whose emission wavelength is much smaller at 10.6 μm. Distance between adjacent defect lines 120 along the direction of the fault lines 110 can be, for example, greater than 0.5 μm and less than or equal to about 15 or 20 μm in some embodiments. Another option is to have the CO2 laser only start the separation and then finish the separation manually, i.e. by applying mechanical force to separate the part along the laser-perforated contour.
Etching:
Acid etching can be used, for example, to separate a workpiece having a glass layer, for example. To enlarge the holes to a size useful for metal filling and electrical connections, parts can be acid etched. In one embodiment, for example, the acid used can be 10% HF/15% HNO3 by volume. The parts can be etched for 53 minutes at a temperature of 24-25° C. to remove about 100 μm of material, for example. The parts can be immersed in this acid bath, and ultrasonic agitation at a combination of 40 kHz and 80 kHz frequencies can used to facilitate penetration of fluid and fluid exchange in the holes. In addition, manual agitation of the part within the ultrasonic field can be made to prevent standing wave patterns from the ultrasonic field from creating “hot spots” or cavitation related damage on the part. The acid composition and etch rate can be intentionally designed to slowly etch the part—a material removal rate of only 1.9 um/minute, for example. An etch rate of less than about 2 μm/minute, for example, allows acid to fully penetrate the narrow holes and agitation to exchange fresh fluid and remove dissolved material from the holes which are initially very narrow.
In the embodiment shown in
In one embodiment, the beam disruption element is positioned immediately below the layer of the stack in which modification via two-photon absorption will occur. Such a configuration is shown in
The disruption element has different optical properties than the material to be cut. For example, the beam disruption element may be a defocusing element, a scattering element, a translucent element, or a reflective element. A defocusing element is an interface or a layer comprising a material that prevents the laser light from forming the laser beam focal line on or below the defocusing element. The defocusing element may be comprised of a material or interface with refractive index inhomogeneities that scatter or perturb the wavefront of the optical beam. A translucent element is an interface or layer of material that allows light to pass through, but only after scattering or attenuating the laser beam to lower the energy density sufficiently to prevent formation of a laser beam focal line in portions of the stack on the side of the translucent element that are remote from the laser beam. In one embodiment, the translucent element effects scattering or deviating of at least 10% of the light rays of the laser beam.
More specifically, the reflectivity, absorptivity, defocusing, attenuation, and/or scattering of the disruption element can be employed to create a barrier or impediment to the laser radiation. The laser beam disruption element can be created by several means. If the optical properties of the overall stack system are not of a concern, then one or more thin films can be deposited as a beam disruption layer(s) between the desired two layers of the stack, where the one or more thin films absorb, scatter, defocus, attenuate, reflects, and/or dissipates more of the laser radiation than the layer immediately above it to protect layers below the thin film(s) from receiving excessive energy density from the laser source. If the optical properties of the entire stack system do matter, the beam disruption element can be implemented as a notch filter. This can be done by several methods:
It is not necessary that the absorption, reflection scattering, attenuation, defocusing etc. of the laser beam by the disruption element be complete. The effect of the disruption element, when utilized, on the laser beam should be sufficient to reduce the energy density or intensity of the focused laser beam to a level below the threshold required for cutting, ablation, perforating etc. of the layers in the stack protected by (underlying) the disruption element. In one embodiment, the disruption element reduces the energy density or intensity of the focused laser beam to a level below the threshold needed to induce two-photon absorption. The disruption layer or disruption interface may be configured to absorb, reflect, or scatter the laser beam, where the absorption, reflection, or scattering are sufficient to reduce the energy density or intensity of the laser beam transmitted to the carrier (or other underlying layer) to a level below the level needed to induce nonlinear absorption in the carrier or underlying layer.
Turning to
Embodiments of the present disclosure utilize non-diffracting beams (“NDB”) to form the laser beam focal line 2b. Typically laser processing has used Gaussian laser beams. The tight focus of a laser beam with a Gaussian intensity profile has a Rayleigh range ZR given by:
The Rayleigh range represents the distance over which the spot size w0 of the beam will increase by √{square root over (2)} in a material of refractive index η0 at wavelength η0. This limitation is imposed by diffraction. Note in Eq. (1) that the Rayleigh range is related directly to the spot size, thereby leading to the conclusion that a beam with a tight focus (i.e. small spot size) cannot have a long Rayleigh range. Such a beam will maintain this small spot size only for a very short distance. This also means that if such a beam is used to drill through a material by changing the depth of the focal region, the rapid expansion of the spot on either side of the focus will require a large region free of optical distortion that might limit the focus properties of the beam. Such a short Rayleigh range also requires multiple pulses to cut through a thick sample.
However, embodiments of the present disclosure utilize NDBs instead of the optical Gaussian beams discussed above. Non-diffracting beams may propagate for a considerable distance before diffraction effects inevitably limit the beam focus. Although an infinite NDB does not suffer from diffractive effects, a physically realizable NDB will have a limited physical extent. The central lobe of the beam can be quite small in radius and thus produce a high intensity beam. There are several types of NDBs including, but not limited to, Bessel beams, Airy beams, Weber beams and Mathieu beams whose field profiles are typically given by special functions which decay more slowly in the transverse direction than a Gaussian function.
It should be understood that, although NDBs described are described herein in the context of Bessel beams, embodiments are not limited thereto. The central spot size of a Bessel beam is given by:
where NA is the numerical aperture given by the cone of plane waves making an angle of β with the optical axis (see
where D is the finite extent of the beam imposed by some aperture or optical element. It is therefore shown that the aperture size D may be used to increase the Rayleigh range beyond the limit imposed by the size of the central spot. A practical method for generating Bessel beams is to pass a Gaussian beam through an axicon or an optical element with a radially linear phase element as shown in
In general, the optical method of forming the line focus (i.e., the laser beam focal line) can take multiple forms, such as, without limitation, using donut shaped laser beams and spherical lenses, axicon lenses, diffractive elements, or other methods to form the linear region of high intensity. The type of laser (picosecond, femtosecond, and the like) and wavelength (IR, visible, UV, and the like) may also be varied, as long as sufficient optical intensities are reached to create breakdown of the substrate material.
The laser power and lens focal length (which determines the line focus length and hence power density) are parameters that ensure full penetration of the substrate for cutting and drilling, while either purposefully generating cracks between the perforations (damage tracks) in the case of cutting, or possibly trying to suppress micro-cracking in the case of drilling. Accordingly, the dimensions of the line focus formed in the substrate should be precisely controlled.
Embodiments of the present disclosure are directed to systems and methods for adjusting both the diameter and the length of the line focus, enabling, with a single laser machine, the cutting of thin and thick materials, as well as the machining of materials that crack easily versus materials that have very high optical thresholds for material modification. This allows a single system to be rapidly adapted for cutting and drilling different substrates, thereby increasing manufacturing efficiency and improving capital utilization.
Referring once again to
As
As
Representative optical assemblies 6, which can be applied to generate the focal line 2b, as well as a representative optical setup, in which these optical assemblies can be applied, are described below. All assemblies or setups are based on the description above so that identical references are used for identical components or features or those which are equal in their function. Therefore only the differences are described below.
To insure high quality (regarding breaking strength, geometric precision, roughness and avoidance of re-machining requirements) of the surface of separation after cracking along the contour defined by the series of perforations, the individual focal lines used to form the perforations that define the contour of cracking should be generated using the optical assembly described below (hereinafter, the optical assembly is alternatively also referred to as laser optics). The roughness of the separated surface is determined primarily by the spot size or the spot diameter of the focal line. A roughness of a surface can be characterized, for example, by an Ra surface roughness statistic (roughness arithmetic average of absolute values of the heights of the sampled surface). In order to achieve a small spot size of, for example, 0.5 μm to 2 μm in case of a given wavelength λ of laser 3 (interaction with the material of layer 1), certain requirements must usually be imposed on the numerical aperture of laser assembly 6.
In order to achieve the required numerical aperture, the optics must, on the one hand, dispose of the required opening for a given focal length, according to the known Abbé formulae (N.A.=n sin (theta), n: refractive index of the material to be processed, theta: half the aperture angle; and theta=arctan (D/2f); D: aperture, f: focal length). On the other hand, the laser beam must illuminate the optics up to the required aperture, which is typically achieved by means of beam widening using widening telescopes between the laser and focusing optics.
The spot size should not vary too strongly for the purpose of a uniform interaction along the focal line. This can, for example, be ensured (see the embodiment below) by illuminating the focusing optics only in a small, circular area so that the beam opening and thus the percentage of the numerical aperture only varies slightly.
Lens 7 is centered on the central beam and is designed as a non-corrected, bi-convex focusing lens in the form of a common, spherically cut lens. The spherical aberration of such a lens may be advantageous. As an alternative, aspheres or multi-lens systems deviating from ideally corrected systems, which do not form an ideal focal point but a distinct, elongated focal line of a defined length, can also be used (i.e., lenses or systems which do not have a single focal point). The zones of the lens thus focus along a focal line 2b, subject to the distance from the lens center. The diameter of aperture 8 across the beam direction is approximately 90% of the diameter of the beam bundle (defined by the distance required for the intensity of the beam to decrease to 1/e of the peak intensity) and approximately 75% of the diameter of the lens of the optical assembly 6. The focal line 2b of a non-aberration-corrected spherical lens 7 generated by blocking out the beam bundles in the center is thus used.
One potential disadvantage of this type of focal line is that the conditions (spot size, laser intensity) may vary along the focal line (and thus along the desired depth in the material) and therefore the desired type of interaction (no melting, induced absorption, thermal-plastic deformation up to crack formation) may possibly occur only in selected portions of the focal line. This means in turn that possibly only a part of the incident laser light is absorbed by the material to be processed in the desired way. In this way, the efficiency of the process (required average laser power for the desired separation speed) may be impaired, and the laser light may also be transmitted into undesired regions (parts or layers adherent to the substrate or the substrate holding fixture) and interact with them in an undesirable way (e.g. heating, diffusion, absorption, unwanted modification).
In the case shown in
It is particularly advantageous to position the focal line 2b in such a way that at least one of surfaces 1a, 1b is covered by the focal line, so that the section of induced nonlinear absorption 2c starts at least on one surface of the layer or material to be processed. In this way it is possible to achieve virtually ideal cuts while avoiding ablation, feathering and particulate generation at the surface.
However, the depicted layout is subject to the following restrictions: Since the region of focal line 2b formed by axicon 9 begins within the axicon 9, a significant part of the laser energy is not focused into the section of induced absorption 2c of focal line 2b, which is located within the material, in the situation where there is a separation between axicon 9 and the material to be processed. Furthermore, length 1 of focal line 2b is related to the beam diameter through the refractive indices and cone angles of axicon 9. This is why, in the case of relatively thin materials (several millimeters), the total focal line is much longer than the thickness of the material to be processed, having the effect that much of the laser energy is not focused into the material.
For this reason, it may be desirable to use an optical assembly 6 that includes both an axicon and a focusing lens.
It is therefore advantageous if the focal line is formed at a certain distance from the laser optics, and if the greater part of the laser radiation is focused up to a desired end of the focal line. As described, this can be achieved by illuminating a primarily focusing element 11 (lens) only circularly (annularly) over a particular outer radial region, which, on the one hand, serves to realize the required numerical aperture and thus the required spot size, and, on the other hand, however, the circle of diffusion diminishes in intensity after the required focal line 2b over a very short distance in the center of the spot, as a basically circular spot is formed. In this way, the crack formation is stopped within a short distance in the required substrate depth. A combination of axicon 10 and focusing lens 11 meets this requirement. The axicon acts in two different ways: due to the axicon 10, a usually round laser spot is sent to the focusing lens 11 in the form of a ring, and the asphericity of axicon 10 has the effect that a focal line is formed beyond the focal plane of the lens instead of a focal point in the focal plane. The length 1 of focal line 2b can be adjusted via the beam diameter on the axicon. The numerical aperture along the focal line, on the other hand, can be adjusted via the distance z1 axicon-lens and via the cone angle of the axicon. In this way, the entire laser energy can be concentrated in the focal line.
If the crack formation is intended to continue to the back side of the layer or material to be processed, the circular (annular) illumination still has the advantage that (1) the laser power is used optimally in the sense that most of the laser light remains concentrated in the required length of the focal line, and (2) it is possible to achieve a uniform spot size along the focal line—and thus a uniform separation process along the perforations produced by the focal lines—due to the circularly illuminated zone in conjunction with the desired aberration set by means of the other optical functions.
Instead of the plano-convex lens depicted in
In order to generate very short focal lines 2b using the combination of an axicon and a lens depicted in
As shown in
The optical assembly 6 depicted in
In the depicted example it is possible to achieve a length of the focal line 1 of less than 0.5 mm using a typical laser beam diameter of 2 mm, a focusing lens 11 with a focal length f=25 mm, a collimating lens with a focal length f′=150 mm, and choosing distances Z1a=Z1b=140 mm and Z2=15 mm.
With reference to
I(r,z)=Io(Rz)Rz2πk(sin(β)/cos 2(β))Jo2(kr sin(β)) Eq. (4.1),
Rz=z*tan(β) Eq. (4.2).
Here, β is the ray angle created by the axicon 10, which is a function of the angle of the axicon cone provided by the angled emergent surface and the refractive index of the axicon 10. Io(Rz) is the irradiance profile of the laser beam 2 illuminating the axicon 10, which is assumed to be a Gaussian profile, and k is the wavevector k=2π/λ, and Jo denotes a first-order Bessel function.
To make the strongest damage tracks, or holes, in the hardest of materials, the diameter of the lone focus should be as small as possible. Based on the formulas above, the full width half maximum (“FWHM”) of the irradiance profile in any plane at some distance z from the apex of the axicon 10 is given by:
FWHM=2.52λ/(2π sin(β)) Eq. (4.3).
As can be seen from Eq. (4.3), the diameter of the line focus is related to a single geometric system parameter, the aperture angle β as shown in
From Eq. 4.1, at the center of the line focus, the peak power is given by:
I_peak(z)=Io(Rz)Rz2πk(sin(β)/cos 2(β)) Eq. (4.4).
As can be seen in Eq. (4.4), the peak power is a function of the pupil irradiance profile Io(Rz), as well as a function of the aperture angle β.
If we examine where the on-axis intensity decays to approximately one half of its maximum intensity, then the length (or extent along the optical axis) of the line focus can be approximated by:
L˜0.8*Rz/sin(β) Eq. (4.5)
Thus the length of the focused line is a function of both the input beam size (Rz) and the aperture angle β.
In a laser cutting machine, the material to be cut may vary in thickness. As an example, such a laser machine may be used to cut glass with thicknesses varying from 0.1 to 2.0 mm. Accordingly, to ensure that it is possible to drill and cut thick material (i.e., glass), the useful portion of the line focus should be set at, for example, at least 2.0 mm by, for instance, spreading the pupil irradiance profile into a larger area. However, by doing so, the peak power density within the line focus will decrease because the maximum value of Io(Rz) decreases. To keep the peak power density greater than the material modification energy density threshold, the aperture angle β should be increased, which means that the FWHM of the line focus will decrease.
Therefore, in a system with a fixed choice of optics, the parameters should be adjustable for the most difficult cases. When cutting thinner substrates (e.g. 100 μm thick display glass), much of the laser energy may be wasted if a long line focus is set to allow cutting of thick materials (e.g. stacks of ion exchanged glass). Similarly, if the optics are set to produce a very short and small diameter line focus (high energy density) to cut very thin and hard materials (e.g. sapphire), the optical system may no longer work well for thicker materials (e.g., thick soda lime glass or ion-exchangeable glass substrates).
For at least these reasons, it may be desirable for making the irradiance profile Io(Rz) and/or the aperture angle β adjustable. It is desirable to have both parameters adjustable to apply the following strategy: for each glass thickness and material:
It may be desirable to set the FWHM (or diameter) of the line focus 2b to be as narrow as possible, which allows the lowest laser power to be used to create the damage tracks within the material and hence provide the most process margin. However, in some cases, it may be desirable to have a larger diameter line focus, which reduces the amount of micro-cracking around the damage tracks. For example, larger diameter spots are helpful in drilling of holes that are subsequently acid-etched, where micro-cracks are not desired as they may create etch asymmetries. The upper limitation on the diameter of the line focus is that, given a maximum laser pulse energy available for a laser source, sufficient energy density must still be reached to allow modification of the material and creation of a damage track.
For the length of the line focus 2b, it is desirable to make it at least equal to but preferentially greater than the thickness of the material, accounting for the fact that per Snell's law of refraction, the refractive index of the material (e.g. for glass n˜1.5) increases the effective length of the line focus 2b within the material itself. Longer focal lines give larger focus tolerance, and also allow various substrate thicknesses to be accommodated. The upper limitation upon the focal line length is again that, given a maximum laser pulse energy available for a laser source, sufficient energy density must still be reached to allow modification of the material and creation of a damage track throughout the thickness of the substrate.
The transparent axicon 10 forms a line focus 2b′ that is imaged by the first lens element 5 and the second lens element 11, which act as a telescope that relays and magnifies the line focus 2b′ formed by the axicon 10 into the line focus 2b that is applied to the material. The magnification of the telescope defined by the first lens element 5 and the second lens element 11 is given by M=F2/F1, which may be varied by changing one or both of the two lens elements to achieve a different magnification M. The length of the line focus 2b gets scaled with the square of the magnification, while the diameter of the line focus in a given z-plane is scaled linearly with magnification.
Changing the focal length of the first and/or second lens 5, 11 may not be optimal in some applications as both line focus length and width scale together. Assuming that M is the magnification provided by the first and second focal lengths:
FWHM1=FWHM0*M Eq. (5.1);
Length1=Length0*M2 Eq. (5.2).
Here FWHM0 denotes the full-width at half maximum diameter of the line focus formed immediately after the axicon 10, and FWHM1 denotes the full-width at half maximum diameter of the line focus formed after the second lens element 11. Similarly LENGTH0 denotes the length, or spatial extent along the optical axis, of the line focus formed immediately after the axicon 10, and LENGTH1 denotes the length of the line focus formed after the second lens element 11. If it is assumed that the resulting line focus 2b takes the form of a cylinder of length and diameter dimensions Length1×FWHM1, then the power (or energy) density inside the cylinder will scale as 1/volume of that object, where volume=(pi/4)*diameter2*length. This means the power density will scale as:
PowerDensity1=PowerDensity0/M4 Eq. (5.3).
Thus, the diameter of the line focus increases linearly with the magnification of the telescope provided by the first and second lenses 5, 11, the length of the line focus 2b increases as the square of the magnification, and the power or energy density scales at one over the 4th power of the magnification. This means that as shorter focal length lenses are used for F2, the diameter of the focus drops, the length gets much shorter, and the power density increases rapidly.
In some embodiments, an axicon 10 with an adjustable angle is provided as a third degree of freedom to achieve a system that is capable of adjusting both the length and diameter of the line focus 2b. Suppose that the angle of the original axicon 10 discussed above is multiplied by a factor A. Then, assuming small angles (i.e., (sin(α)≈α), the following is true:
FWHM2=FWHM1/A Eq. (6.1); and
Length2=Length1/A Eq. (6.2).
Here, if an amplification A creates a larger axicon angle, then the FWHM (i.e., the diameter) of the line focus 2b gets smaller and the length of the line focus 2b gets smaller as well. Generally, to achieve the desired FWHM and length of the line focus 2b for a given system, it is possible to calculate A and M such that:
M/A=FWHM2/FWHM0 Eq. 6.3; and
M2/A=Length2/Length0 Eq. (6.4).
Accordingly, the optical elements of the first lens element 5, the second lens element 11, and the axicon 10 may be exchanged to achieve the desired diameter and length for the line focus 2b. In some embodiments, these optical elements are physically removed from the optical assembly 6′ and replaced by others having the desired optical properties. However, this may require realignment of the optical assembly 6′ when switching to another configuration. In some embodiments, a plurality of optical elements is provided on a rotary wheel (similar to a filter wheel) or a slider to selectively choose the desired optical element that is in the beam path. For example, if the axicon is chosen as the removable/adjustable element, multiple axicons may be fabricated on a single substrate. Referring now to
As an example and not a limitation, diamond turning may be used to form the plurality of individual axicons 10A-10D in a transmissive material. Diamond turning allows very high precision (˜1 μm) features to be fabricated, in particular of the optical surfaces with respect to the outside features of a physical part that are referenced mechanically for alignment. The substrate may have a rectangular shape, and thus can be translated laterally to select a different axicon. For the wavelengths used in these laser cutting systems (commonly 1064 nm), ZnSe is an appropriate transmissive optical material which is compatible with diamond turning. Also, since diamond turning has an extremely high degree of precision to place objects relative to one other, the substrate could include mechanical repositioning features such as grooves or conical holes. It should be understood that similar lens element assemblies may be fabricated and utilized to select the various first and lens elements having different focal lengths (i.e., a first lens assembly and/or a second lens assembly).
In some embodiments, the input laser beam 2 is magnified by a factor N in the optical path prior to the axicon 10, as shown in the optical assembly 6″ illustrated in
By magnifying the laser beam 2, per Eqs. (4.3) and (4.5), the only parameter that is affected is the length of the line focus 2b—the diameter remains unchanged. The telescope positioned prior to the axicon 10, therefore, allows changes of only the length of the line focus 2b while leaving the diameter unchanged.
Interchanging optical elements, such as the first through fourth lenses, may not be desirable for a laser cutting system that operates in an industrial environment. In some embodiments, the third and fourth lens elements 13, 15 providing the magnification factor N and/or the first and second lens elements 5, 11 may instead be configured as one or more variable zoom assemblies. Such variable zoom assemblies may allow for continuous adjustment of the laser beam focal line length, as opposed to discrete steps available by interchanging axicons or lens elements. Such variable zoom assemblies may be actuated either manually or by motorization, where the latter allows programmatic adjustment of the system, which may be compatible with manufacturing requirements.
Another optical assembly 4 for separating a material using a laser beam line focus 2b is schematically depicted in
The laser beam 2 exits the first transmissive axicon 20 at its angled emergence surface. The second transmissive axicon 21 receives the laser beam at its angled entrance surface and creates a ring of collimated light SR. The angle of deflection of the first transmissive axicon 20 is substantially equal to the angle of deflection of the second transmissive axicon 21. A second lens element 11 then focuses the light to generate the laser beam line focus 2b. Adjusting the ring radii h may be achieved by varying the adjustable distance D between the first and second transmissive axicons 20, 21. This movement adjusts the length and diameter of the laser beam line focus 2b.
Note that, as shown in
The average laser power per burst measured at the material can be greater than 40 microJoules per mm thickness of material, for example between 40 microJoules/mm and 2500 microJoules/mm, or between 500 and 2250 microJoules/mm. For example, for 0.1 mm-0.2 mm thick Corning Eagle XG® glass one may use 200 μJ pulse bursts, which gives an exemplary range of 1000-2000 μJ/mm. For example, for 0.5-0.7 mm thick Corning Eagle XG® glass, one may use 400-700 μJ pulse bursts to perforate glass, which corresponds to an exemplary example, for the purpose of perforating some alkaline earth boro-aluminosilicate glass compositions a picosecond pulsed laser (e.g., a 1064 nm, or 532 nm picosecond pulsed laser) which produces bursts of multiple pulses in combination with line-focus beam forming optics may be used to create lines of damage (defect lines) in the glass composition. In one embodiment, a glass composition with up to 0.7 mm thickness was positioned so that it was within the region of the focal line produced by the optics. With a focal line about 1 mm in length, and a 1064 nm picosecond laser that produces output power of about 24 W or more at a burst repetition rate of 200 kHz (about 120 microJoules/burst) measured at the glass, the optical intensities in the focal line region are high enough to create non-linear absorption in the glass. The pulsed laser beam can have an average laser burst energy measured, at the material, greater than 40 microJoules per mm thickness of material. The average laser burst energy used can be as high as 2500 μJ per mm thickness of transparent material, for example 40-2500 μJ/mm, with 500-2250 μJ/mm being preferable, and 550 to 2100 μJ/mm being even more preferable because the energy density is strong enough to make a thorough damage track through the glass, while minimizing the extent of micro cracking orthogonal to the perforated line or cut edge. In some exemplary embodiments the laser burst energy is 40-1000 μJ/mm. This “average pulse burst laser energy” per mm can also be referred to as an average, per-burst, linear energy density, or an average energy per laser pulse burst per mm thickness of material. A region of damaged, vaporized, or otherwise modified material within the glass composition was created that approximately followed the linear region of high optical intensity created by the laser beam focal line.
In some of the embodiments described herein, the air gap is between 50 μm and 5 mm, for example is between 50 μm and 2 mm, or between 200 μm and 2 mm.
Exemplary disruption layers include polyethylene plastic sheeting (e.g., Visqueen). Transparent layers, as shown in
In general, the higher the available laser power, the faster the material can be cut with the above process. Processes disclosed herein can cut glass at a cutting speed of 0.25 m/sec, or faster. A cut speed (or cutting speed) is the rate the laser beam moves relative to the surface of the transparent material (e.g., glass) while creating multiple holes or modified regions.) High cut speeds, such as, for example 400 mm/sec, 500 mm/sec, 750 mm/sec, 1 m/sec, 1.2 m/sec, 1.5 m/sec, or 2 m/sec, or even 3.4 m/sec, 5 m/sec, 5 m/sec, 7 m/sec, or 10 m/sec are often desired in order to minimize capital investment for manufacturing, and to optimize equipment utilization rate. The laser power is equal to the burst energy multiplied by the burst repetition frequency (rate) of the laser. In general, to cut such glass materials at high cutting speeds, the damage tracks are typically spaced apart by 1-25 microns, in some embodiments the spacing is preferably 3 microns or larger—for example 3-12 microns, or for example 5-10 microns, or 10-20 microns.
For example, to achieve a linear cutting speed of 300 mm/sec, 3 micron hole pitch corresponds to a pulse burst laser with at least 100 kHz burst repetition rate. For a 600 mm/sec cutting speed, a 3 micron pitch corresponds to a burst-pulsed laser with at least 200 kHz burst repetition rate. A pulse burst laser that produces at least 40 μJ/burst at 200 kHz, and cuts at a 600 mm/s cutting speed needs to have laser power of at least 8 Watts. Higher cut speeds therefore require even higher laser powers.
For example a 0.4 m/sec cut speed at 3 μm pitch and 40 μJ/burst would require at least a 5 Watt laser, a 0.5 m/sec cut speed at 3 μm pitch and 40 μJ/burst would require at least a 6 Watt laser. Thus, preferably the laser power of the pulse burst ps laser is 6 watts or higher, more preferably at least 8 Watts or higher, and even more preferably at least 10 W or higher. For example in order to achieve a 0.4 m/sec cut speed at 4 μm pitch (defect lines pacing, or between damage tracks spacing) and 100 μJ/burst one would require at least a 10 Watt laser, and to achieve a 0.5 m/sec cut speed at 4 μm pitch and 100 μJ/burst one would require at least a 12 Watt laser. For example, to achieve a cut speed of 1 m/sec at 3 μm pitch and 40 μJ/burst one would require at least a 13 Watt laser. Also for example 1 m/sec cut speed at 4 μm pitch and 400 μJ/burst would require at least a 100 Watt laser. The optimal pitch between damage tracks and the exact burst energy is material dependent, and can be determined empirically. However, it should be noted that raising the laser pulse energy or making the damage tracks at a closer pitch are not conditions that always make the substrate material separate better or with improved edge quality. Too dense a pitch (for example <0.1 micron, in some exemplary embodiments <1 μm, or in some embodiments <2 μm) between damage tracks can sometimes inhibit the formation of nearby subsequent damage tracks, and often can inhibit the separation of the material around the perforated contour, and may also result in increased unwanted micro cracking within the glass. Too long a pitch (>50 μm, and in some glasses >25 μm) may result in “uncontrolled microcracking”—i.e., where instead of propagating from hole to hole the microcracks propagate along a different path, and cause the glass to crack in a different (undesirable) direction. This may ultimately lower the strength of the separated glass part, since the residual microcracks will acts as flaws which weaken the glass. Too high a burst energy (e.g., >2500 μJ/burst, and in some embodiments >500 μJ/burst) used to form each damage track can cause “healing” or re-melting of already formed microcracks of adjacent damage tracks, which will inhibit separation of the glass. Accordingly, it is preferred that burst energy be <2500 μJ/burst, for example, ≤500 μJ/burst. Also, using a burst energy that is too high can cause formation of microcracks that are extremely large and create flaws which reduce the edge strength of the parts after separation. Too low a burst energy (<40 μJ/burst) may result in no appreciable damage track formed within the glass, and hence very high separation strength or complete inability to separate along the perforated contour.
Typical exemplary cutting rates (speeds) enabled by this process are, for example, 0.25 m/sec and higher. In some embodiments the cutting rates are at least 300 mm/sec. In some embodiments described herein the cutting rates are at least 400 mm/sec, for example 500 mm/sec to 2000 mm/sec, or higher. In some embodiments the picosecond (ps) laser utilizes pulse bursts to produce defect lines with periodicity between 0.5 microns and 13 microns, e.g. 0.5 and 3 microns. In some embodiments the pulsed laser has laser power of 10 W-100 W and the material and/or the laser beam are translated relative to one another at a rate of at least 0.25 m/sec, for example at the rate of 0.25 to 0.35 m/sec, or 0.4 m/sec to 5 m/sec. Preferably, each pulse burst of the pulsed laser beam has an average laser energy measured at the workpiece greater than 40 microJoules per burst mm thickness of workpiece. Preferably, each pulse burst of the pulsed laser beam has an average laser energy measured at the workpiece greater of less than 2500 microJoules per burst per mm thickness of workpiece, and preferably lass than about 2000 microJoules per burst per mm, and in some embodiments less than 1500 microJoules per burst per mm thickness of workpiece, for example not more than 500 microJoules per burst per mm thickness of workpiece.
It has been discovered that much higher (5 to 10 times higher) volumetric pulse energy density (μj/μm3) is required for perforating alkaline earth boro-aluminosilicate glasses with low or no alkali containing glasses as compared to that for glasses such as Corning Gorilla®. This can be achieved, for example, by utilizing pulse burst lasers, preferably with at least 2 pulses per burst and providing volumetric energy densities within the alkaline earth boro-aluminosilicate glasses (with low or no alkali) of about 0.05 μJ/μm3 or higher, e.g., at least 0.1 μJ/μm3, for example 0.1-0.5 μJ/μm3.
Accordingly, it is preferable that the laser produces pulse bursts with at least 2 pulses per burst. For example, in some embodiments the pulsed laser has laser power of 10 W-150 W (e.g., 10-100 W) and produces pulse bursts with at least 2 pulses per burst (e.g., 2-25 pulses per burst). In some embodiments the pulsed laser has the power of 25 W-60 W, and produces pulse bursts with at least 2-25 pulses per burst, and periodicity or distance between the adjacent defect lines produced by the laser bursts is 2-10 microns. In some embodiments the pulsed laser has laser power of 10 W-100 W, produces pulse bursts with at least 2 pulses per burst, and the workpiece and the laser beam are translated relative to one another at a rate of at least 0.25 m/sec. In some embodiments the workpiece and/or the laser beam are translated relative to one another at a rate of at least 0.4 m/sec.
For example, for cutting 0.7 mm thick non-ion exchanged Corning code 2319 or code 2320 Gorilla glass, it is observed that pitches of 3-7 microns can work well, with pulse burst energies of about 150-250 μJ/burst, and burst pulse numbers that range from 2-15, and preferably with pitches of 3-5 microns and burst pulse numbers (number of pulses per burst) of 2-5.
At 1 m/sec cut speeds, the cutting of Eagle XG® glass typically requires utilization of laser powers of 15-84 Watts, with 30-45 Watts often being sufficient. In general, across a variety of glass and other transparent materials, applicants discovered that laser powers between 10 and 100 W are preferred to achieve cutting speeds from 0.2-1 m/sec, with laser powers of 25-60 Watts being sufficient (and optimum) for many glasses. For cutting speeds of 0.4 m to 5 m/sec, laser powers should preferably be 10 W-150 W, with burst energy of 40-750 μJ/burst, 2-25 bursts per pulse (depending on the material that is cut), and hole separation (or pitch) of 3 to 15 μm, or 3-10 μm. The use of picosecond pulse burst lasers would be preferable for these cutting speeds because they generate high power and the required number of pulses per burst. Thus, according to some exemplary embodiments, the pulsed laser produces 10-100 W of power, for example 25 W to 60 Watts, and produces pulse bursts at least 2-25 pulses per burst and the distance between the defect lines is 2-15 microns; and the laser beam and/or workpiece are translated relative to one another at a rate of at least 0.25 m/sec, in some embodiments at least 0.4 m/sec, for example 0.5 m/sec to 5 m/sec, or faster.
It should now be understood that embodiments described herein provide for systems and methods for separating substrates, such as glass substrates, by application of a laser beam focal line. The systems described herein allow for fast adjustment of a length and/or diameter of the laser beam focal line to account for different types of material as well as different thicknesses of material.
While exemplary embodiments have been described herein, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope encompassed by the appended claims.
This application claims the benefit of priority under 35 U.S.C. § 371 of International Application No. PCT/US2015/40259, filed on Jul. 14, 2015, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/024,122 filed on Jul. 14, 2014 the content of which is relied upon and incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/040259 | 7/14/2015 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/010954 | 1/21/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1529243 | Drake et al. | Mar 1925 | A |
1626396 | Drake | Apr 1927 | A |
1790397 | Woods et al. | Jan 1931 | A |
2682134 | Stookey | Jun 1954 | A |
2749794 | O'Leary | Jun 1956 | A |
2754956 | Sommer | Jul 1956 | A |
3647410 | Heaton | Mar 1972 | A |
3673900 | Jendrisak et al. | Jul 1972 | A |
3695497 | Dear | Oct 1972 | A |
3695498 | Dear | Oct 1972 | A |
3729302 | Heaton | Apr 1973 | A |
3775084 | Heaton | Nov 1973 | A |
3947093 | Goshima et al. | Mar 1976 | A |
4076159 | Farragher | Feb 1978 | A |
4226607 | Domken | Oct 1980 | A |
4441008 | Chan | Apr 1984 | A |
4546231 | Gresser | Oct 1985 | A |
4618056 | Cutshall | Oct 1986 | A |
4623776 | Buchroeder | Nov 1986 | A |
4642439 | Miller | Feb 1987 | A |
4646308 | Kafka | Feb 1987 | A |
4764930 | Bille | Aug 1988 | A |
4891054 | Bricker | Jan 1990 | A |
4907586 | Bille | Mar 1990 | A |
4918751 | Pessot | Apr 1990 | A |
4929065 | Hagerty | May 1990 | A |
4951457 | Deal | Aug 1990 | A |
4997250 | Ortiz, Jr. | Mar 1991 | A |
5035918 | Vyas | Jul 1991 | A |
5040182 | Spinelli | Aug 1991 | A |
5104210 | Tokas | Apr 1992 | A |
5104523 | Masaharu et al. | Apr 1992 | A |
5108857 | Kitayama | Apr 1992 | A |
5112722 | Tsujino | May 1992 | A |
5114834 | Nachshon | May 1992 | A |
5221034 | Bando | Jun 1993 | A |
5256853 | McIntyre | Oct 1993 | A |
5265107 | Delfyett, Jr. | Nov 1993 | A |
5326956 | Lunney | Jul 1994 | A |
5400350 | Galvanauskas | Mar 1995 | A |
5410567 | Brundage et al. | Apr 1995 | A |
5418803 | Zhiglinsky et al. | May 1995 | A |
5434875 | Rieger | Jul 1995 | A |
5436925 | Lin | Jul 1995 | A |
5475197 | Wrobel | Dec 1995 | A |
5521352 | Lawson | May 1996 | A |
5541774 | Blankenbecler | Jul 1996 | A |
5553093 | Ramaswamy | Sep 1996 | A |
5574597 | Kataoka | Nov 1996 | A |
5578229 | Barnekov et al. | Nov 1996 | A |
5586138 | Yokoyama | Dec 1996 | A |
5656186 | Mourou | Aug 1997 | A |
5676866 | in den Baumen | Oct 1997 | A |
5684642 | Zumoto | Nov 1997 | A |
5692703 | Murphy et al. | Dec 1997 | A |
5696782 | Harter | Dec 1997 | A |
5715346 | Liu | Feb 1998 | A |
5736061 | Fukada et al. | Apr 1998 | A |
5736709 | Neiheisel | Apr 1998 | A |
5776220 | Allaire | Jul 1998 | A |
5781684 | Liu | Jul 1998 | A |
5796112 | Ichie | Aug 1998 | A |
5854490 | Ooaeh et al. | Dec 1998 | A |
5854751 | Di et al. | Dec 1998 | A |
5878866 | Lisec | Mar 1999 | A |
5968441 | Seki | Oct 1999 | A |
6003418 | Bezama et al. | Dec 1999 | A |
6016223 | Suzuki | Jan 2000 | A |
6016324 | Rieger | Jan 2000 | A |
6033583 | Musket | Mar 2000 | A |
6038055 | Hansch | Mar 2000 | A |
6055829 | Witzmann | May 2000 | A |
6078599 | Everage | Jun 2000 | A |
6137632 | Bernacki | Oct 2000 | A |
6156030 | Neev | Dec 2000 | A |
6160835 | Kwon | Dec 2000 | A |
6185051 | Chen | Feb 2001 | B1 |
6186384 | Sawada | Feb 2001 | B1 |
6191880 | Schuster | Feb 2001 | B1 |
6210401 | Lai | Apr 2001 | B1 |
6256328 | Delfyett | Jul 2001 | B1 |
6259058 | Hoekstra | Jul 2001 | B1 |
6259151 | Morrison | Jul 2001 | B1 |
6259512 | Mizouchi | Jul 2001 | B1 |
6272156 | Reed | Aug 2001 | B1 |
6301932 | Allen | Oct 2001 | B1 |
6308055 | Welland et al. | Oct 2001 | B1 |
6322958 | Hayashi | Nov 2001 | B1 |
6339208 | Rockstroh | Jan 2002 | B1 |
6373565 | Kafka | Apr 2002 | B1 |
6381391 | Islam | Apr 2002 | B1 |
6396856 | Sucha | May 2002 | B1 |
6407360 | Choo | Jun 2002 | B1 |
6438996 | Cuvelier | Aug 2002 | B1 |
6445491 | Sucha | Sep 2002 | B2 |
6449301 | Wu | Sep 2002 | B1 |
6461223 | Bando | Oct 2002 | B1 |
6484052 | Visuri | Nov 2002 | B1 |
6489589 | Alexander | Dec 2002 | B1 |
6501576 | Seacombe | Dec 2002 | B1 |
6501578 | Bernstein | Dec 2002 | B1 |
6520057 | Steadman | Feb 2003 | B1 |
6552301 | Herman | Apr 2003 | B2 |
6573026 | Aitken | Jun 2003 | B1 |
6592703 | Habeck | Jul 2003 | B1 |
6635849 | Okawa | Oct 2003 | B1 |
6635850 | Amako | Oct 2003 | B2 |
6720519 | Liu | Apr 2004 | B2 |
6729151 | Thompson | May 2004 | B1 |
6729161 | Miura | May 2004 | B1 |
6737345 | Lin et al. | May 2004 | B1 |
6744009 | Xuan | Jun 2004 | B1 |
6787732 | Xuan | Sep 2004 | B1 |
6791935 | Hatano | Sep 2004 | B2 |
6800237 | Yamamoto | Oct 2004 | B1 |
6800831 | Hoetzel | Oct 2004 | B1 |
6856379 | Schuster | Feb 2005 | B2 |
6885502 | Schuster | Apr 2005 | B2 |
6958094 | Ohmi | Oct 2005 | B2 |
6992026 | Fukuyo | Jan 2006 | B2 |
7009138 | Amako | Mar 2006 | B2 |
7061583 | Mulkens et al. | Jun 2006 | B2 |
7102118 | Acker | Sep 2006 | B2 |
7196841 | Melzer | Mar 2007 | B2 |
7259354 | Pailthorp et al. | Aug 2007 | B2 |
7353829 | Wachter | Apr 2008 | B1 |
7402773 | Nomaru | Jul 2008 | B2 |
7408616 | Gruner | Aug 2008 | B2 |
7408622 | Fiolka | Aug 2008 | B2 |
7511886 | Schultz | Mar 2009 | B2 |
7535634 | Savchenkov | May 2009 | B1 |
7633033 | Thomas | Dec 2009 | B2 |
7642483 | You | Jan 2010 | B2 |
7649153 | Haight | Jan 2010 | B2 |
7726532 | Gonoe | Jun 2010 | B2 |
7794904 | Brueck | Sep 2010 | B2 |
7800734 | Komatsuda | Sep 2010 | B2 |
7901967 | Komura et al. | Mar 2011 | B2 |
7920337 | Perchak | Apr 2011 | B2 |
7978408 | Sawabe | Jul 2011 | B2 |
8035803 | Fiolka | Oct 2011 | B2 |
8035882 | Fanton et al. | Oct 2011 | B2 |
8035901 | Abramov | Oct 2011 | B2 |
8068279 | Schuster | Nov 2011 | B2 |
8104385 | Hayashi | Jan 2012 | B2 |
8118971 | Hori | Feb 2012 | B2 |
8123515 | Schleelein | Feb 2012 | B2 |
8132427 | Brown | Mar 2012 | B2 |
8144308 | Muramatsu | Mar 2012 | B2 |
8158514 | Krueger et al. | Apr 2012 | B2 |
8164818 | Collins et al. | Apr 2012 | B2 |
8168514 | Garner | May 2012 | B2 |
8194170 | Golub | Jun 2012 | B2 |
8211259 | Sato et al. | Jul 2012 | B2 |
8237918 | Totzeck | Aug 2012 | B2 |
8245539 | Lu | Aug 2012 | B2 |
8245540 | Abramov | Aug 2012 | B2 |
8248600 | Matousek | Aug 2012 | B2 |
8259393 | Fiolka | Sep 2012 | B2 |
8269138 | Garner | Sep 2012 | B2 |
8279524 | Fiolka | Oct 2012 | B2 |
8283595 | Fukuyo | Oct 2012 | B2 |
8283695 | Salcedo et al. | Oct 2012 | B2 |
8292141 | Cox | Oct 2012 | B2 |
8296066 | Zhao | Oct 2012 | B2 |
8327666 | Harvey | Dec 2012 | B2 |
8339578 | Omura | Dec 2012 | B2 |
8341976 | Dejneka | Jan 2013 | B2 |
8347551 | Van Der Drift | Jan 2013 | B2 |
8347651 | Abramov | Jan 2013 | B2 |
8358868 | Iketani | Jan 2013 | B2 |
8358888 | Ramachandran | Jan 2013 | B2 |
8379188 | Mueller | Feb 2013 | B2 |
8444905 | Li et al. | May 2013 | B2 |
8444906 | Lee | May 2013 | B2 |
8448471 | Kumatani | May 2013 | B2 |
8475507 | Dewey | Jul 2013 | B2 |
8482717 | Fiolka | Jul 2013 | B2 |
8491983 | Ono et al. | Jul 2013 | B2 |
8518280 | Hsu | Aug 2013 | B2 |
8549881 | Brown | Oct 2013 | B2 |
8584354 | Cornejo | Nov 2013 | B2 |
8584490 | Garner | Nov 2013 | B2 |
8592716 | Abramov | Nov 2013 | B2 |
8604380 | Howerton | Dec 2013 | B2 |
8607590 | Glaesemann | Dec 2013 | B2 |
8616024 | Cornejo | Dec 2013 | B2 |
8635857 | Crosbie | Jan 2014 | B2 |
8635887 | Black | Jan 2014 | B2 |
8680489 | Martinez | Mar 2014 | B2 |
8685838 | Fukuyo | Apr 2014 | B2 |
8697228 | Carre | Apr 2014 | B2 |
8720228 | Li | May 2014 | B2 |
8826696 | Brown et al. | Sep 2014 | B2 |
8847112 | Panarello et al. | Sep 2014 | B2 |
8852698 | Fukumitsu | Oct 2014 | B2 |
8887529 | Lu | Nov 2014 | B2 |
8916798 | Pluss | Dec 2014 | B2 |
8943855 | Gomez | Feb 2015 | B2 |
8951889 | Ryu et al. | Feb 2015 | B2 |
8971053 | Kariya | Mar 2015 | B2 |
9028613 | Kim et al. | May 2015 | B2 |
9052605 | Van Ingen Schenau | Jun 2015 | B2 |
9086509 | Knutson | Jul 2015 | B2 |
9138913 | Arai | Sep 2015 | B2 |
9170500 | Van Schoot | Oct 2015 | B2 |
9227868 | Matsumoto | Jan 2016 | B2 |
9290407 | Barefoot et al. | Mar 2016 | B2 |
9296066 | Hosseini | Mar 2016 | B2 |
9324791 | Tamemoto | Apr 2016 | B2 |
9327381 | Lee | May 2016 | B2 |
9341912 | Shrivastava et al. | May 2016 | B2 |
9346706 | Bazemore et al. | May 2016 | B2 |
9446590 | Chen | Sep 2016 | B2 |
9481598 | Bergh | Nov 2016 | B2 |
9499343 | Cornelissen et al. | Nov 2016 | B2 |
9517929 | Hosseini | Dec 2016 | B2 |
9517963 | Marjanovic et al. | Dec 2016 | B2 |
9701581 | Kangastupa et al. | Jul 2017 | B2 |
9703167 | Parker et al. | Jul 2017 | B2 |
9815730 | Marjanovic et al. | Nov 2017 | B2 |
9850160 | Marjanovic et al. | Dec 2017 | B2 |
9873628 | Haloui et al. | Jan 2018 | B1 |
9878304 | Kotake et al. | Jan 2018 | B2 |
10190363 | Behmke et al. | Jan 2019 | B2 |
10730783 | Akarapu et al. | Aug 2020 | B2 |
20010019404 | Schuster | Sep 2001 | A1 |
20010027842 | Curcio et al. | Oct 2001 | A1 |
20020006765 | Michel et al. | Jan 2002 | A1 |
20020046997 | Nam | Apr 2002 | A1 |
20020082466 | Han | Jun 2002 | A1 |
20020097486 | Yamaguchi | Jul 2002 | A1 |
20020097488 | Hay et al. | Jul 2002 | A1 |
20020110639 | Bruns | Aug 2002 | A1 |
20020126380 | Schuster | Sep 2002 | A1 |
20020139786 | Amako et al. | Oct 2002 | A1 |
20030006221 | Hong | Jan 2003 | A1 |
20030007772 | Borrelli et al. | Jan 2003 | A1 |
20030007773 | Kondo | Jan 2003 | A1 |
20030038225 | Mulder | Feb 2003 | A1 |
20030070706 | Fujioka | Apr 2003 | A1 |
20030227663 | Agrawal et al. | Dec 2003 | A1 |
20040021615 | Benson et al. | Feb 2004 | A1 |
20040051982 | Perchak | Mar 2004 | A1 |
20040108467 | Eurlings | Jun 2004 | A1 |
20040144231 | Hanada | Jul 2004 | A1 |
20040221615 | Postupack | Nov 2004 | A1 |
20050024743 | Camy-Peyret | Feb 2005 | A1 |
20050098458 | Gruetzmacher et al. | May 2005 | A1 |
20050098548 | Kobayashi | May 2005 | A1 |
20050115938 | Sawaki | Jun 2005 | A1 |
20050116938 | Ito et al. | Jun 2005 | A1 |
20050205778 | Kitai et al. | Sep 2005 | A1 |
20050209898 | Asai et al. | Sep 2005 | A1 |
20050231651 | Myers | Oct 2005 | A1 |
20050274702 | Deshi | Dec 2005 | A1 |
20050277270 | Yoshikawa | Dec 2005 | A1 |
20060011593 | Fukuyo | Jan 2006 | A1 |
20060021385 | Cimo et al. | Feb 2006 | A1 |
20060028706 | Totzeck | Feb 2006 | A1 |
20060028728 | Li | Feb 2006 | A1 |
20060050261 | Brotsack | Mar 2006 | A1 |
20060109874 | Shiozaki | May 2006 | A1 |
20060118529 | Aoki et al. | Jun 2006 | A1 |
20060127679 | Gulati | Jun 2006 | A1 |
20060146384 | Schultz | Jul 2006 | A1 |
20060151450 | You et al. | Jul 2006 | A1 |
20060170617 | Latypov | Aug 2006 | A1 |
20060213883 | Eberhardt et al. | Sep 2006 | A1 |
20060227440 | Gluckstad | Oct 2006 | A1 |
20060266744 | Nomaru | Nov 2006 | A1 |
20060289410 | Morita | Dec 2006 | A1 |
20060291835 | Nozaki et al. | Dec 2006 | A1 |
20070021548 | Hattori et al. | Jan 2007 | A1 |
20070030471 | Troost | Feb 2007 | A1 |
20070044606 | Kang et al. | Mar 2007 | A1 |
20070045253 | Jordens et al. | Mar 2007 | A1 |
20070051706 | Bovatsek et al. | Mar 2007 | A1 |
20070053632 | Popp | Mar 2007 | A1 |
20070068648 | Hu et al. | Mar 2007 | A1 |
20070090180 | Griffis et al. | Apr 2007 | A1 |
20070091977 | Sohn | Apr 2007 | A1 |
20070111119 | Hu et al. | May 2007 | A1 |
20070111390 | Komura | May 2007 | A1 |
20070111480 | Maruyama | May 2007 | A1 |
20070119831 | Kandt | May 2007 | A1 |
20070132977 | Komatsuda | Jun 2007 | A1 |
20070138151 | Tanaka | Jun 2007 | A1 |
20070177116 | Amako | Aug 2007 | A1 |
20070202619 | Tamura | Aug 2007 | A1 |
20070209029 | Ivonin | Sep 2007 | A1 |
20070228616 | Bang | Oct 2007 | A1 |
20070298529 | Maeda | Dec 2007 | A1 |
20080000884 | Sugiura | Jan 2008 | A1 |
20080050584 | Noguchi et al. | Feb 2008 | A1 |
20080079940 | Sezerman | Apr 2008 | A1 |
20080087629 | Shimomura et al. | Apr 2008 | A1 |
20080099444 | Misawa | May 2008 | A1 |
20080158529 | Hansen | Jul 2008 | A1 |
20080165925 | Singer | Jul 2008 | A1 |
20080190981 | Okajima et al. | Aug 2008 | A1 |
20080239268 | Mulder | Oct 2008 | A1 |
20080309902 | Rosenbluth | Dec 2008 | A1 |
20080310465 | Achtenhagen | Dec 2008 | A1 |
20080314879 | Bruland et al. | Dec 2008 | A1 |
20080318028 | Winstanley et al. | Dec 2008 | A1 |
20090013724 | Koyo | Jan 2009 | A1 |
20090032510 | Ando et al. | Feb 2009 | A1 |
20090033902 | Mulder | Feb 2009 | A1 |
20090050661 | Na et al. | Feb 2009 | A1 |
20090091731 | Ossmann | Apr 2009 | A1 |
20090104721 | Hirakata et al. | Apr 2009 | A1 |
20090157341 | Cheung | Jun 2009 | A1 |
20090170286 | Tsukamoto et al. | Jul 2009 | A1 |
20090176034 | Ruuttu | Jul 2009 | A1 |
20090183764 | Meyer | Jul 2009 | A1 |
20090184849 | Nasiri et al. | Jul 2009 | A1 |
20090188543 | Bann | Jul 2009 | A1 |
20090199694 | Uh et al. | Aug 2009 | A1 |
20090212033 | Beck et al. | Aug 2009 | A1 |
20090242528 | Howerton | Oct 2009 | A1 |
20090250446 | Sakamoto | Oct 2009 | A1 |
20090294419 | Abramov | Dec 2009 | A1 |
20090294422 | Lubatschowski | Dec 2009 | A1 |
20090323160 | Egerton et al. | Dec 2009 | A1 |
20090323162 | Fanton et al. | Dec 2009 | A1 |
20090324899 | Feinstein | Dec 2009 | A1 |
20090324903 | Rumsby | Dec 2009 | A1 |
20100020304 | Soer et al. | Jan 2010 | A1 |
20100024865 | Shah et al. | Feb 2010 | A1 |
20100025387 | Arai | Feb 2010 | A1 |
20100029460 | Shojiya | Feb 2010 | A1 |
20100032087 | Takahashi | Feb 2010 | A1 |
20100038349 | Ke et al. | Feb 2010 | A1 |
20100046761 | Henn et al. | Feb 2010 | A1 |
20100086741 | Bovatsek | Apr 2010 | A1 |
20100089631 | Sakaguchi | Apr 2010 | A1 |
20100089682 | Martini et al. | Apr 2010 | A1 |
20100089882 | Tamura | Apr 2010 | A1 |
20100102042 | Garner | Apr 2010 | A1 |
20100129603 | Blick | May 2010 | A1 |
20100145620 | Georgi et al. | Jun 2010 | A1 |
20100147813 | Lei | Jun 2010 | A1 |
20100197116 | Shah et al. | Aug 2010 | A1 |
20100206008 | Harvey et al. | Aug 2010 | A1 |
20100252538 | Zeygerman | Oct 2010 | A1 |
20100252540 | Lei | Oct 2010 | A1 |
20100252959 | Lei | Oct 2010 | A1 |
20100276505 | Smith | Nov 2010 | A1 |
20100279067 | Sabia | Nov 2010 | A1 |
20100287991 | Brown | Nov 2010 | A1 |
20100291353 | Dejneka et al. | Nov 2010 | A1 |
20100320179 | Morita et al. | Dec 2010 | A1 |
20100326138 | Kumatani | Dec 2010 | A1 |
20100332087 | Claffee et al. | Dec 2010 | A1 |
20110017716 | Rumsby | Jan 2011 | A1 |
20110023298 | Chujo et al. | Feb 2011 | A1 |
20110037149 | Fukuyo et al. | Feb 2011 | A1 |
20110049764 | Lee | Mar 2011 | A1 |
20110049765 | Li | Mar 2011 | A1 |
20110088324 | Wessel | Apr 2011 | A1 |
20110094267 | Aniolek et al. | Apr 2011 | A1 |
20110100401 | Fiorentini | May 2011 | A1 |
20110111179 | Blick et al. | May 2011 | A1 |
20110127244 | Li | Jun 2011 | A1 |
20110127697 | Milne | Jun 2011 | A1 |
20110132581 | Moss | Jun 2011 | A1 |
20110132881 | Liu | Jun 2011 | A1 |
20110136303 | Lee | Jun 2011 | A1 |
20110139760 | Shah | Jun 2011 | A1 |
20110143470 | Lee | Jun 2011 | A1 |
20110177325 | Tomamoto et al. | Jul 2011 | A1 |
20110183116 | Hung | Jul 2011 | A1 |
20110191024 | Deluca | Aug 2011 | A1 |
20110210105 | Romashko | Sep 2011 | A1 |
20110238308 | Miller et al. | Sep 2011 | A1 |
20110240476 | Wang et al. | Oct 2011 | A1 |
20110240611 | Sandstrom | Oct 2011 | A1 |
20110240617 | Cheon et al. | Oct 2011 | A1 |
20110261429 | Sbar et al. | Oct 2011 | A1 |
20110277507 | Lu | Nov 2011 | A1 |
20110300691 | Sakamoto et al. | Dec 2011 | A1 |
20110318555 | Bookbinder | Dec 2011 | A1 |
20120017642 | Teranishi | Jan 2012 | A1 |
20120026573 | Collins et al. | Feb 2012 | A1 |
20120047951 | Dannoux | Mar 2012 | A1 |
20120047956 | Li | Mar 2012 | A1 |
20120047957 | Dannoux et al. | Mar 2012 | A1 |
20120048604 | Cornejo | Mar 2012 | A1 |
20120061440 | Roell | Mar 2012 | A1 |
20120064306 | Kang | Mar 2012 | A1 |
20120067858 | Kangastupa | Mar 2012 | A1 |
20120103018 | Lu | May 2012 | A1 |
20120106117 | Sundaram et al. | May 2012 | A1 |
20120111310 | Ryu et al. | May 2012 | A1 |
20120125588 | Nam et al. | May 2012 | A1 |
20120131961 | Dannoux et al. | May 2012 | A1 |
20120131962 | Mitsugi | May 2012 | A1 |
20120135195 | Glaesemann | May 2012 | A1 |
20120135607 | Shimoi | May 2012 | A1 |
20120135608 | Shimoi | May 2012 | A1 |
20120145331 | Gomez | Jun 2012 | A1 |
20120147449 | Bhatnagar et al. | Jun 2012 | A1 |
20120196071 | Cornejo | Aug 2012 | A1 |
20120196454 | Shah et al. | Aug 2012 | A1 |
20120205356 | Pluess | Aug 2012 | A1 |
20120211923 | Garner et al. | Aug 2012 | A1 |
20120214004 | Hashimoto et al. | Aug 2012 | A1 |
20120216570 | Abramov et al. | Aug 2012 | A1 |
20120229787 | Van Schoot | Sep 2012 | A1 |
20120234049 | Bolton | Sep 2012 | A1 |
20120234807 | Sercel | Sep 2012 | A1 |
20120237731 | Boegli et al. | Sep 2012 | A1 |
20120255935 | Kakui | Oct 2012 | A1 |
20120262689 | Van Ingen Schenau | Oct 2012 | A1 |
20120293784 | Xalter | Nov 2012 | A1 |
20120297568 | Spezzani | Nov 2012 | A1 |
20120299219 | Shimoi | Nov 2012 | A1 |
20120302139 | Darcangelo | Nov 2012 | A1 |
20120320458 | Knutson | Dec 2012 | A1 |
20120324950 | Dale et al. | Dec 2012 | A1 |
20130019637 | Sol | Jan 2013 | A1 |
20130031879 | Yoshikane et al. | Feb 2013 | A1 |
20130034688 | Koike | Feb 2013 | A1 |
20130044371 | Rupp | Feb 2013 | A1 |
20130047671 | Kohli | Feb 2013 | A1 |
20130056450 | Lissotschenko | Mar 2013 | A1 |
20130061636 | Imai | Mar 2013 | A1 |
20130068736 | Mielke | Mar 2013 | A1 |
20130075480 | Yokogi | Mar 2013 | A1 |
20130078891 | Lee et al. | Mar 2013 | A1 |
20130091897 | Fujii | Apr 2013 | A1 |
20130122264 | Fujii | May 2013 | A1 |
20130126573 | Hosseini | May 2013 | A1 |
20130126751 | Mizoguchi | May 2013 | A1 |
20130129947 | Harvey | May 2013 | A1 |
20130133367 | Abramov | May 2013 | A1 |
20130139708 | Hotta | Jun 2013 | A1 |
20130143416 | Norval | Jun 2013 | A1 |
20130149434 | Oh | Jun 2013 | A1 |
20130149494 | Koike | Jun 2013 | A1 |
20130167590 | Teranishi | Jul 2013 | A1 |
20130171425 | Wang et al. | Jul 2013 | A1 |
20130174607 | Wootton | Jul 2013 | A1 |
20130174610 | Teranishi | Jul 2013 | A1 |
20130177033 | Muro et al. | Jul 2013 | A1 |
20130180285 | Kariya | Jul 2013 | A1 |
20130180665 | Gomez et al. | Jul 2013 | A2 |
20130189806 | Hoshino | Jul 2013 | A1 |
20130192305 | Black | Aug 2013 | A1 |
20130209731 | Nattermann | Aug 2013 | A1 |
20130210245 | Jackl | Aug 2013 | A1 |
20130216573 | Trusheim et al. | Aug 2013 | A1 |
20130220982 | Thomas | Aug 2013 | A1 |
20130221053 | Zhang | Aug 2013 | A1 |
20130222877 | Greer et al. | Aug 2013 | A1 |
20130224439 | Zhang | Aug 2013 | A1 |
20130228918 | Chen | Sep 2013 | A1 |
20130247615 | Boek | Sep 2013 | A1 |
20130248504 | Kusuda | Sep 2013 | A1 |
20130266757 | Giron | Oct 2013 | A1 |
20130270240 | Kondo | Oct 2013 | A1 |
20130280495 | Matsumoto | Oct 2013 | A1 |
20130288010 | Akarapu | Oct 2013 | A1 |
20130291598 | Saito | Nov 2013 | A1 |
20130312460 | Kunishi | Nov 2013 | A1 |
20130323469 | Abramov | Dec 2013 | A1 |
20130334185 | Nomaru | Dec 2013 | A1 |
20130340480 | Nattermann | Dec 2013 | A1 |
20130344684 | Bowden | Dec 2013 | A1 |
20140023087 | Czompo | Jan 2014 | A1 |
20140027951 | Srinivas | Jan 2014 | A1 |
20140034730 | Lee | Feb 2014 | A1 |
20140042202 | Lee | Feb 2014 | A1 |
20140047957 | Wu | Feb 2014 | A1 |
20140076869 | Lee et al. | Mar 2014 | A1 |
20140083986 | Zhang et al. | Mar 2014 | A1 |
20140102146 | Saito | Apr 2014 | A1 |
20140110040 | Cok | Apr 2014 | A1 |
20140113797 | Yamada | Apr 2014 | A1 |
20140133119 | Kariya | May 2014 | A1 |
20140141192 | Fernando et al. | May 2014 | A1 |
20140141217 | Gulati | May 2014 | A1 |
20140147623 | Shorey | May 2014 | A1 |
20140147624 | Streltsov | May 2014 | A1 |
20140165652 | Saito | Jun 2014 | A1 |
20140174131 | Saito | Jun 2014 | A1 |
20140182125 | Rozbicki et al. | Jul 2014 | A1 |
20140199519 | Schillinger | Jul 2014 | A1 |
20140216108 | Wiegel | Aug 2014 | A1 |
20140238962 | Nawrodt et al. | Aug 2014 | A1 |
20140239034 | Cleary et al. | Aug 2014 | A1 |
20140239552 | Srinivas et al. | Aug 2014 | A1 |
20140290310 | Green | Oct 2014 | A1 |
20140291122 | Bando | Oct 2014 | A1 |
20140320947 | Egerton | Oct 2014 | A1 |
20140333929 | Sung | Nov 2014 | A1 |
20140339207 | Sugiyama et al. | Nov 2014 | A1 |
20140340730 | Bergh et al. | Nov 2014 | A1 |
20140352400 | Barrilado et al. | Dec 2014 | A1 |
20140361463 | DeSimone | Dec 2014 | A1 |
20150014891 | Amatucci et al. | Jan 2015 | A1 |
20150034612 | Hosseini | Feb 2015 | A1 |
20150038313 | Hosseini | Feb 2015 | A1 |
20150044445 | Garner et al. | Feb 2015 | A1 |
20150059986 | Komatsu et al. | Mar 2015 | A1 |
20150060402 | Burkett et al. | Mar 2015 | A1 |
20150075221 | Kawaguchi | Mar 2015 | A1 |
20150075222 | Mader | Mar 2015 | A1 |
20150110442 | Zimmel | Apr 2015 | A1 |
20150118522 | Hosseini | Apr 2015 | A1 |
20150121960 | Hosseini | May 2015 | A1 |
20150122656 | Hosseini | May 2015 | A1 |
20150136743 | Hosseini | May 2015 | A1 |
20150140241 | Hosseini | May 2015 | A1 |
20150140735 | Hosseini | May 2015 | A1 |
20150151380 | Hosseini | Jun 2015 | A1 |
20150158120 | Courvoisier | Jun 2015 | A1 |
20150165396 | Mattson et al. | Jun 2015 | A1 |
20150165548 | Marjanovic | Jun 2015 | A1 |
20150165560 | Hackert | Jun 2015 | A1 |
20150165561 | Le et al. | Jun 2015 | A1 |
20150165562 | Marjanovic | Jun 2015 | A1 |
20150165563 | Manley | Jun 2015 | A1 |
20150166391 | Marjanovic | Jun 2015 | A1 |
20150166393 | Marjanovic | Jun 2015 | A1 |
20150166394 | Marjanovic | Jun 2015 | A1 |
20150166395 | Marjanovic | Jun 2015 | A1 |
20150166396 | Marjanovic | Jun 2015 | A1 |
20150166397 | Marjanovic | Jun 2015 | A1 |
20150183679 | Saito | Jul 2015 | A1 |
20150209922 | Yoshikawa | Jul 2015 | A1 |
20150232369 | Marjanovic | Aug 2015 | A1 |
20150299018 | Bhuyan | Oct 2015 | A1 |
20150311058 | Antsiferov et al. | Oct 2015 | A1 |
20150350991 | Sayadi et al. | Dec 2015 | A1 |
20150352671 | Darzi | Dec 2015 | A1 |
20150360991 | Grundmueller | Dec 2015 | A1 |
20150362817 | Ierson et al. | Dec 2015 | A1 |
20150362818 | Greer | Dec 2015 | A1 |
20150367442 | Bovatsek | Dec 2015 | A1 |
20160008927 | Grundmueller | Jan 2016 | A1 |
20160009066 | Nieber | Jan 2016 | A1 |
20160009585 | Bookbinder et al. | Jan 2016 | A1 |
20160016257 | Hosseini | Jan 2016 | A1 |
20160023922 | Addiego | Jan 2016 | A1 |
20160031737 | Hoppe et al. | Feb 2016 | A1 |
20160031745 | Ortner | Feb 2016 | A1 |
20160039044 | Kawaguchi | Feb 2016 | A1 |
20160059359 | Krueger et al. | Mar 2016 | A1 |
20160060156 | Krueger | Mar 2016 | A1 |
20160097960 | Dixit et al. | Apr 2016 | A1 |
20160138328 | Behmke et al. | May 2016 | A1 |
20160152516 | Bazemore et al. | Jun 2016 | A1 |
20160154284 | Sano | Jun 2016 | A1 |
20160159679 | West | Jun 2016 | A1 |
20160168396 | Letocart et al. | Jun 2016 | A1 |
20160279895 | Marjanovic | Sep 2016 | A1 |
20160280580 | Bohme | Sep 2016 | A1 |
20160282521 | Uchiyama et al. | Sep 2016 | A1 |
20160290791 | Buono | Oct 2016 | A1 |
20160311717 | Nieber et al. | Oct 2016 | A1 |
20160368100 | Marjanovic et al. | Dec 2016 | A1 |
20170002601 | Bergh et al. | Jan 2017 | A1 |
20170008791 | Kim et al. | Jan 2017 | A1 |
20170052381 | Huang et al. | Feb 2017 | A1 |
20170169847 | Tamaki | Jun 2017 | A1 |
20170183168 | Jia | Jun 2017 | A1 |
20170197868 | Gupta et al. | Jul 2017 | A1 |
20170225996 | Bookbinder et al. | Aug 2017 | A1 |
20170252859 | Kumkar et al. | Sep 2017 | A1 |
20170355634 | Thierry | Dec 2017 | A1 |
20170368638 | Tayebati et al. | Dec 2017 | A1 |
20180029919 | Schnitzler et al. | Feb 2018 | A1 |
20180029920 | Marjanovic et al. | Feb 2018 | A1 |
20180062342 | Comstock et al. | Mar 2018 | A1 |
20180118602 | Hackert et al. | May 2018 | A1 |
20180133837 | Greenberg et al. | May 2018 | A1 |
20180134606 | Wagner et al. | May 2018 | A1 |
20180186677 | Ito et al. | Jul 2018 | A1 |
20180186678 | Boeker et al. | Jul 2018 | A1 |
20180297887 | Spier et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
1259924 | Jul 2000 | CN |
2388062 | Jul 2000 | CN |
1473087 | Feb 2004 | CN |
1517313 | Aug 2004 | CN |
1573364 | Feb 2005 | CN |
1619778 | May 2005 | CN |
1735568 | Feb 2006 | CN |
1283409 | Nov 2006 | CN |
1890074 | Jan 2007 | CN |
1920632 | Feb 2007 | CN |
1930097 | Mar 2007 | CN |
101031383 | Sep 2007 | CN |
101043936 | Sep 2007 | CN |
101048255 | Oct 2007 | CN |
101386466 | Mar 2009 | CN |
101502914 | Aug 2009 | CN |
101595554 | Dec 2009 | CN |
101610870 | Dec 2009 | CN |
201357287 | Dec 2009 | CN |
101622722 | Jan 2010 | CN |
101637849 | Feb 2010 | CN |
201471092 | May 2010 | CN |
101862907 | Oct 2010 | CN |
101965242 | Feb 2011 | CN |
101980982 | Feb 2011 | CN |
102046545 | May 2011 | CN |
102060437 | May 2011 | CN |
102105256 | Jun 2011 | CN |
102248302 | Nov 2011 | CN |
102272355 | Dec 2011 | CN |
102326232 | Jan 2012 | CN |
102343631 | Feb 2012 | CN |
102356049 | Feb 2012 | CN |
102356050 | Feb 2012 | CN |
102574246 | Jul 2012 | CN |
102596830 | Jul 2012 | CN |
102642092 | Aug 2012 | CN |
102649199 | Aug 2012 | CN |
102672355 | Sep 2012 | CN |
102674709 | Sep 2012 | CN |
102741012 | Oct 2012 | CN |
102898014 | Jan 2013 | CN |
102916081 | Feb 2013 | CN |
102923939 | Feb 2013 | CN |
102962583 | Mar 2013 | CN |
103013374 | Apr 2013 | CN |
103079747 | May 2013 | CN |
103086591 | May 2013 | CN |
103143841 | Jun 2013 | CN |
103159401 | Jun 2013 | CN |
203021443 | Jun 2013 | CN |
103237771 | Aug 2013 | CN |
103273195 | Sep 2013 | CN |
103316990 | Sep 2013 | CN |
103329035 | Sep 2013 | CN |
103339559 | Oct 2013 | CN |
103359947 | Oct 2013 | CN |
103359948 | Oct 2013 | CN |
103531414 | Jan 2014 | CN |
103746027 | Apr 2014 | CN |
203509350 | Apr 2014 | CN |
103817434 | May 2014 | CN |
103831539 | Jun 2014 | CN |
104108870 | Oct 2014 | CN |
104344202 | Feb 2015 | CN |
204211638 | Mar 2015 | CN |
105081564 | Nov 2015 | CN |
105164581 | Dec 2015 | CN |
105209218 | Dec 2015 | CN |
105246850 | Jan 2016 | CN |
103224117 | Feb 2016 | CN |
105392593 | Mar 2016 | CN |
105517969 | Apr 2016 | CN |
205328860 | Jun 2016 | CN |
106007349 | Oct 2016 | CN |
1020448 | Dec 1957 | DE |
2231330 | Oct 1974 | DE |
10322376 | Dec 2004 | DE |
102006042280 | Jun 2007 | DE |
102006035555 | Jan 2008 | DE |
102011000768 | Aug 2012 | DE |
102012010635 | Nov 2013 | DE |
102012110971 | May 2014 | DE |
102013103370 | Oct 2014 | DE |
102013223637 | May 2015 | DE |
102014213775 | Jan 2016 | DE |
102014116958 | May 2016 | DE |
102016102768 | Aug 2017 | DE |
004167 | Feb 2004 | EA |
270897 | Feb 1992 | EP |
609978 | Aug 1994 | EP |
656241 | Dec 1998 | EP |
938946 | Sep 1999 | EP |
949541 | Oct 1999 | EP |
1306196 | May 2003 | EP |
1159104 | Aug 2004 | EP |
1609559 | Dec 2005 | EP |
1043110 | Aug 2006 | EP |
1990125 | Nov 2008 | EP |
2105239 | Sep 2009 | EP |
2133170 | Dec 2009 | EP |
2202545 | Jun 2010 | EP |
2258512 | Dec 2010 | EP |
2398746 | Dec 2011 | EP |
2574983 | Apr 2013 | EP |
2754524 | Jul 2014 | EP |
2781296 | Sep 2014 | EP |
2783784 | Oct 2014 | EP |
2859984 | Apr 2015 | EP |
3311947 | Apr 2018 | EP |
2989294 | Oct 2013 | FR |
0768515 | Feb 1957 | GB |
1242172 | Aug 1971 | GB |
2481190 | Jan 2015 | GB |
53-018756 | Feb 1978 | JP |
61-027212 | Feb 1986 | JP |
61-074794 | Apr 1986 | JP |
62-046930 | Feb 1987 | JP |
63-018756 | Jan 1988 | JP |
63-192561 | Aug 1988 | JP |
64-077001 | Mar 1989 | JP |
1179770 | Jul 1989 | JP |
05-274085 | Oct 1993 | JP |
05-300544 | Nov 1993 | JP |
06-082720 | Mar 1994 | JP |
6318756 | Nov 1994 | JP |
08-184581 | Jul 1996 | JP |
09-109243 | Apr 1997 | JP |
9106243 | Apr 1997 | JP |
11-079770 | Mar 1999 | JP |
11197498 | Jul 1999 | JP |
11269683 | Oct 1999 | JP |
11330597 | Nov 1999 | JP |
11-347861 | Dec 1999 | JP |
11347758 | Dec 1999 | JP |
2000-225485 | Aug 2000 | JP |
2000-327349 | Nov 2000 | JP |
2001-130921 | May 2001 | JP |
2001138083 | May 2001 | JP |
2001-179473 | Jul 2001 | JP |
2002-045985 | Feb 2002 | JP |
2002-205181 | Jul 2002 | JP |
2002210730 | Jul 2002 | JP |
2002228818 | Aug 2002 | JP |
2002-321081 | Nov 2002 | JP |
2003025085 | Jan 2003 | JP |
2003-088985 | Mar 2003 | JP |
2003062756 | Mar 2003 | JP |
2003114400 | Apr 2003 | JP |
2003154517 | May 2003 | JP |
2003181668 | Jul 2003 | JP |
2003238178 | Aug 2003 | JP |
3445250 | Sep 2003 | JP |
2003-340579 | Dec 2003 | JP |
2004-182530 | Jul 2004 | JP |
2004209675 | Jul 2004 | JP |
2004-348137 | Dec 2004 | JP |
2005-000952 | Jan 2005 | JP |
2005104819 | Apr 2005 | JP |
2005-135964 | May 2005 | JP |
2005-144487 | Jun 2005 | JP |
2005-179154 | Jul 2005 | JP |
2005-219960 | Aug 2005 | JP |
2005205440 | Aug 2005 | JP |
2005-263623 | Sep 2005 | JP |
2005288503 | Oct 2005 | JP |
2006-108478 | Apr 2006 | JP |
3775250 | May 2006 | JP |
3775410 | May 2006 | JP |
2006130691 | May 2006 | JP |
2006-150385 | Jun 2006 | JP |
2006-182009 | Jul 2006 | JP |
2006-240948 | Sep 2006 | JP |
3823108 | Sep 2006 | JP |
2006248885 | Sep 2006 | JP |
2006-327711 | Dec 2006 | JP |
2007021548 | Feb 2007 | JP |
2007196277 | Aug 2007 | JP |
2007253203 | Oct 2007 | JP |
2008-018547 | Jan 2008 | JP |
2008-132616 | Jun 2008 | JP |
2008-168327 | Jul 2008 | JP |
2008-522950 | Jul 2008 | JP |
2008-266046 | Nov 2008 | JP |
2008-288577 | Nov 2008 | JP |
2009056482 | Mar 2009 | JP |
2009-082958 | Apr 2009 | JP |
2009-084089 | Apr 2009 | JP |
2009-126779 | Jun 2009 | JP |
2009-142886 | Jul 2009 | JP |
2009-178725 | Aug 2009 | JP |
2009172633 | Aug 2009 | JP |
2009-255114 | Nov 2009 | JP |
2009-269057 | Nov 2009 | JP |
2010017990 | Jan 2010 | JP |
2010-042424 | Feb 2010 | JP |
4418282 | Feb 2010 | JP |
2010046761 | Mar 2010 | JP |
4592855 | Dec 2010 | JP |
2011-011212 | Jan 2011 | JP |
2011-037707 | Feb 2011 | JP |
2011049398 | Mar 2011 | JP |
2011-512259 | Apr 2011 | JP |
4672689 | Apr 2011 | JP |
2011-517622 | Jun 2011 | JP |
2011517299 | Jun 2011 | JP |
2011-138083 | Jul 2011 | JP |
2011-520748 | Jul 2011 | JP |
2011-147943 | Aug 2011 | JP |
2011-240291 | Dec 2011 | JP |
4880820 | Feb 2012 | JP |
2012024782 | Feb 2012 | JP |
2012031018 | Feb 2012 | JP |
2012-506837 | Mar 2012 | JP |
2012-517957 | Aug 2012 | JP |
2012159749 | Aug 2012 | JP |
2012-521889 | Sep 2012 | JP |
2012187618 | Oct 2012 | JP |
2012-232894 | Nov 2012 | JP |
2012-528772 | Nov 2012 | JP |
2013007842 | Jan 2013 | JP |
2013031879 | Feb 2013 | JP |
2013043808 | Mar 2013 | JP |
2013-063863 | Apr 2013 | JP |
2013075802 | Apr 2013 | JP |
2013091578 | May 2013 | JP |
2013-121908 | Jun 2013 | JP |
2013-521131 | Jun 2013 | JP |
2013-132664 | Jul 2013 | JP |
2013-136075 | Jul 2013 | JP |
2013-144613 | Jul 2013 | JP |
2013-528492 | Jul 2013 | JP |
2013-150990 | Aug 2013 | JP |
2013-168445 | Aug 2013 | JP |
5274085 | Aug 2013 | JP |
2013-536081 | Sep 2013 | JP |
5300544 | Sep 2013 | JP |
2013187247 | Sep 2013 | JP |
5318748 | Oct 2013 | JP |
2013203630 | Oct 2013 | JP |
2013203631 | Oct 2013 | JP |
2013223886 | Oct 2013 | JP |
2013-245153 | Dec 2013 | JP |
2014-001102 | Jan 2014 | JP |
2014-037006 | Feb 2014 | JP |
2014-104484 | Jun 2014 | JP |
2014-117707 | Jun 2014 | JP |
2014-156289 | Aug 2014 | JP |
2015-030040 | Feb 2015 | JP |
2015-076115 | Apr 2015 | JP |
2015-091606 | May 2015 | JP |
2015-129076 | Jul 2015 | JP |
2015-519722 | Jul 2015 | JP |
2015-536896 | Dec 2015 | JP |
2015-543336 | Feb 2016 | JP |
2016-021077 | Feb 2016 | JP |
2016-503383 | Feb 2016 | JP |
6061193 | Jan 2017 | JP |
2012015366 | Feb 2002 | KR |
10-2002-0031573 | May 2002 | KR |
2009057161 | Jun 2009 | KR |
10-2009-0107417 | Oct 2009 | KR |
2010-0120297 | Nov 2010 | KR |
10-2011-0001948 | Jan 2011 | KR |
1020621 | Mar 2011 | KR |
10-2011-0120862 | Nov 2011 | KR |
2011-0121637 | Nov 2011 | KR |
10-2012-0000073 | Jan 2012 | KR |
1120471 | Mar 2012 | KR |
2012074508 | Jul 2012 | KR |
2012-0102675 | Sep 2012 | KR |
2013-0031377 | Mar 2013 | KR |
2013031380 | Mar 2013 | KR |
10-1259349 | Apr 2013 | KR |
1269474 | May 2013 | KR |
10-2013-0075651 | Jul 2013 | KR |
2013-0079395 | Jul 2013 | KR |
10-2013-0111269 | Oct 2013 | KR |
2013124646 | Nov 2013 | KR |
10-2013-0135873 | Dec 2013 | KR |
10-2013-0140561 | Dec 2013 | KR |
1344368 | Dec 2013 | KR |
2014022980 | Feb 2014 | KR |
2014022981 | Feb 2014 | KR |
2014064220 | May 2014 | KR |
10-2014-0112652 | Sep 2014 | KR |
10-2015-0009153 | Jan 2015 | KR |
2015-0016176 | Feb 2015 | KR |
2017998 | Jun 2018 | NL |
480550 | Mar 2002 | TW |
201041027 | Nov 2010 | TW |
201107253 | Mar 2011 | TW |
201139025 | Nov 2011 | TW |
1362370 | Apr 2012 | TW |
201226345 | Jul 2012 | TW |
201311592 | Mar 2013 | TW |
201331136 | Aug 2013 | TW |
201339111 | Oct 2013 | TW |
201433550 | Sep 2014 | TW |
201436968 | Oct 2014 | TW |
I468354 | Jan 2015 | TW |
I520804 | Feb 2016 | TW |
201612615 | Apr 2016 | TW |
9821154 | May 1998 | WO |
1999029243 | Jun 1999 | WO |
1999063900 | Dec 1999 | WO |
0051778 | Sep 2000 | WO |
0239063 | May 2002 | WO |
2003007370 | Jan 2003 | WO |
2004110693 | Dec 2004 | WO |
2006017583 | Feb 2006 | WO |
2006073098 | Jul 2006 | WO |
2007094160 | Aug 2007 | WO |
2007119740 | Oct 2007 | WO |
2008012186 | Jan 2008 | WO |
2008049389 | May 2008 | WO |
2008080182 | Jul 2008 | WO |
2008102848 | Aug 2008 | WO |
2008108332 | Sep 2008 | WO |
2008126742 | Oct 2008 | WO |
2008128612 | Oct 2008 | WO |
2009012913 | Jan 2009 | WO |
2009114372 | Sep 2009 | WO |
2009114375 | Sep 2009 | WO |
2009119694 | Oct 2009 | WO |
2010035736 | Apr 2010 | WO |
2010096359 | Aug 2010 | WO |
2010111609 | Sep 2010 | WO |
2010129459 | Nov 2010 | WO |
2011025908 | Mar 2011 | WO |
2011056781 | May 2011 | WO |
2012006736 | Jan 2012 | WO |
2012075072 | Jun 2012 | WO |
2012108052 | Aug 2012 | WO |
2012166753 | Dec 2012 | WO |
2013016157 | Jan 2013 | WO |
2013022148 | Feb 2013 | WO |
2013043173 | Mar 2013 | WO |
2013084877 | Jun 2013 | WO |
2013084879 | Jun 2013 | WO |
2013138802 | Sep 2013 | WO |
2013150990 | Oct 2013 | WO |
2013153195 | Oct 2013 | WO |
2014010490 | Jan 2014 | WO |
2014012125 | Jan 2014 | WO |
2014028022 | Feb 2014 | WO |
2014058663 | Apr 2014 | WO |
2014075995 | May 2014 | WO |
2014064492 | May 2014 | WO |
2014079478 | May 2014 | WO |
2014079570 | May 2014 | WO |
2014085663 | Jun 2014 | WO |
2014111385 | Jul 2014 | WO |
2014111794 | Jul 2014 | WO |
2014121261 | Aug 2014 | WO |
2014132493 | Sep 2014 | WO |
2014161534 | Oct 2014 | WO |
2014161535 | Oct 2014 | WO |
2015077113 | May 2015 | WO |
2015094898 | Jun 2015 | WO |
2015095151 | Jun 2015 | WO |
2015095088 | Jun 2015 | WO |
2015095090 | Jun 2015 | WO |
2015095146 | Jun 2015 | WO |
2015114032 | Aug 2015 | WO |
2015128833 | Sep 2015 | WO |
2015132008 | Sep 2015 | WO |
2015127583 | Sep 2015 | WO |
2016007843 | Jan 2016 | WO |
2016010991 | Jan 2016 | WO |
2016005455 | Jan 2016 | WO |
2016010954 | Jan 2016 | WO |
2016079275 | May 2016 | WO |
2016089799 | Jun 2016 | WO |
2016100954 | Jun 2016 | WO |
20160154284 | Sep 2016 | WO |
2017009149 | Jan 2017 | WO |
2017079570 | May 2017 | WO |
2017091529 | Jun 2017 | WO |
2017093393 | Jun 2017 | WO |
Entry |
---|
Arimoto, R. et al.; Imaging properties of axicon in a scanning optical system; Applied Optics; Nov. 1, 1991; pp. 6653-6657; vol. 31, No. 31; Optical Society of America. |
Betriebsanleitung; TruMicro 5000; Aug. 2011; pp. 1-4. |
Bhuyan, M. et al.; High aspect ratio nanochannel machining using single shot femtosecond Bessel beams; Applied Physics Letters; Aug. 23, 2010; pp. 081102-1-081102-3; vol. 97. |
Bhuyan, M. et al.; High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams; Optics Express; Jan. 18, 2010; pp. 566-574; vol. 18, No. 2; Optical Society of America. |
Cubeddu, R. et al.; A compact time-resolved reflectance system for dual-wavelength multichannel assessment of tissue absorption and scattering; SPIE Conference on Optical Tomography and Spectroscopy of Tissue III; San Jose, California; Jan. 1999; pp. 450-455; vol. 3597; SPIE. |
Cubeddu, R. et al.; Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance; Applied Optics; Jun. 1, 1999; pp. 3670-3680; vol. 38, No. 16; Optical Society of America. |
Ding, Z. et al.; High-resolution optical coherence tomography over a large depth range with an axicon lens; Optics Letters; Feb. 15, 2002; pp. 243-245; vol. 27, No. 4; Optical Society of America. |
EagleEtch; TheAnti-glare Glass for Technical Display Applications; Glass and Polymer Technologies; pp. 1-8 EuropTec USA Inc. |
Girkin, J. et al.; Macroscopic multiphoton biomedical imaging using semiconductor saturable Bragg reflector modelocked Lasers; SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers; San Jose, California; Jan. 1999; pp. 92-98; vol. 3616; SPIE. |
Glezer, E. et al.; Ultrafast-laser driven micro-explosions in transparent materials; Applied Physics Letters; 1997; pp. 882-884, vol. 71. |
Golub, I.; Fresnel axicon; Optics Letters; Jun. 15, 2006; pp. 1890-1892;. vol. 31, No. 12; Optical Society of America. |
Herman, P. et al.; Laser micromachining of ‘transparent’ fused silica with 1-ps pulses and pulse trains; SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers; San Jose, California; Jan. 1999; pp. 148-155; vol. 3616; SPIE. |
Kosareva, O. et al.; Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse; Quantum Electronics; 2005; pp. 1013-1014; vol. 35, No. 11; Kvantovaya Elektronika and Turpion Ltd. |
Kruger, J. et al.; Femtosecond-pulse visible laser processing of transparent materials; Applied Surface Science; 1996; pp. 430-438; Elsevier B.V. |
Kruger, J. et al.; Laser micromachining of barium aluminium borosilicate glass with pulse durations between 20 fs and 3 ps; Applied Surface Science; 1998; pp. 892-898; Elsevier B.V. |
Kruger, J. et al.; Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps; SPIE Proceedings; San Jose, California; Feb. 8, 1997; pp. 40-47 vol 2991; SPIE. |
Lapczyna, M. et al.; Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses; Applied Physics A Materials Science & Processing; Dec. 28, 1999; pp. S883-S886; vol. 69 (Suppl).; Springer-Verlag. |
Perry, M. et al.; Ultrashort-Pulse Laser Machining; Lawrence Livermore National Laboratory; Sep. 1998; pp. i-30. |
Perry, M. et al.; Ultrashort-Pulse Laser Machining; International Congress on Applications of Lasers and Electro-Optics; Orlando, Florida; Nov. 16-19, 1998; pp. 1-24. |
Perry, M. et al.; Ultrashort-pulse laser machining of dielectric materials; Journal of Applied Physics; May 1, 1999 pp. 6803-6810; vol. 85, No. 9; American Institute of Physics. |
Pharos High-power Femtosecond Laser System specification; Light Conversion; 2011; pp. 1-2. |
Polynkin, P. et al.; Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air; Optics Express; Jan. 19, 2009; pp. 575-584; vol. 17, No. 2; Optical Society of America. |
Serafetinides, A. et al.; Ultra-short pulsed laser ablation of polymers; Applied Surface Science; 2011; pp. 42-56; vol. 180; Elsevier Science B.V. |
Sundaram, S. et al.; Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses; Nature Materials; Dec. 2002; pp. 217-224; vol. 1; Nature Publishing Group. |
Vanagas, E. et al.; Glass cutting by femtosecond pulsed irradiation; Journal of Micro/Nanolithography, MEMS, and MOEMS; Mar. 31, 2004; pp. 1-18; vol. 3, Issue 2; SPIE. |
Varel, H. et al.; Micromachining of quartz with ultrashort laser pulses; Applied Physics A Materials Science & Processing; 1997; pp. 367-373; vol. 65. |
Yoshino, F. et al.; Micromachining with a High Repetition Rate Femtosecond Fiber Laser; JLMN—Journal of Laser Micro/Nanoengineering; 2008; pp. 157-162; vol. 3, No. 3. |
Zeng, D. et al.; Characteristic analysis of refractive axicon system for optical trepanning; Optical Engineering; Sep. 2006; pp. 094302-1-094302-10; vol. 45, No. 9. |
Zhang, G. et al.; Design of diffractive-phase axicon illuminated by a Gaussian-profile beam; Acta Physica Sinica; May 1996; pp. 354-364; vol. 5, No. 5; Chin. Phys. Soc. |
Abakians, H. et al.; Evaporative Cutting of a Semitransparent Body With a Moving CW Laser; Journal of Heat Transfer; Nov. 1988; pp. 924-930; vol. 110; ASME. |
Ahmed, F. et al.; Display glass cutting by femtosecond laser induced single shot periodic void array; Applied Physics A Material Science & Processing; Jun. 3, 2008; pp. 189-192; vol. 93; Springer-Verlag. |
Bagchi, S. et al.; Fast ion beams from intense, femtosecond laser irradiated nanostructured surfaces; Applied Physics B Lasers and Optics; Jun. 27, 2007; pp. 167-173; vol. 88; Springer-Verlag. |
Bhuyan, M.K. et al.; Femtosecond non-diffracting Bessel beams and controlled nanoscale ablation; ResearchGate Conference Paper; Sep. 2011; pp. 1-4. |
Bhuyan, M.K. et al.; Laser micro- and nanostructuring using femtosecond Bessel beams; The European Physical Journal Special Topics; Dec. 7, 2011; pp. 101-110; vol. 1999; EDP Sciences, Springer-Verlag. |
Bhuyan, M.K. et al.; Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams; Applied Physics Letters; Jan. 14, 2014; pp. 021107-1-021107-4; vol. 104; AIP Publishing LLC. |
Bhuyan, M.K. et al.; Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass; Nonlinear Optics and Applications IV; 2010; pp. 77281V-1-77281V-8; vol. 7728; SPIE. |
Case Design Guidelines for Apple Devices; Sep. 13, 2013; pp. 1-58; Apple Inc. |
Chiao, R. Y. et al.; Self-Trapping of Optical Beams; Physical Review Letters; Oct. 12, 1964; pp. 479-482; vol. 13, No. 15. |
Corning EAGLE AMLCD Glass Substrates Material Information; Apr. 2005; pp. MIE 201-1-MIE 201-3; Corning Incorporated. |
Corning 1737 AMLCD Glass Substrates Material Information; Aug. 2002; pp. MIE 101-1-MIE 101-3; Corning Incorporated. |
Couairon, A. et al.; Femtosecond filamentation in transparent media; ScienceDirect Physical Reports; Feb. 6, 2007; pp. 47-189; vol. 441; Elsevier B.V. |
Courvoisier, F. et al.; Applications of femtosecond Bessel beams to laser ablation; Applied Physics A Materials Science & Processing; Sep. 6, 2012; pp. 29-34; vol. 112; Springer-Veriag. |
Courvoisier, F. et al.; Surface nanoprocessing with nondiffracting femtosecond Bessel beams; Optics Letters; Oct. 15, 2009; pp. 3163-3165; vol. 34, No. 20; Optical Society of America. |
Dong, M. et al.; On-axis irradiance distribution of axicons illuminated by spherical wave; ScienceDirect Optics & Laser Technology; Sep. 2007; pp. 1258-1261; vol. 39; Elsevier Ltd. |
Duocastella, M. et al.; Bessel and annular beams for materials processing; Laser & Photonics Reviews; 2012; pp. 607-621; vol. 6, No. 5. |
Durnin, J.; Exact solutions for nondiffracting beams. I. The scalar theory; J. Opt. Soc. Am. A; Apr. 1987; pp. 651-654; vol. 4, No. 4; Optical Society of America. |
Eaton, S. et al.; Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate; Optics Express; Jun. 13, 2005; pp. 4708-4716; vol. 13, No. 12; Optical Society of America. |
Gattass, R. et al.; Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates; Optics Express; Jun. 12, 2006; pp. 5279-5284; vol. 14, No. 12; Optical Society of America. |
Gori, F. et al.; Analytical derivation of the optimum triplicator; Optics Communications; Dec. 1, 1998; pp. 13-16; vol. 157; Elsevier B.V. |
Honda, M. et al.; A Novel Polymer Film that Controls Light Transmission; Progress in Pacific Polymer Science 3; 1994; pp. 159-169; Springer-Verlag Berlin Heidelberg. |
Hu, Z. et al.; 5-Axis Laser Cutting Interference Detection and Correction Based on STL Model; Chinese Journal of Lasers; Dec. 2009; pp. 3313-3317; vol. 36, No. 12. |
Huang, Z. et al.; Laser etching of glass substrates by 1064 nm laser irradiation; Applied Physics A Materials Science & Processing; Jun. 6, 2008; pp. 159-163; vol. 93; Springer-Verlag. |
Juodkazis, S. et al.; Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures; Physical Review Letters; Apr. 28, 2006; pp. 166101-1-166101-4; vol. 96; The American Physical Society. |
Karlsson, S. et al.; The Technology of Chemical Glass Strengthening—A Review; Glass Technology—European Journal of Glass Science and Technology Part A; Apr. 2010; pp. 41-54; vol. 51, No. 2. |
Levy, U. et al.; Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography; Optics Letters; Mar. 15, 2010; pp. 880-882; vol. 35, No. 6; Optical Society of America. |
Liu, X. et al.; Laser Ablation and Micromachining with Ultrashort Laser Pulses; IEEE Journal of Quantum Electronics; Oct. 1997; pp. 1706-1716; vol. 33, No. 10; IEEE. |
Maeda, K. et al.; Optical performance of angle dependent light control glass; Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X; 1991; pp. 138-148; vol. 1536; SPIE. |
Mbise, G. et al.; Angular selective window coatings; theory and experiments; J. Phys. D: Appl. Phys.; 1997; pp. 2103-2122; vol. 30; IOP Publishing Ltd. |
McGloin, D. et al.; Bessel beams: diffraction in a new light; Contemporary Physics; Jan.-Feb. 2005; pp. 15-28; vol. 46; Taylor & Francis Ltd. |
Merola, F. et al.; Characterization of Bessel beams generated by polymeric microaxicons; Measurement Science and Technology; May 15, 2012; pp. 1-10; vol. 23; IOP Publishing Ltd. |
Mirkhalaf, M. et al.; Overcoming the biillleness of glass through bio-inspiration and micro-architecture; Nature Communications; Jan. 28, 2014; pp. 1-9; Macmillan Publishers Limited. |
Romero, L. et al.; Theory of optimal beam splitting by phase gratings. II. Square and hexagonal gratings; J. Opt. Soc. Am. A; Aug. 2007; pp. 2296-2312; vol. 24, No. 8; Optical Society of America. |
Salleo, A. et al.; Machining of transparent materials using an IR and UV nanosecond pulsed laser; Applied Physics A Materials Science & Processing; Sep. 20, 2000; pp. 601-608; vol. 71; Springer-Veriag. |
Serafetinides, A. et al.; Polymer Ablation by Ultra-Short Pulsed Lasers; Proceedings of SPIE; 2000; pp. 409-415. |
Shah, L. et al.; Micromachining with a High Repetition Rate Femtosecond Fiber Laser; JLMN—Journal of Laser Micro/Nanoengineering; Nov. 2008; pp. 157-162; vol. 3, No. 3. |
Shealy, D. et al.; Geometric optics-based design of laser beam shapers; Opt. Eng.; Nov. 2003; pp. 3123-3138; vol. 42, No. 11; Society of Photo-Optical Instrumentation Engineers. |
Yan, Y. et al.; Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes; Optics Letters; Aug. 15, 2012; pp. 3294-3296; vol. 37, No. 16; Optical Society of America. |
Abramov, A. et al.; Laser separation of chemically strengthened glass; ScienceDirect Physics Procedia; 2010; pp. 285-290; vol. 5; Elsevier B.V. |
Stoian, R. et al.; Spatial and temporal laser pulse design for material processing on ultrafast scales; Applied Physics A Materials Science & Processing; Jan. 1, 2014; pp. 119-127; vol. 114; Springer-Veriag Berlin Heidelberg. |
Thiele, E.; Relation between Catalytic Activity and Size of Particle; Industrial and Engineering Chemistry; Jul. 1939; pp. 916-920; vol. 31, No. 7. |
Toytman, I. et al.; Optical breakdown in transparent media with adjustable axial length and location; Optic Express; Nov. 22, 2010; pp. 24688-24698; vol. 18, No. 24; Optical Society of America. |
Velpula, P. et al.; Ultrafast imaging of free carriers: controlled excitation with chirped ultrafast laser Bessel beams; Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XIX; Proc. of SPIE; 2014; pp. 896711-1-896711-8; vol. 8967; SPIE. |
Nang, Z. et al.; Investigation on CO2 laser irradiation inducing glass strip peeling for microchannel formation; Biomicrofluidics; Mar. 12, 2012; pp. 012820-1-012820-12; vol. 6; American Institute of Physics. |
Ra & RMS: Calculating Surface Roughness; Harrison Eelectropolishing; 2012. |
Wu, W. et al.; Optimal Orientation of the Cutting Head for Enhancing Smoothness Movement in Three-Dimensional Laser Cutting; Chinese Journal of Lasers; Jan. 2013; pp. 0103005-1-0103005-7, vol. 10, No. 1. |
GT ASF Grown Sapphire Cover and Touch Screen Material; www.gtat.com; 2012; pp. 1-2; GTAT Corporation. |
Xu, H. et al.; Optimization of 3D laser cutting head orientation based on minimum energy consumption; Int J Adv Manuf Technol; Jun. 28, 2014; pp. 1283-1291; vol. 74; Springer-Verlag London. |
Kerr. “Filamentary tracks formed in transparent optical glass by laser beam self-focusing. II. Theoretical Analysis” Physical Review A. 4(3) 1971, pp. 1196-1218. |
“Aviation Manufacturing Technology”; Beijing Aviation Manufacturing Engineering Research Institute Aviation Industry Press; (2013) p. 147. |
“EagleEtch” Product Brochure, EuropeTec USA Inc., pp. 1-8, Aug. 1, 2014. |
“TruMicro 5000” Product Manual, Trumpf Laser GmbH +Co.KG, pp. 1-4, Aug. 2011. |
Amended claims 1,2 Amended Claims (Nov. 21, 2018) GMvp4 p. 1. |
Analyse of claims 1-11 GMvP7 p. 1. |
Betriebsanleitung TruMicro Series 5000, “Ausgabe May 2008 Betriebsanleitung TruMicro Series 5000_Anlage E2a-1.pdf”. |
Case Design Guidelines for Apple Devices Release R5 (https://web.archive.org/web/20131006050442/https://developer.apple.com/resources/cases/Case-Design-Guidelines.pdf; archived on Oct. 6, 2013). |
Case study: Simulation einer Beschneidung des Fernfelds eines Bessel-GauB-Strahls GMvP6 p. 1. |
Claim 1—published on Nov. 20, 2019 EP947: Anspruch 1—erteilt am Nov. 20, 2019 GMvp5 p. 1. |
Coming Inc., Coming Eagle2000TM AMLCD Glass Substrates Material Information, issued Apr. 2005. (Year: 2005). |
D5 Claims GMvP2 p. 1. |
D6 Amended claim 1 EP947: Anspruch 1—geandert am Nov. 21, 2018 GMvp3 p. 1. |
European Patent Application No. 15750162.8 Communication under Rule 71(3) EPC dated Dec. 11, 2018; 6 Pages; European Patent Office. |
European Patent Application No. 15750162.8 Communication under Rule 71(3) EPC dated Jul. 27, 2017; 6 Pages; European Patent Office. |
European Patent Application No. 15750162.8 Decision to grant a European patent dated Jan. 8, 2020; 2 Pages; European Patent Office. |
European Patent Application No. 15750162.8 Office Action dated Feb. 20, 2018; 4 Pages; European Patent Office. |
European Patent Application No. 19172136.4 Office Action dated Nov. 5, 2020; 5 Pages; European Patent Office. |
Extended European Search Report and Search Opinion; 19172136.4; dated Nov. 13, 2019; 11 pages; European Patent Office. |
Faccio et al. “Kerr-induced spontaneous Bessel beam formation in the regime of strong two-photon absorption” Optics Express 16(11) 2008, pp. 8213-8218. |
Flamm et al., “Higher-order Bessel-like Beams for Optimized Ultrafast Processing of Transparent Materials” GMvP 19. |
Flamm et al., “Higher-order Bessel-like Beams for Optimized Ultrafast Processing of Transparent Materials” GMvP 20. |
Gollier et al., U.S. Appl. No. 62/024,122, “Systems and Methods for Processing Transparent Materials Using Adjustable Laser Beam Focal Lines”, filed Jul. 14, 2014., U.S. Appl. No. 62/024,122. |
High aspect ratio machining . . . Anlage E8-1.pdf. |
http://www.gtat.com/Collateral/Documents/Engltsh-US/Sapphire/12-21-12_GT_TnuchScreen_ V3_web.pdf. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2015/040259; dated Mar. 8, 2016; 22 Pages; European Patent Office. |
Merkmalsgliederung Patentanspruch 1 des Streitpatents, “Merkmalsgliederung Patentanspruch 1 _Anlage E15-1.pd1”. |
Merkmalsgliederung Patentanspruch 12 des Streitpatents,“Merkmalsgliederung Patentanspruch 12 _Anlage E16-1.pdf”. |
Norm: DI N EN ISO 11146-2, 2005 DIN EN ISO 11146-2 May 2, 2005 GMvP 21 pages. |
Norm: DIN EN ISO 11146-1, 2005 GMVP DIN EN ISO 11146:1999-09, Apr. 1, 2005 GMvP 23 pages. |
Norm: ISO/TR 11146-3 , Technical Report First edition GMvP Norm-TR 1 Pages. |
Polesana (Polesana, P., Dubietis, A., Porras, A. Kucinskas, E. Faccio, D. Couairon, A. and DiTrapani, P.,, “Near-field dynamics of ultrashort pulsed Bessel beams in media with Kerr nonlinearity”, Physical Review E 73, 056612 (2006)). |
Product Data Sheet for Corning Eagle XG Slim Glass, Issued Aug. 2013; 2 Pages. |
Product data sheet for Corning Eagle XR glass substrate, issued Jan. 2006 (Year: 2006). |
Produktbeschreibung Pharos Laser vom Apr. 18, 2011, “Pharos_2011 Anlage E 1 a-1. pdf”. |
U.S. Appl. No. 62/208,282, filed Aug. 21, 2015. |
Sukumaran, “Design, Fabrication, and Characterization of Ultrathin 3-D Glass Interposers with Through-Package-Vias at Same Pitch as TSVs in Silicon.” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, No. 5: 786-795, (2014.). |
Sukumaran, “Through-Package—via Formation and Metallization of Glass Interposers.”, Electronic Components and Technology Conference: 557-563, (2010.). |
U.S. Appl. No. 62/137,443, “Laser Cutting and Processing of Display Glass Compositions”, filed Mar. 24, 2015., U.S. Appl. No. 62/137,443. |
Unichains, Engineering Manual: Innovative Belt & Chain solutions for every industry and application, available publically at least as of Jun. 1, 2016 as evidenced at the following hyperlink: https://web.archive.org/web/20160601000000/http://www.unichains.com/. |
What is the difference between Ra and RMS?; Harrison Electropolishing LP; (http://www.harrisonep.com/electropolishingra.html), Accessed Aug. 8, 2016. |
ICNIRP, Infrared Radiation, https://www.icnirp.org/en/frequencies/infrared/index.html#:˜:text=Wavelength, accessed Apr. 7, 2021 (Year: 2014). |
Liu,Xiuwen, “Graphical Audio-Visual Technology Tips”, Apr. 30, 2006, pp. 58-59. (Original Document Only). |
Tian e al., “Development status and Prospects of TFT-LCD Substrate Glass Chemical Composition”, vol. 29, No. 6, 2010, pp. 1348-1362 (English Abstract Submitted). |
Tsai et al. ,“Internal modification for cutting transparent glass using femtosecond Bessel beams”, Optical Engineering, Soc. of Photo-optical Instrumentation Engineering, Bellingham, vol. 53, May 2014, p. 51503. |
Tymon Barwicz, et al., “Assembly of Mechanically Compliant Interfaces between Optical Fibers and Nanophotonic Chips”, Tymon Barwicz (IBM), et al., Electronic Components & Technology Conference, 2014,. 978-1799-2407-3, 2014 IEEE, pp. 179-185. |
Chinese Patent Application No. 201780065972.0, Office Action dated Apr. 15, 2022, 14 pages (6 pages of English Translation and 8 pages of Original Document), Chinese Patent Office. |
Japanese Patent Application No. 2020-116177, Decision to Grant, dated Jul. 6, 2022, 5 pages (2 pages of English Translation and 3 pages of Original Copy); Japanese Patent Office. |
Japanese Patent Application No. 2020-116177, Office Action dated Aug. 3, 2021, 10 pages (5 pages of English Translation and 5 pages of Original Document), Japanese Patent Office. |
Number | Date | Country | |
---|---|---|---|
20170189991 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62024122 | Jul 2014 | US |