The present disclosure is directed generally to systems and methods for producing asynchronous neural responses, such as for the treatment of pain and/or other disorders.
Neurological stimulators have been developed to treat pain, movement disorders, functional disorders, spasticity, cancer, cardiac disorders, and various other medical conditions. Implantable neurological stimulation systems generally have an implantable pulse generator and one or more leads that deliver electrical pulses to neurological tissue or muscle tissue. For example, several neurological stimulation systems for spinal cord stimulation (SCS) have cylindrical leads that include a lead body with a circular cross-sectional shape and one or more conductive rings spaced apart from each other at the distal end of the lead body. The conductive rings operate as individual electrodes and in many cases, the SCS leads are implanted percutaneously through a large needle inserted into the epidural space, with or without the assistance of a stylet.
Once implanted, the pulse generator applies electrical pulses to the electrodes, which in turn modify the function of the patient's nervous system, such as altering the patient's responsiveness to sensory stimuli and/or altering the patient's motor-circuit output. In pain treatment, the pulse generator applies electrical pulses to the electrodes, which in turn can generate sensations that mask or otherwise alter the patient's sensation of pain. For example, in many cases, patients report a tingling or paresthesia that is perceived as more pleasant and/or less uncomfortable than the underlying pain sensation. While this may be the case for many patients, many other patients may report less beneficial effects and/or results. Accordingly, there remains a need for improved techniques and systems for addressing patient pain.
A. Overview
The present disclosure is directed generally to systems and methods for producing asynchronous neural output or responses, such as to treat pain. Specific details of certain embodiments of the disclosure are described below with reference to methods for stimulating a target neural population or site of a patient, and associated implantable structures for providing the stimulation. Although selected embodiments are described below with reference to stimulating the dorsal root and/or other regions of the spinal column to control pain, the leads may in some instances be used for stimulating other neurological structures, and/or other tissue (e.g., muscle tissue). Some embodiments can have configurations, components or procedures different than those described in this section, and other embodiments may eliminate particular components or procedures. A person of ordinary skill in the relevant art, therefore, will understand that the invention may have other embodiments with additional elements, and/or may have other embodiments without several of the features shown and described below with reference to
A representative method in accordance with a particular embodiment for treating a patient's pain includes selecting a target stimulation frequency that is above a threshold frequency. The threshold frequency corresponds to a refractory period for neurons of a target sensory neural population. The method can further include producing a patient sensation of paresthesia by directing an electrical signal to multiple sensory neurons of the target sensory neural population at the target stimulation frequency. Individual neurons of the sensory neural population can complete corresponding individual refractory periods at different times, resulting in an asynchronous sensory neuron response to the electrical signals. In at least some embodiments, it is expected that this method can produce an enhanced effect for the patient, e.g. a smoother and/or a more pleasant sensation than that resulting from standard spinal cord stimulation.
In a further particular embodiment, directing the electrical signal in accordance with the foregoing method can include initiating the asynchronous sensory neuron response by directing to the target sensory neural population a generally constant stream of pulses at a frequency greater than the threshold frequency. The duration of the asynchronous sensory response can then be extended (e.g., beyond an initial period) by directing multiple electrical signals to the target sensory neural population. These signals can include a first electrical signal having pulses delivered at a first frequency that is at or above the threshold frequency, and a second electrical signal having pulses delivered at a second frequency, also at or above the threshold frequency. The pulses of the first and second signals can be interleaved, with individual pulses of the first electrical signal being followed by individual pulses of the second electrical signal, and spaced apart from the individual pulses of the first electrical signal by a first time interval less than the refractory period. Individual pulses of the second electrical signal are followed by individual pulses of the first electrical signal, and are spaced apart from the individual pulses of the first electrical signal by a second time interval that is also less than the refractory period.
B. Embodiments of Methods for Applying Neural Stimulation, and Associated Systems
The pulse generator 101 can transmit signals to the signal delivery element 109 that up-regulate (e.g. stimulate) and/or down-regulate (e.g. block) target nerves. Accordingly, the pulse generator 101 can include a machine-readable (e.g., computer-readable) medium containing instructions for generating and transmitting suitable therapy signals. The pulse generator 101 and/or other elements of the system 100 can include one or more processors, memories and/or input/output devices. The pulse generator 101 can include multiple portions, elements, and/or subsystems (e.g., for directing signals in accordance with multiple signal delivery parameters), housed in a single housing, as shown in
In some embodiments, the pulse generator 101 can obtain power to generate the therapy signals from an external power source 103. The external power source 103 can transmit power to the implanted pulse generator 101 using electromagnetic induction (e.g., RF signals). For example, the external power source 103 can include an external coil 104 that communicates with a corresponding internal coil (not shown) within the implantable pulse generator 101. The external power source 103 can be portable for ease of use.
In another embodiment, the pulse generator 101 can obtain the power to generate therapy signals from an internal power source, in addition to or in lieu of the external power source 103. For example, the implanted pulse generator 101 can include a non-rechargeable battery or a rechargeable battery to provide such power. When the internal power source includes a rechargeable battery, the external power source 103 can be used to recharge the battery. The external power source 103 can in turn be recharged from a suitable power source (e.g., conventional wall power).
In still further embodiments, an external programmer (not shown) can communicate with the implantable pulse generator 101 via electromagnetic induction. Accordingly, a practitioner can update the therapy instructions provided by the pulse generator 101. Optionally, the patient may also have control over at least some therapy functions, e.g., starting and/or stopping the pulse generator 101.
Process portion 273 includes determining a threshold frequency based at least on part on the refractory period. Generally, process portion 273 includes taking the inverse of the refractory period to determine the threshold frequency. Process portion 274 can include selecting a target stimulation frequency that is above the threshold frequency. For example, the target stimulation frequency can be selected so that neighboring pulses are spaced apart by less than the total refractory period, but more than the absolute refractory period. In other embodiments, the target stimulation frequency can be selected so that neighboring pulses are spaced apart by less than the absolute refractory period. The degree to which the target stimulation frequency exceeds the threshold frequency can be selected based (at least in part) upon factors that include the nature of the target sensory neural population, patient-specific feedback, and/or others. In particular embodiments, the target stimulation frequency can be about an order of magnitude (e.g., about a factor of 10) or more above the threshold frequency. In other embodiments, the target stimulation frequency can be double the threshold frequency, or another multiple of the threshold frequency greater than or less than 2, but greater than 1. For example, in a particular embodiment, the absolute refractory period for Aβ fibers has a value of from about 1 msec. to about 3 msec. (and a relative refractory period of about 1-2 msec.), corresponding to a frequency range of about 200 Hz-1,000 Hz. The corresponding target stimulation frequency can have a value of 2,000 Hz, 3,000 Hz, 5,000 Hz, 8,000 Hz or 10,000 Hz. In a further particular embodiment, it is expected that frequencies between 3,000 Hz and 10,000 Hz will produce enhanced patient benefits. These values are higher than the standard spinal cord stimulation frequency, which is generally from 2 to 1,500 Hz. The particular value of the frequency selected for a given patient can depend at least in part on patient feedback (e.g., which frequency provides the most pleasant sensation), and/or a target system power requirement, with higher frequencies generally corresponding to higher power requirements. In any of these embodiments, as a result of the selected frequency being greater than the threshold frequency, individual pulses of the electrical signal will be directed both to sensory neurons that are in refractory, and sensory neurons that are in refractory but excitable. In process portion 275, a stimulation device (e.g., a spinal cord stimulation device) is programmed to deliver the electrical signal at the target stimulation frequency.
As is also shown in
In some cases, it may be desirable to reduce the power required to deliver the electrical signal, without significantly reducing the associated asynchronous neural response. One approach to achieving this result is to deliver multiple electrical signals, for example, two electrical signals, that together produce an asynchronous neural response, but with less power than is required to produce the continuous stream of pulses shown in
Process portion 572 includes selecting corresponding parameters for the second electrical signal. Process portion 573 includes selecting a phase shift or offset between pulses of the first signal and pulses of the second signal. In process portion 574, the first and second electrical signals are directed to a target neural population. Optionally, the process 570 can include varying the signal delivery parameters (process portion 575), for example, by varying the first interpulse interval with a constant phase shift between pulses of the first signal and pulses of the second signal, or by varying the phase shift with a constant first interpulse interval. Examples of representative wave forms selected in accordance with the process 570 are described below with reference to
In a particular embodiment, each second cycle 632b of the second signal 630b follows a corresponding first cycle 632a of the first signal 630a, and is spaced apart from the first cycle 632a by an offset or phase shift O. In particular embodiments, the offset O can have a constant value, so that the first and second frequencies F1, F2 are equal. In other embodiments, the offset O can vary, which can prolong the effectiveness of the therapy. It is believed that one possible mechanism by which the therapy effectiveness can be prolonged is by reducing the patient's maladaptive response, e.g., by reducing a tendency for the patient's central nervous system to lessen its response to the effects of a non-varying signal over time. In still further embodiments, it is expected that the practitioner can reduce the patient's maladaptive response without varying signal delivery parameters, and/or via a treatment regimen that includes more than two electrical signals or only a single electrical signal. For example, in at least some embodiments, applying a single, constant frequency signal (e.g., as shown in
The combination of the first signal 630a and the second signal 630b produces a combined period PC corresponding to the first period P1 plus the offset O. In a particular aspect of this embodiment, the combined period PC is selected to be smaller than the refractory period RP. However, the first frequency F1 may be selected to be slower than the corresponding total refractory period. If the first signal 630a alone were provided to the patient in accordance with these parameters, it would not likely produce an asynchronous neural response. However, the second signal 630b can supplement the effects of the first signal 630a. In particular, the second pulses 631b are delivered in a manner that activates neurons that may come out of their refractory periods after the preceding first pulse 631a. This is expected to be the case because the combined period PC is less than the refractory period RP. For example, the combined period PC can be a suitable fraction (e.g., one-half or one-third) of the total refractory period RP. These values can be less than the total refractory period, but greater than the absolute refractory period. In a particular embodiment, the total refractory period RP can have a value of about 2-4 msec., and the first and second frequencies F1, F2 can have a value of from about 250 Hz to about 500 Hz. The combined period PC can have a value of from about 50 μsec. to about 300 μsec. and in a particular embodiment, about 100 μsec.
In operation, the first and second signals 630a, 630b may be applied to the patient after the constant pulses described above with reference to
In at least some embodiments, the amplitude of the second signal 630b may be greater than that of the first signal 630a. It is expected that the increased amplitude of the second signal 630b may be more effective at activating neurons that are in a relative refractory state rather than an absolute refractory state, thus reducing the number of neurons available to fire during the quiescent period Q. In general, it is expected that using two signals to achieve the foregoing pulse-to-pulse amplitude variation is more readily achievable with two overlaid signals than with a single signal, at least for particular stimulation parameters (e.g., at high frequencies). Paired signals with different amplitudes can also more readily activate smaller Aβ fibers. In general, the signals are preferentially directed to Aβ fibers over C fibers. In general, the signals are also preferentially directed so as to avoid triggering a muscle response. In addition to, or in lieu of, the increased amplitude, the second signal 630b can have pulses with a second pulse width PW2 greater than the first pulse width PW1. The particular values of the signal amplitude, pulse width and/or other parameters can be selected based at least in part on patient feedback. In any of these embodiments, this arrangement can further extend the asynchronous neural response established by the initial constant pulse pattern described above.
In other embodiments, the patient can receive stimulation from more than two signals. For example, as shown in
The first portion 111a can include signal delivery electrodes 112 that have an annular or ring shape and are exposed at the outer circumferential surface of the first portion 111a, as shown in
The second portion 111b can include the connection terminals 113 described above, and can have an overall diameter D2. In a particular embodiment, the diameter D2 of the second portion of 111b can be approximately the same as the diameter D1 of the first portion of 111a. The second portion 111b can include a second fixation device 115b, for example, one or more sutures 106 that secure or at least partially secure the second portion 111b in position. Each of the first and second portions 111a, 111b can include rounded, convex external surfaces 105 (e.g., at the proximal end of the first portion 111a and/or at the distal end of the second portion 111b) that are exposed to patient tissue and, due to the rounded shapes of these surfaces, facilitate moving the lead body 110 in the patient's body. The third portion 111c can have a diameter D3 that is less than the diameters D1, D2 of the first and second portions 111a, 111b, and a stiffness less than a stiffness of the first and second portions 111a, 111b. Accordingly, the third portion 111c can be flexible enough to allow the second portion 111b to move without disturbing the position of the first portion 111a. Further details of the lead body 110 shown in
In a particular embodiment, the practitioner can use an automated (e.g., computer-implemented) or semi-automated feedback technique to select the particular frequency or frequencies of signals applied to a patient. In one aspect of this embodiment, treatment leads can be placed at any of the locations shown in
In other embodiments, other aspects of the foregoing operation can be automated. For example, the system can automatically identify a baseline signal strength corresponding to a synchronous response. In a particular embodiment, the baseline signal strength can be the signal strength recorded when the patient is stimulated at 40 Hz or another low frequency. As the system automatically increases the stimulation frequency to identify an appropriate frequency for eliciting an asynchronous response, it compares the recorded signal strengths with the baseline level. If the recorded signal strength is equal to or higher than the baseline level, the patient response is identified as a synchronous response. If the recorded signal strength is lower than the baseline level, then the patient response is identified as asynchronous or transitioning to asynchronous. At this point, the system can automatically vary the frequency (increasing and/or decreasing) in a closed loop manner to identify a target frequency (e.g., an optimum frequency) that the patient will receive during therapy. In a particular embodiment, the target frequency is the frequency that produces the most asynchronous patient response.
One feature of many of the foregoing embodiments described above is the application of one or more electrical signals to the patient's neural tissue that produce an asynchronous response. As described above, it is expected that an asynchronous response will produce a smoother or otherwise more pleasant patient sensation than standard spinal cord stimulation, while still masking or otherwise beneficially altering pain signals. In addition, particular embodiments are expected to reduce power consumption by providing intermittent or otherwise spaced-apart signals that are nevertheless timed to trigger an asynchronous patient response. By reducing the power consumption of the device, these embodiments can decrease the frequency with which the patient recharges the implanted stimulator, and/or decrease the frequency with which a non-rechargeable battery within the implanted stimulation must be replaced. The intermittent signal may also produce other patient benefits, possibly including an increase in the term over which the therapy is effective.
From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications may be made without deviating from the invention. For example, the wave forms of the electrical signals applied to the patient may have characteristics other than those specifically shown and described above. In a particular example, the wave forms may include pulses other than square wave pulses. In other embodiments, the leads or other signal delivery devices may have configurations other than those specifically shown and described above. Furthermore, while certain embodiments were described in the context of spinal cord stimulation, generally similar techniques may be applied to other neural populations in other embodiments using similar and/or modified devices. For example, stimulation signals selected to produce an asynchronous patient response can be applied subcutaneously to peripheral nerves. Such nerves can include occipital nerves, which can be stimulated to address headaches and/or facial and/or neck pain, and/or peripheral nerves at the lower back to address lower back pain. In still further embodiments, the stimulation signals can be applied to neural populations to produce an asynchronous response that addresses patient conditions other than pain. In another embodiment, such signals can be applied to the autonomic nervous system, e.g., to the splenic nerve to address obesity. In any of the foregoing cases, the refractory periods and threshold frequencies may differ from those associated with spinal cord stimulation, but the methodologies used to select the target stimulation frequency can be generally the same or similar.
Certain aspects of the invention described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, a given signal delivery protocol may include different signals at different times during a treatment regimen, with the signals having characteristics generally similar to any of those described above with reference to
This is a continuation application of U.S. patent application Ser. No. 13/857,960, filed Apr. 5, 2013, entitled SYSTEMS AND METHODS FOR PRODUCING ASYNCHRONOUS NEURAL RESPONSES TO TREAT PAIN AND/OR OTHER PATIENT CONDITIONS, which is a continuation application of U.S. patent application Ser. No. 13/544,727, filed Jul. 9, 2012, entitled SYSTEMS AND METHODS FOR PRODUCING ASYNCHRONOUS NEURAL RESPONSES TO TREAT PAIN AND/OR OTHER PATIENT CONDITIONS, which is a continuation application of U.S. patent application Ser. No. 12/362,244, filed Jan. 29, 2009, entitled SYSTEMS AND METHODS FOR PRODUCING ASYNCHRONOUS NEURAL RESPONSES TO TREAT PAIN AND/OR OTHER PATIENT CONDITIONS, which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1597061 | Cultra | Aug 1926 | A |
2622601 | Nemec | Dec 1952 | A |
3195540 | Waller | Jul 1965 | A |
3646940 | Timm et al. | Mar 1972 | A |
3817254 | Maurer | Jun 1974 | A |
3822708 | Zilber | Jul 1974 | A |
3893463 | Williams | Jul 1975 | A |
4014347 | Halleck et al. | Mar 1977 | A |
4023574 | Nemec | May 1977 | A |
4055190 | Tany | Oct 1977 | A |
4155366 | Di Mucci | May 1979 | A |
4289136 | Rienzo, Sr. | Sep 1981 | A |
4315503 | Ryaby et al. | Feb 1982 | A |
4414986 | Dickhudt et al. | Nov 1983 | A |
4441498 | Nordling | Apr 1984 | A |
4459989 | Borkan | Jul 1984 | A |
4535777 | Castel | Aug 1985 | A |
4541432 | Molina-Negro et al. | Sep 1985 | A |
4608985 | Crish et al. | Sep 1986 | A |
4649935 | Charmillot et al. | Mar 1987 | A |
4702254 | Zabara | Oct 1987 | A |
4764132 | Stutz, Jr. | Aug 1988 | A |
4841973 | Stecker | Jun 1989 | A |
RE33420 | Sussman et al. | Nov 1990 | E |
5002053 | Garcia-Rill et al. | Mar 1991 | A |
5188104 | Wernicke et al. | Feb 1993 | A |
5330515 | Rutecki et al. | Jul 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5417719 | Hull et al. | May 1995 | A |
5501703 | Holsheimer et al. | Mar 1996 | A |
5514175 | Kim et al. | May 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5562717 | Tippey et al. | Oct 1996 | A |
5643330 | Holsheimer et al. | Jul 1997 | A |
5702428 | Tippey et al. | Dec 1997 | A |
5707396 | Benabid | Jan 1998 | A |
5716377 | Rise | Feb 1998 | A |
5733322 | Starkebaum | Mar 1998 | A |
5776170 | MacDonald et al. | Jul 1998 | A |
5792187 | Adams | Aug 1998 | A |
5830151 | Hadzic et al. | Nov 1998 | A |
5853373 | Griffith et al. | Dec 1998 | A |
5893883 | Torgerson et al. | Apr 1999 | A |
5895416 | Barreras | Apr 1999 | A |
5925070 | King et al. | Jul 1999 | A |
5938690 | Law | Aug 1999 | A |
5948007 | Starkebaum et al. | Sep 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
5995872 | Bourgeois | Nov 1999 | A |
6002964 | Feler et al. | Dec 1999 | A |
6014588 | Fitz | Jan 2000 | A |
6027456 | Feler et al. | Feb 2000 | A |
6035657 | Dobak, III et al. | Mar 2000 | A |
6104957 | Alo et al. | Aug 2000 | A |
6161044 | Silverstone | Dec 2000 | A |
6167305 | Cammilli et al. | Dec 2000 | A |
6167311 | Rezai | Dec 2000 | A |
6176242 | Rise | Jan 2001 | B1 |
6233488 | Hess | May 2001 | B1 |
6238423 | Bardy | May 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6319241 | King et al. | Nov 2001 | B1 |
6341236 | Osorio et al. | Jan 2002 | B1 |
6356786 | Rezai et al. | Mar 2002 | B1 |
6381496 | Meadows et al. | Apr 2002 | B1 |
6393325 | Mann et al. | May 2002 | B1 |
6393328 | McGraw et al. | May 2002 | B1 |
6397108 | Camps et al. | May 2002 | B1 |
6405079 | Ansarinia | Jun 2002 | B1 |
6421566 | Holsheimer | Jul 2002 | B1 |
6438423 | Rezai et al. | Aug 2002 | B1 |
6440090 | Schallhorn | Aug 2002 | B1 |
6487446 | Hill et al. | Nov 2002 | B1 |
6505078 | King et al. | Jan 2003 | B1 |
6510347 | Borkan | Jan 2003 | B2 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6571127 | Ben-Haim et al. | May 2003 | B1 |
6584358 | Carter et al. | Jun 2003 | B2 |
6587727 | Osorio et al. | Jul 2003 | B2 |
6600954 | Cohen et al. | Jul 2003 | B2 |
6609030 | Rezai et al. | Aug 2003 | B1 |
6609031 | Law et al. | Aug 2003 | B1 |
6610713 | Tracey | Aug 2003 | B2 |
6622047 | Barrett et al. | Sep 2003 | B2 |
6622048 | Mann | Sep 2003 | B1 |
6659968 | McClure | Dec 2003 | B1 |
6671556 | Osorio et al. | Dec 2003 | B2 |
6675046 | Holsheimer | Jan 2004 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6712753 | Manne | Mar 2004 | B2 |
6714822 | King et al. | Mar 2004 | B2 |
6721603 | Zabara et al. | Apr 2004 | B2 |
6754539 | Erickson | Jun 2004 | B1 |
6761715 | Carroll et al. | Jul 2004 | B2 |
6795737 | Gielen et al. | Sep 2004 | B2 |
6871090 | He et al. | Mar 2005 | B1 |
6885888 | Rezai | Apr 2005 | B2 |
6892097 | Holsheimer | May 2005 | B2 |
6895280 | Meadows et al. | May 2005 | B2 |
6907295 | Gross et al. | Jun 2005 | B2 |
6920357 | Osorio et al. | Jul 2005 | B2 |
6923784 | Stein | Aug 2005 | B2 |
6928320 | King | Aug 2005 | B2 |
6941173 | Nachum | Sep 2005 | B2 |
6950707 | Whitehurst | Sep 2005 | B2 |
6961618 | Osorio et al. | Nov 2005 | B2 |
6968237 | Doan et al. | Nov 2005 | B2 |
6990376 | Tanagho et al. | Jan 2006 | B2 |
7024246 | Acosta et al. | Apr 2006 | B2 |
7024247 | Gliner et al. | Apr 2006 | B2 |
7047079 | Erickson | May 2006 | B2 |
7082333 | Bauhahn et al. | Jul 2006 | B1 |
7117034 | Kronberg | Oct 2006 | B2 |
7146224 | King | Dec 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7158826 | Kroll et al. | Jan 2007 | B1 |
7162303 | Levin et al. | Jan 2007 | B2 |
7167750 | Knudson et al. | Jan 2007 | B2 |
7174215 | Bradley | Feb 2007 | B2 |
7177690 | Woods et al. | Feb 2007 | B2 |
7177691 | Meadows et al. | Feb 2007 | B2 |
7177702 | Wallace et al. | Feb 2007 | B2 |
7180760 | Varrichio et al. | Feb 2007 | B2 |
7181289 | Pflueger et al. | Feb 2007 | B2 |
7212865 | Cory | May 2007 | B2 |
7225016 | Koh | May 2007 | B1 |
7225035 | Brabec et al. | May 2007 | B2 |
7231254 | DiLorenzo | Jun 2007 | B2 |
7236822 | Dobak, III | Jun 2007 | B2 |
7239912 | Dobak, III | Jul 2007 | B2 |
7242984 | DiLorenzo | Jul 2007 | B2 |
7252090 | Goetz | Aug 2007 | B2 |
7260436 | Kilgore et al. | Aug 2007 | B2 |
7266412 | Stypulkowski | Sep 2007 | B2 |
7276057 | Gerber | Oct 2007 | B2 |
7288062 | Spiegel | Oct 2007 | B2 |
7313440 | Miesel | Dec 2007 | B2 |
7324852 | Barolat et al. | Jan 2008 | B2 |
7326181 | Katims | Feb 2008 | B2 |
7333857 | Campbell | Feb 2008 | B2 |
7337005 | Kim et al. | Feb 2008 | B2 |
7337006 | Kim et al. | Feb 2008 | B2 |
7346398 | Gross et al. | Mar 2008 | B2 |
7349743 | Tadlock | Mar 2008 | B2 |
7359751 | Erickson et al. | Apr 2008 | B1 |
7363076 | Yun et al. | Apr 2008 | B2 |
7386341 | Hafer et al. | Jun 2008 | B2 |
7389145 | Kilgore et al. | Jun 2008 | B2 |
7393351 | Woloszko et al. | Jul 2008 | B2 |
7433734 | King | Oct 2008 | B2 |
7444183 | Knudson et al. | Oct 2008 | B2 |
7447546 | Kim et al. | Nov 2008 | B2 |
7450993 | Kim et al. | Nov 2008 | B2 |
7463927 | Chaouat | Dec 2008 | B1 |
7483747 | Gliner | Jan 2009 | B2 |
7489969 | Knudson et al. | Feb 2009 | B2 |
7493172 | Whitehurst et al. | Feb 2009 | B2 |
7496404 | Meadows et al. | Feb 2009 | B2 |
7502651 | Kim et al. | Mar 2009 | B2 |
7502652 | Gaunt et al. | Mar 2009 | B2 |
7571007 | Erickson et al. | Aug 2009 | B2 |
7580753 | Kim et al. | Aug 2009 | B2 |
7599737 | Yomtov et al. | Oct 2009 | B2 |
7613520 | De Ridder | Nov 2009 | B2 |
7634317 | Ben-David et al. | Dec 2009 | B2 |
7676269 | Yun et al. | Mar 2010 | B2 |
7689289 | King | Mar 2010 | B2 |
7734340 | De Ridder | Jun 2010 | B2 |
7742810 | Moffitt et al. | Jun 2010 | B2 |
7761168 | Gross | Jul 2010 | B2 |
7761170 | Kaplan et al. | Jul 2010 | B2 |
7778704 | Rezai | Aug 2010 | B2 |
7813803 | Heruth et al. | Oct 2010 | B2 |
7826901 | Lee et al. | Nov 2010 | B2 |
7844338 | Knudson et al. | Nov 2010 | B2 |
7860570 | Whitehurst et al. | Dec 2010 | B2 |
7877136 | Moffitt et al. | Jan 2011 | B1 |
7890166 | Heruth et al. | Feb 2011 | B2 |
7890176 | Jaax et al. | Feb 2011 | B2 |
7933654 | Merfeld et al. | Apr 2011 | B2 |
7937145 | Dobak | May 2011 | B2 |
8000794 | Lozano | Aug 2011 | B2 |
8010198 | Libbus et al. | Aug 2011 | B2 |
8027718 | Spinner et al. | Sep 2011 | B2 |
8046075 | Rezai | Oct 2011 | B2 |
8060208 | Kilgore et al. | Nov 2011 | B2 |
8075556 | Betts | Dec 2011 | B2 |
8082039 | Kim et al. | Dec 2011 | B2 |
8209028 | Skelton et al. | Jun 2012 | B2 |
8224453 | De Ridder | Jul 2012 | B2 |
8224459 | Pianca et al. | Jul 2012 | B1 |
8255057 | Walker et al. | Aug 2012 | B2 |
8280515 | Greenspan | Oct 2012 | B2 |
8355792 | Alataris et al. | Jan 2013 | B2 |
8359102 | Alataris et al. | Jan 2013 | B2 |
8359103 | Alataris et al. | Jan 2013 | B2 |
8509906 | Walker et al. | Aug 2013 | B2 |
8612018 | Gillbe | Dec 2013 | B2 |
8649874 | Alataris et al. | Feb 2014 | B2 |
8718781 | Alataris | May 2014 | B2 |
8849410 | Walker et al. | Sep 2014 | B2 |
8886326 | Alataris et al. | Nov 2014 | B2 |
8886328 | Alataris et al. | Nov 2014 | B2 |
8892209 | Alataris et al. | Nov 2014 | B2 |
9180298 | Alataris et al. | Nov 2015 | B2 |
20020055779 | Andrews | May 2002 | A1 |
20020128700 | Cross | Sep 2002 | A1 |
20030100931 | Mullett | May 2003 | A1 |
20030120323 | Meadows et al. | Jun 2003 | A1 |
20030125786 | Gliner et al. | Jul 2003 | A1 |
20040015202 | Chandler et al. | Jan 2004 | A1 |
20040034394 | Woods et al. | Feb 2004 | A1 |
20040039425 | Greenwood-Van Meerveld | Feb 2004 | A1 |
20040073273 | Gluckman et al. | Apr 2004 | A1 |
20040093093 | Andrews | May 2004 | A1 |
20040127953 | Kilgore et al. | Jul 2004 | A1 |
20040162590 | Whitehurst et al. | Aug 2004 | A1 |
20040167584 | Carroll et al. | Aug 2004 | A1 |
20040172085 | Knudson et al. | Sep 2004 | A1 |
20040176812 | Knudson et al. | Sep 2004 | A1 |
20040193228 | Gerber | Sep 2004 | A1 |
20040210270 | Erickson | Oct 2004 | A1 |
20040210271 | Campen et al. | Oct 2004 | A1 |
20050033381 | Carter et al. | Feb 2005 | A1 |
20050038489 | Grill | Feb 2005 | A1 |
20050060001 | Singhal et al. | Mar 2005 | A1 |
20050070982 | Heruth et al. | Mar 2005 | A1 |
20050113877 | Spinelli et al. | May 2005 | A1 |
20050113878 | Gerber | May 2005 | A1 |
20050113882 | Cameron et al. | May 2005 | A1 |
20050119713 | Whitehurst et al. | Jun 2005 | A1 |
20050143789 | Whitehurst et al. | Jun 2005 | A1 |
20050149148 | King | Jul 2005 | A1 |
20050153885 | Yun et al. | Jul 2005 | A1 |
20050154435 | Stern et al. | Jul 2005 | A1 |
20050182453 | Whitehurst et al. | Aug 2005 | A1 |
20050245978 | Varrichio et al. | Nov 2005 | A1 |
20050246006 | Daniels | Nov 2005 | A1 |
20050267545 | Cory | Dec 2005 | A1 |
20050278000 | Strother et al. | Dec 2005 | A1 |
20060004422 | De Ridder | Jan 2006 | A1 |
20060009820 | Royle | Jan 2006 | A1 |
20060015153 | Gliner et al. | Jan 2006 | A1 |
20060025832 | O'Keeffe et al. | Feb 2006 | A1 |
20060030895 | Simon et al. | Feb 2006 | A1 |
20060030899 | O'Keeffe et al. | Feb 2006 | A1 |
20060041285 | Johnson | Feb 2006 | A1 |
20060052836 | Kim et al. | Mar 2006 | A1 |
20060074456 | Pyles et al. | Apr 2006 | A1 |
20060079936 | Boveja et al. | Apr 2006 | A1 |
20060079937 | King et al. | Apr 2006 | A1 |
20060095088 | De Ridder | May 2006 | A1 |
20060100671 | Ridder | May 2006 | A1 |
20060149337 | John | Jul 2006 | A1 |
20060161219 | Mock et al. | Jul 2006 | A1 |
20060161235 | King | Jul 2006 | A1 |
20060167525 | King | Jul 2006 | A1 |
20060168805 | Hegland et al. | Aug 2006 | A1 |
20060190048 | Gerber | Aug 2006 | A1 |
20060224187 | Bradley et al. | Oct 2006 | A1 |
20060229687 | Goetz et al. | Oct 2006 | A1 |
20060253182 | King | Nov 2006 | A1 |
20070021801 | Heruth et al. | Jan 2007 | A1 |
20070021803 | Deem et al. | Jan 2007 | A1 |
20070032827 | Katims | Feb 2007 | A1 |
20070039625 | Heruth et al. | Feb 2007 | A1 |
20070049991 | Klostermann et al. | Mar 2007 | A1 |
20070060954 | Cameron et al. | Mar 2007 | A1 |
20070066997 | He et al. | Mar 2007 | A1 |
20070073353 | Rooney et al. | Mar 2007 | A1 |
20070073354 | Knudson et al. | Mar 2007 | A1 |
20070083240 | Peterson et al. | Apr 2007 | A1 |
20070106337 | Errico et al. | May 2007 | A1 |
20070142863 | Bradley | Jun 2007 | A1 |
20070142874 | John | Jun 2007 | A1 |
20070150034 | Rooney et al. | Jun 2007 | A1 |
20070156183 | Rhodes | Jul 2007 | A1 |
20070167992 | Carley | Jul 2007 | A1 |
20070179559 | Giftakis et al. | Aug 2007 | A1 |
20070179579 | Feler et al. | Aug 2007 | A1 |
20070233192 | Craig | Oct 2007 | A1 |
20070233194 | Craig | Oct 2007 | A1 |
20070239226 | Overstreet | Oct 2007 | A1 |
20070244522 | Overstreet | Oct 2007 | A1 |
20070255118 | Miesel et al. | Nov 2007 | A1 |
20070293915 | Kilgore et al. | Dec 2007 | A1 |
20070299482 | Littlewood et al. | Dec 2007 | A1 |
20080033511 | Dobak | Feb 2008 | A1 |
20080045775 | Lozano et al. | Feb 2008 | A1 |
20080058878 | King | Mar 2008 | A1 |
20080058888 | King | Mar 2008 | A1 |
20080097539 | Belalcazar | Apr 2008 | A1 |
20080103570 | Gerber | May 2008 | A1 |
20080109045 | Gross et al. | May 2008 | A1 |
20080154333 | Knudson et al. | Jun 2008 | A1 |
20080167697 | Johnson | Jul 2008 | A1 |
20080183259 | Bly et al. | Jul 2008 | A1 |
20080234791 | Arle et al. | Sep 2008 | A1 |
20080269854 | Hegland et al. | Oct 2008 | A1 |
20090024187 | Erickson et al. | Jan 2009 | A1 |
20090036945 | Chancellor et al. | Feb 2009 | A1 |
20090054962 | Lefler et al. | Feb 2009 | A1 |
20090069803 | Starkebaum | Mar 2009 | A1 |
20090076565 | Surwit | Mar 2009 | A1 |
20090112282 | Kast et al. | Apr 2009 | A1 |
20090125079 | Armstrong et al. | May 2009 | A1 |
20090132010 | Kronberg | May 2009 | A1 |
20090132016 | Putz | May 2009 | A1 |
20090157141 | Chiao et al. | Jun 2009 | A1 |
20090157149 | Wahlgren et al. | Jun 2009 | A1 |
20090198306 | Goetz et al. | Aug 2009 | A1 |
20090204173 | Fang et al. | Aug 2009 | A1 |
20090204192 | Carlton et al. | Aug 2009 | A1 |
20090281595 | King et al. | Nov 2009 | A1 |
20090287274 | De Ridder | Nov 2009 | A1 |
20090326611 | Gillbe | Dec 2009 | A1 |
20100010567 | Deem et al. | Jan 2010 | A1 |
20100016929 | Prochazka | Jan 2010 | A1 |
20100036454 | Bennett et al. | Feb 2010 | A1 |
20100042193 | Slavin | Feb 2010 | A1 |
20100057178 | Simon | Mar 2010 | A1 |
20100094375 | Donders et al. | Apr 2010 | A1 |
20100125313 | Lee et al. | May 2010 | A1 |
20100137938 | Kishawi et al. | Jun 2010 | A1 |
20100241190 | Kilgore et al. | Sep 2010 | A1 |
20100256696 | Schleicher et al. | Oct 2010 | A1 |
20100262205 | De Ridder | Oct 2010 | A1 |
20100274312 | Alataris et al. | Oct 2010 | A1 |
20100274314 | Alataris et al. | Oct 2010 | A1 |
20100274315 | Alataris et al. | Oct 2010 | A1 |
20100274316 | Alataris et al. | Oct 2010 | A1 |
20100274317 | Parker et al. | Oct 2010 | A1 |
20100274318 | Walker et al. | Oct 2010 | A1 |
20100274320 | Torgerson | Oct 2010 | A1 |
20100274326 | Chitre et al. | Oct 2010 | A1 |
20100324630 | Lee et al. | Dec 2010 | A1 |
20110009919 | Carbunaru et al. | Jan 2011 | A1 |
20110009923 | Lee | Jan 2011 | A1 |
20110009927 | Parker et al. | Jan 2011 | A1 |
20110022114 | Navarro | Jan 2011 | A1 |
20110184486 | De Ridder | Jul 2011 | A1 |
20110184488 | De Ridder | Jul 2011 | A1 |
20110201977 | Tass | Aug 2011 | A1 |
20110276107 | Simon et al. | Nov 2011 | A1 |
20110282412 | Glukhovsky et al. | Nov 2011 | A1 |
20120016437 | Alataris et al. | Jan 2012 | A1 |
20120016438 | Alataris et al. | Jan 2012 | A1 |
20120016439 | Alataris et al. | Jan 2012 | A1 |
20120089200 | Ranu et al. | Apr 2012 | A1 |
20120158093 | Alataris et al. | Jun 2012 | A1 |
20120203304 | Alataris et al. | Aug 2012 | A1 |
20120209349 | Alataris et al. | Aug 2012 | A1 |
20120277833 | Gerber et al. | Nov 2012 | A1 |
20120283797 | De Ridder | Nov 2012 | A1 |
20130006325 | Woods et al. | Jan 2013 | A1 |
20130023951 | Greenspan | Jan 2013 | A1 |
20130066411 | Thacker et al. | Mar 2013 | A1 |
20130096643 | Fang et al. | Apr 2013 | A1 |
20130096644 | Fang et al. | Apr 2013 | A1 |
20130110196 | Alataris et al. | May 2013 | A1 |
20130123879 | Alataris et al. | May 2013 | A1 |
20130172955 | Alataris | Jul 2013 | A1 |
20130204173 | Kelly et al. | Aug 2013 | A1 |
20130204320 | Alataris et al. | Aug 2013 | A1 |
20130204321 | Alataris et al. | Aug 2013 | A1 |
20130204322 | Alataris et al. | Aug 2013 | A1 |
20130204323 | Thacker et al. | Aug 2013 | A1 |
20130204324 | Thacker et al. | Aug 2013 | A1 |
20130204338 | Alataris et al. | Aug 2013 | A1 |
20130211487 | Fang et al. | Aug 2013 | A1 |
20130261695 | Thacker et al. | Oct 2013 | A1 |
20130261696 | Thacker et al. | Oct 2013 | A1 |
20130261697 | Parker | Oct 2013 | A1 |
20140031896 | Alataris et al. | Jan 2014 | A1 |
20140142656 | Alataris et al. | May 2014 | A1 |
20140142657 | Alataris et al. | May 2014 | A1 |
20140142658 | Alataris et al. | May 2014 | A1 |
20140142659 | Alataris et al. | May 2014 | A1 |
20140142673 | Alataris et al. | May 2014 | A1 |
20140343622 | Alataris et al. | Nov 2014 | A1 |
20140379044 | Walker et al. | Dec 2014 | A1 |
20150018896 | Alataris et al. | Jan 2015 | A1 |
20150032182 | Alataris et al. | Jan 2015 | A1 |
20150032183 | Alataris et al. | Jan 2015 | A1 |
20150039049 | Alataris et al. | Feb 2015 | A1 |
20150039050 | Alataris et al. | Feb 2015 | A1 |
20150045853 | Alataris et al. | Feb 2015 | A1 |
20150045854 | Alataris et al. | Feb 2015 | A1 |
20150051664 | Alataris et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
10318071 | Nov 2004 | DE |
1181947 | Feb 2002 | EP |
2243511 | Oct 2010 | EP |
2630984 | Aug 2013 | EP |
2449546 | Nov 2008 | GB |
2002200179 | Jul 2002 | JP |
2007528774 | Oct 2007 | JP |
1512625 | Oct 1989 | SU |
1690727 | Nov 1991 | SU |
WO-02065896 | Aug 2002 | WO |
WO-02092165 | Nov 2002 | WO |
WO-03011361 | Feb 2003 | WO |
WO-03015863 | Feb 2003 | WO |
WO-2004007018 | Jan 2004 | WO |
WO-2005115532 | Dec 2005 | WO |
WO-2006057734 | Jun 2006 | WO |
WO-2006084635 | Aug 2006 | WO |
WO-2007035925 | Mar 2007 | WO |
WO-2007082382 | Jul 2007 | WO |
WO-2007103324 | Sep 2007 | WO |
WO-2007117232 | Oct 2007 | WO |
WO-2008039982 | Apr 2008 | WO |
WO-2008045434 | Apr 2008 | WO |
WO-2008106174 | Sep 2008 | WO |
WO-2008121891 | Oct 2008 | WO |
WO-2008142402 | Nov 2008 | WO |
WO-2008153726 | Dec 2008 | WO |
WO-2009018518 | Feb 2009 | WO |
WO-2009061813 | May 2009 | WO |
WO-2009129329 | Oct 2009 | WO |
WO-2011014570 | Feb 2011 | WO |
Entry |
---|
“Incredible Save Followed by Poor Communications” APSF Newsletter, pp. 63 and 64, Winter 2005-2006. |
Alo et al., “New Trends in Neuromodulation for the Management of Neuropathic Pain,” Neurosurgery, vol. 50, No. 4, Apr. 2002, 15 pages. |
Barolat et al., “Multifactorial Analysis of Epidural Spinal Cord Stimulation,” Sterotactic and Functional Neurosurgery, 1991; 56: 77-103. |
Bhadra et al., “High Frequency electrical conduction block of the pudendal nerve,” Journal of Neural Engineering—Institute of Physics Publishing, 2006, 8 pages. |
Bhadra et al., Stimulation of High-Frequency Sinusoidal Electrical Block of Mammalian Myelinated Axons, J Comput Neurosco, 22:313-326, 2007. |
Bhadra MD, Niloy et al., “High-Frequency Electrical Conduction Block of Mammalian Peripheral Motor Nerve,” Muscle and Nerve, Dec. 2005, 9 pages. |
Boger et al., “Bladder Voiding by Combined High Frequency Electrical Pudendal Nerve Block and Sacral Root Stimulation,” Neurourology and Urodynamics, 27, 2008, 5 pages. |
Bowman and McNeal, Response of Single Alpha Motoneurons to High-Frequency Pulse Trains, Appl. Neurophysiol. 49, p. 121-138, 1986, 10 pages. |
Braun Medical Inc. http:www.braunusa.com/stimuplex/index.html, p. 2. |
Burton, Charles, “Dorsal Column Stimulation: Optimization of Application,” Surgical Neurology, vol. 4, No. 1, Jul. 1975, 10 pages. |
Capdevila et al., “Continuous Peripheral Nerve Blocks in Hospital Wards after Orthopedics Surgery,” Anesthesiology 2005, 103:1035-45, 10 pages. |
Cuellar et al., “Effect of High Frequency Alternating Current on Spinal Afferent Nociceptive Transmission,” Neuromodulation: Technology at the Neural Interface, 2012, 10 pages. |
Dapoigny, “Vagal influence on colonic motor activity in conscious nonhuman primates,” Am Journal Physiological Society, 1992, 6 pages. |
DeRidder et al., “Are Paresthesias necessary for pain suppression in SCS—Burst Stimulation,” BRAIN, Brain Research Center Antwerp of Innovative and Interdisciplinary Neuromodulation, 2010, 27 pages. |
DeRidder et al., “Burst Spinal Cord Stimulation: Toward Paresthesia-Free Pain Suppression,” www.neurosurgery-online.com, vol. 66, Nos. 5, May 2010, 5 pages. |
Faccenda et al., “Complications of Regional Anesthesia Incidence and Prevention, Drug Safety: An International Journal of Medical Toxicology and Drug Experience” Adis International Limited, 2001: 24(6), 30 pages. |
Gainer et al., “Use of the Peripheral Nerve Stimulator and Standard, Unsheathed Needles in Performing Regional Nerve Blocks,” CRNA: The Clinical Forum for Nurse Anesthetists, vol. 3, No. 4, Nov. 1992, 4 pages. |
Grill, Warren et al., “Stimulus Waveforms for Selective Neural Stimulation,” IEEE Engineering in Medicine and Biology, Jul./Aug. 1995, pp. 375-385. |
Holsheimer—Effectiveness of Spinal Cord Stimulation in the Management of Chronic Pain: Analysis of Techinical Drawbacks and Solutions, Neurosurgery, vol. 40, No. 5, May 1997, pp. 990-999. |
Hopp et al., “Effect of anodal blockade of myelinated fibers on vagal c-fiber afferents,” American Journal Physiological Society, Nov. 1980; 239(5), 9 pages. |
Hoppenstein, Reuben, “Electrical Stimulation of the Ventral and Dorsal Columns of the Spinal Cord for Relief of Chronic Intractable Pain: Preliminary Report,” Surgical Neurology, vol. 4, No. 1, Jul. 1975, 9 pages. |
Huxely et al., “Excitation and Conduction in Nerve: Quantitative Analysis,” Science, Sep. 11, 1964; 145: 1154-9. |
International Search Report and Written Opinion, International Application No. PCT/US2010/022442, Applicant: Nevro Corporation, Eureopean Patent Office, mailed Apr. 14, 2010, 17 pages. |
Jang et al., “Analysis of Failed Spinal Cord Stimulation Trails in the Treatment of Intractable Chronic Pain,” J. Korean Neurosurg Soc 43, 2008, 5 pages. |
Kilgore et al. “Nerve Conduction Block Utilizing High-Frequency Alternating Current” Medical & Biology Engineering and Computing, 2004, vol. 24, pp. 394-406. |
Kilgore et al. “Reversible Nerve Conduction Block Using Kilohertz Frequency Alternating Current,” Neuromodulation Technology at the Neural Interface, International Neuromodulation Society, 2013, 13 pages. |
Klein, “Continuous Peripheral Nerve Blocks,” Anesthesiology, vol. 103, pp. 921-1044, Nov. 2005. |
Kumar et al., “Spinal Cord Stimulation in Treatment of Chronic Benign Pain: Challenges in Treatment Planning and Present Status, a 22-Year Experience,” Neurosurgery, vol. 58, No. 3, Mar. 2006, 16 pages. |
Linderoth et al., “Mechanisms of Spinal Cord Stimulation in Painful Syndromes: Role of Animal Models,” Pain Medicine, vol. 7, No. 51, 2006, 13 pages. |
Linderoth et al., “Physiology of Spinal Cord Stimulation: Review and Update,” Neuromodulation, vol. 2, No. 3, 1999, 15 pages. |
Mediati, R.D.,“Mechanisms of Spinal Cord Stimulation,” Florence, Oct. 2, 2002, 31 pages. |
Melzack, Ronald et al., “Pain Mechanisms: A New Theory,” Science, vol. 150, No. 3699, Nov. 19, 1965, 9 pages. |
Muller and Hunsperger, “Helvetica Physiologica Acta—Reversible Blockierung der Erregungsleitung im Nerven durch Mittelfrequenz-Daverstrom,” Schwabe & Co. Basel, vol. 25, Fasc. 1, 1967, 4 pages. |
North et al., “Failed Back Surgery Syndrome: 5-year Follow-Up after Spinal Cord Stimulator Implantation,” Neurosurgery, Offical Journal of the Congress of Neurological Surgeons, vol. 28, No. 5, May 1991, 9 pages. |
North et al., “Spinal Cord Stimulation for Axial Low Back Pain,” SPINE, vol. 30, No. 12, 2005, 7 pages. |
North et al., “Spinal Cord Stimulation for Chronic, Intractable Pain: Experience over Two Decades,” Neurosurgery, vol. 32, No. 2, Mar. 1993, 12 pages. |
Oakley, John C., “Spinal Cord Stimulation Mechanisms of Action,” SPINE vol. 27, No. 22, copyright 2002, 10 pages. |
Paterson CA et al., “Determinants of Occurrence and Volume of Transpyloric Flow During Gastric Emptying of Liquids in Dogs: Importance of Vagal Input,” Digital Disease and Science, vol. 45, No. 8, Aug. 2000,8 pages. |
Perruchoud et al., “Analgesic Efficacy of High-Frequency Spinal Cord Stimulation: A Randomized Double-Blind Placebo-Controlled Study,” Neuromodulation: Technology at Neural Interface, International Neuromodulation Society, 2013, 7 pages. |
Petrofsky et al. “Impact of Recruitment Order on Electrode Design for Neural Prosthetics of Skeletal Muscle,” Am Journal of Phyiscal Medicine, 1981, vol. 60, No. 5, pp. 243-253. |
Shealy MD, C. Norman et al., “Electrical Inhibition of Pain by Stimulation of the Dorsal Columns: Preliminary Clinical Report,” Anesthesiaand Analgesia . . . Current Researches, vol. 446, No. 4, Jul.-Aug. 1967,3 pages. |
Simpson, BA, “Spinal Cord Stimulation in 60 cases of Intractable Pain.” Journal of Neurology, Neurosurgery and Psychiatry, 1991; 54 pages 196-199. |
Simpson, BA, “Spinal Cord Stimulation.” British Journal of Neurosurgery, Feb. 11, 1997 (1), 5-11, 7 pages. |
Solomonow et al., “Control of Muscle Contractile Force through Indirect High-Frequency Stimulation,” Am Journal of Physical Medicine, 1983, vol. 62, No. 3, pp. 71-82. |
Tanner, J.A., “Reversible blocking of nerve conduction by alternating-current excitation,” Nature, Aug. 18, 1962; 195: 712-3. |
Tiede et al., “Novel Spinal Cord Stimulation Parameters in Patients with Predominate Back Pain,” Neuromodulation: Technology at the Neural Interface, 2013, 6 pages. |
Urban et al., “Percutaneous epidural stimulation of the spinal cord for relief of pain—Long Term Results,” Journal of Neurosurgery, vol. 48, Mar. 1978, 7 pages. |
Vadalouca et al., “Therapeutic Management of Chronic Neuropathic Pain: An Examination of Pharmacologic Treatment,” Annals New York Academy of Sciences, 2006, pp. 164-186. |
Van Butyen et al., “High Frequency Spinal Cord Stimulation for the Treatment of Chronic Back Pain Patients: Results of a Prospective Multicenter European Clinical Study,” Neuromodulation Technology at the Neural Interface, International Neuromodulation Society, 2012, 8 pages. |
Van Den Honert et al. “Generation of Unidirectionally Propagated Action Potentials Nerve by Brief Stimuli” Science, vol. 26, pp. 1311-1312. |
Van Den Honert, Mortimer JT, “A Technique for Collison Block of Peripheral Nerve: Frequency Dependence,” MP-11 IEEE Trans. Biomed, Eng. 28: 379-382, 1981. |
Wolter et al., “Continuous Versus Intermittent Spinal Cord Stimulation: An Analysis of Factors Influencing Clinical Efficacy,” Neuromodulation: Technology at Neural Interface, www.neuromodulationjournal.com, 2011, 8 pages. |
Woo MY, Campbell B. “Asynchronous Firing and Block of Peripheral Nerve Conduction by 20KC Alternating Current,” Los Angeles Neuro Society, Jun. 1964; 87-94, 5 pages. |
Zhang et al., “Simulation Analysis of Conduction Block in Myelinated Axons Induced by High-Frequency Biphasic Rectangular Pulses,” IEEE Transactions on Biomedical Engineering, vol. 53., No. 7, Jul. 2006, 4 pages. |
Guo et al., “Design and Implement of a Mini-Instrument for Rehabilitation with Transcutaneous Electrical Nerve Stimulation,” School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai China, Mar. 31, 2007, 5 pages. |
Amendment in Response to Ex Parte Office Action for U.S. Appl. No. 13/446,970, First Named Inventor: Konstantinos Alataris, Mailed: Nov. 28, 2012, 14 pages. |
Amendment in Response to Non-Final Office Action for U.S. Appl. No. 12/765,747, First Named Inventor: Konstantinos Alataris, Mailed: Jan. 24, 2014, 21 pages. |
Amendment in Response to Non-Final Office Action for U.S. Appl. No. 13/245,450, First Named Inventor: Konstantinos Alataris, filed: Feb. 7, 2012, 15 pages. |
Applicant-Initiated Interview Summary for U.S. Appl. No. 13/245,450, First Named Inventor: Konstantinos Alataris, Mailed: Feb. 1, 2012, 2 pages. |
Application Data Sheet for U.S. Appl. No. 13/446,970 (U.S. Pat. No. 8,359,102), First Named Inventor: Konstantinos Alataris, filed: Apr. 13, 2012, 6 pages. |
Barolat et al., “Surgical Management of Pain—Spinal Cord Stimulation: Equipment and Implantation Techniques,” Chapter 41, Thieme Medical Publishers, New York, 2002, 11 pages. |
Crosby et al., “Stimulation Parameters Define the Effectiveness of Burst Spinal Cord Stimulation in a Rat Model of Neuropathic Pain,” Neuromodulation Technology at the Neural Interface, International Neurmodulation Society, 2014, 8 pages. |
Declaration of Cameron C. McIntyre, Ph.D., May 6, 2015, 88 pages. |
Declaration of Cameron C. McIntyre, Ph.D., May 6, 2015, 57 pages. |
Declaration of M. Jason D. Rahn, Jan. 7, 2015, 7 pages. |
Doug Atkins of Medtronic Neurological, “Medtronic Neurostimulation Leads, 510(k) Summary,” Submission Prepared: Feb. 27, 2004, 6 pages. |
European Extended Search Report for European Patent Application No. 14193327, Applicant: Nevro Corporation, mailed May 28, 2015, 7 pages. |
Ex Parte Office Action for U.S. Appl. No. 13/446,970, First Inventor Named: Konstantinos Alataris, Mailed: Oct. 15, 2012, 9 pages. |
First Preliminary Amendment for U.S. Appl. No. 13/446,970, First Named Inventor: Konstantinos Alataris, Mailed: May 18, 2012, 7 pages. |
Medtronic—Neurological Division, QuadPlus, Model 3888, Lead Kit for Spinal Cord Stimulation (SCS) Implant Manual, 1996, 33 pages. |
Medtronic—Neurological Division, Resume II, Model 3587A, Lead Kit for Spinal Cord Stimulation (SCS) and Peripheral Nerve Stimulation (PNS), Implant Manual, 1996, 32 pages. |
Medtronic—Neurological Division, Resume TL, Model 3986, Lead Kit for Spinal Cord Stimulation (SCS) and Peripheral Nerve Stimulation (PNS), Implant Manual, 1996, 27 pages. |
Medtronic—Neurostimulation Systems: Expanding the Array of Pain Control Solutions, 1999, 6 pages. |
Medtronic commercial leaflet entitled: Surgical Lead Comparison, 1999, 4 pages. |
Medtronic, Pain Therapy Product Guide, Dec. 2008, 31 pages. |
Medtronic, Pisces Quad 3487A, Pisces Quad Compact model 3887, Pisces Quad Plus 3888 Lead Kit, Implant Manual, 2008, 16 pages. |
Medtronic: Spinal Cord Stimulation Systems, 2013, 4 pages. |
Merriam Webster's Collegiate Dictionary, Tenth Edition, definition of “Implantable,” 1995, 3 pages. |
Munglani, Rajesh, “The Longer Term Effect of Pulsed Radiofrequency for Neuropathic Pain,” Pain 80, 1999, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 12/765,747, First Named Inventor: Konstantinos Alataris, Mailed: Jul. 25, 2013, 7 pages. |
Non-Final Office Acton for U.S. Appl. No. 13/245,450, First Named Inventor: Konstantinos Alataris, Mailed Nov. 18, 2011, 11 pages. |
Notice of Allowance for U.S. Appl. No. 13/245,450, First Named Inventor: Konstantinos Alataris, Mailed: Mar. 14, 2012, 8 pages. |
Notice of Opposition to a European Patent, Argument and Facts for European Patent No. 2,630,984, Proprietor of the Patent: Nevro Corporation; Opponent: Medtronic, Mar. 17, 2015, 17 pages. |
Notice of Opposition to a European Patent, Argument and Facts, and Annex for European Patent No. 2630984, Proprietor of the Patent: Nevro Corporation; Opponent: Boston Scientific Neuromodulation Corporation, Mar. 17, 2015, 21 pages. |
Notice of Opposition to a European Patent, Argument and Facts, and Annex for European Patent No. 2421600, Proprietor of the Patent: Nevro Corporation; Opponent: Boston Scientific Neuromodulation Corporation, Dec. 4, 2014, 22 pages. |
Notice of Opposition to a European Patent, Argument and Facts, for European Patent No. 2243510, Proprietor of the Patent: Nevro Corporation, Opponent: Medtronic, Jan. 8, 2015, 22 pages. |
Notice of Opposition to a European Patent, Argument and Facts, and Annex for European Patent No. 2243510, Proprietor of the Patent: Nevro Corporation; Opponent: Boston Scientific Neuromodulation Corporation, Jan. 8, 2015, 28 pages. |
Petition for Inter Partes Review of Claims 1, 2, 11-15, 17-23, 25 and 26 for U.S. Pat. No. 8,359,102, Petitioner: Boston Scientific Neuromodulation Corporation, Patent Owner: Nevro Corporation, Attorney Ref: 1014.0248AB2, May 14, 2015, 45 pages. |
Petition for Inter Partes Review of Claims 1, 2, 11-15, 17-23, 25 and 26 for U.S. Pat. No. 8,359,102, Petitioner: Boston Scientific Neuromodulation Corporation, Patent Owner: Nevro Corporation, Attorney Ref: 1014.0248AB1, May 14, 2015, 67 pages. |
Resume of Jason D. Rahn, Jan. 7, 2015, 2 pages. |
Sluijter et al., “The Effects of Pulsed Radiofrequency Fields Applied to the Dorsal Root Ganglion—A Preliminary Report,” The Pain Clinic, vol. 11, No. 2, 1998, 12 pages. |
St. Jude Medical, “Individualized Therapy through Diverse Lead Options,” 2008, 6 pages. |
Tesfaye et al., “Electrical Spinal Cord Stimulation for Painful Diabetic Peripheral Neuropathy,” The Lancet, vol. 348, Dec. 21-28, 1996, 4 pages. |
Tollison et al., “Practical Pain Management; Neurostimulation Techniques,” Chapter 12, Lippincott Williams and Wilkins, Third Edition, 2002, 13 pages. |
Van Havenbergh et al., “Spinal Cord Stimulation for the Treatment of Chronic Back Pain Patients: 500-Hz vs. 1000-Hz Burst Stimulation,” Neuromodulation: Technology at the Neural Interface, International Neurmodulation Society, 2014, 4 pages. |
“The Need for Mechanism-Based Medicine in Neuromodulation,” Neuromodulation: Technology at the Neural Interface, 2012, 7 pages. |
Al-Kaisy et al., “Sustained Effectiveness of 10kHz High-Frequency Spinal Cord Stimulation for Patients with Chronic, Low Back Pain: 24-month Results of Prospective Multicenter Study,” Pain Medicine, 2014, 8 pages. |
Applicant-Initiated Interview Summary for U.S. Appl. No. 13/725,770, First Named Inventor: Konstantinos Alataris, Mailed: Apr. 5, 2013, 3 pages. |
Applicant-Initiated Interview Summary for U.S. Appl. No. 12/765,747, First Named Inventor: Konstantinos Alataris, Mailed: Sep. 11, 2013, 3 pages. |
Boston Scientific “Precision™ Spinal Cord Stimulator System Clinician Manual—Directions for Use,” 2015, 74 pages. |
Boston Scientific, News Release: “New Data Presented at NANS 2014 Demonstrate Long-Term, Low Back Pain Relief with Boston Scientific Precision Spectra™ Spinal Cord Stimulator System,” Dec. 12, 2014, 8 pages. |
ClinicalTrials.gov, “Safety and Effectiveness Study of the Precision SCS System Adapted for High-Rate Spinal Cord Stimulation (Accelerate),” https://clinicaltrials.gov/ct2/show/NCT02093793?term=boston+scientific&recr=Open&cond=%22Pain%22&rank=3, Feb. 2015, 3 pages. |
Dorland's Illustrated Medical Dictionary, Twenty-sixth Edition, “Paresthesia,” 1981, 4 pages. |
J.P. Morgan North America Equity Research, “Nevro—Let the Launch Begin: Senza Approved, Raising PT to $54,” www.jpmorganmarkets.com, May 10, 2015, 8 pages. |
J.P. Morgan North America Equity Research, “Nevro—Welcome to the Future of Spinal Cord Stimulation Initiating at OW with $34 Price Target,” www.jpmorganmarkets.com, Dec. 1, 2014, 39 pages. |
Jain et al., Abstract—“Accelerate: A Prospective Multicenter Trial Evaluating the Use of High-Rate Spinal Cord Stimulation in the Management of Chronic Intractable Pain,” The American Academy of Pain Medicine, 2015, 1 page. |
JMP Securities, “Nevro Corp. (NVRO) Initiating Coverage on Nevro Corp. with a Market Outperform Rating—Investment Highlights,” Dec. 1, 2014, 42 pages. |
Kapural et al., “Novel 10-Khz High Frequency Therapy (HF10 Therapy) is Superior to Traditional Low-Frequency Spinal Cord Stimulation for Treatment of Chronic Back and Leg Pain,” Anesthesiology The Journal of American Society of Anesthesiologists, Inc., 2015, 11 pages. |
Kuechmann et al., Abstract #853: “Could Automatic Position Adaptive Stimulation Be Useful in Spinal Cord Stimulation?” Medtronic, Inc., Minneapolis, MN, European Journal of Pain 13, 2009, 1 page. |
Kumar et al., “The Effects of Spinal Cord Stimulation in Neuropathic Pain Are Sustained: A 24-month Follow-Up of the Prospective Randomized Controlled Multicenter Trial of the Effectiveness of Spinal Cord Stimulation,” www.neurosurgery-online.com, vol. 63, No. 4, Oct. 2008, 9 pages. |
Lempka et al., “Computational Analysis of Kilohertz Frequency Spinal Cord Stimulation for Chronic Pain Management,” Anesthesiology, vol. 122, No. 6, Jun. 2015, 15 pages. |
Linderoth et al., “Mechanisms of Spinal Cord Stimulation in Neuropathic and Ischemic Pain Syndromes,” Neuromodulation, Chapter 25, 2009, 19 pages. |
Medtronic, “Medtronic Pain Therapy—Using Neurostimulation for Chronic Pain, Information for Prescribers” 2007, 29 pages. |
Morgan Stanley Research North America, “Nevro Corp—There's Something Happening Here,” Dec. 15, 2014, 12 pages. |
Mosby's Medical Dictionary, 8th Edition, “Paresthesia,” 2009, 3 pages. |
Nevro Senza Patient Manual, Jan. 16, 2015, 53 pages. |
Nevro Senza Physician Implant Manual, Jan. 16, 2015, 31 pages. |
Nevro, PMA Approval Letter and Referenced Summary of Safety and Effectiveness Data (SSED) May 8, 2015, 60 pages. |
News Release Details, “Nevro Corp. Announces Pricing of Initial Public Offering,” 2014, 1 page. |
North American Neuromodulation Society—14th Annual Meeting, “Neuromodulation: Vision 2010,” Dec. 2-5, 2010, 9 pages. |
North American Neuromodulation Society—16th Annual Meeting, “From Innovation to Reality Syllabus,” Dec. 6-9, 2012, 198 pages. |
North American Neuromodulation Society—Celebrating 20 years, 18th Annual Meeting Program Book, Dec. 11-14, 2014, 28 pages. |
North American Neuromodulation Society, “Today's Vision, Tomorrow's Reality—17th Annual Meeting,” Dec. 5-8, 2013, 12 pages. |
North American Neuromodulation, “15th Annual Meeting, Our Crystal Anniversary,” Dec. 8-11, 2011, 8 pages. |
Oakley et al., “A New Spinal Cord Stimulation System Effectively Relieves Chronic, Intractable Pain: A Multicenter Prospective Clinical Study,” Neuromodulation: Technology at the Neural Interface, vol. 10, No. 3, 2007, 17 pages. |
Oakley et al., “Spinal Cord Stimulation in Axial Low Back Pain: Solving the Dilemma,” Pain Medicine, vol. 7, No. 51, 2006, 6 pages. |
Patent Owner's Preliminary Response for Inter Partes Review for U.S. Pat. No. 8,359,102, Case No. IPR2015-01203, Petitioner: Boston Scientific Neuromodulation Corporation, Patent Owner: Nevro Corporation, mailed Sep. 1, 2015, 70 pages. |
Patent Owner's Preliminary Response for Inter Partes Review for U.S. Pat. No. 8,359,102, Case No. IPR2015-01204, Petitioner: Boston Scientific Neuromodulation Corporation, Patent Owner: Nevro Corporation, mailed Sep. 1, 2015, 63 pages. |
Prausnitz et al., “The Effects of Electric Current Applied to Skin: A Review for Transdermal Drug Delivery,” Advanced Drug Delivery Reviews 18, ; 1996, 31 pages. |
Science Daily, “Chronic Pain Costs U.S. up to $635 billion, study shows,” www.sciencedaily.com/releases/2012/09/120911091100.htm, Sep. 11, 2012, 2 pages. |
St. Jude Medical, “Eon Mini™ Rechargeable IPG,” Apr. 29, 2013, 3 pages. |
Stimwave, News Release: “Stimwave Receives FDA Approval for High Frequency IDE,” http://stimwave.com/newsroom/latest-news, Jun. 9, 2015, 2 pages. |
Wallace et al., Poster: “Accelerate: A Prospective Multicenter Trial Evaluating the Use of High-Rate Spinal Cord Stimulation in the Management of Chronic Intractable Pain,” Boston Scientific Corporation, 2015, 1 page. |
Webster's Third New International Dictionary of the English Language Unabridged, “Paresthesia,” 1993, 3 pages. |
Acticare.com website, http://web.archive.org/web/*/acticare.com, Internet Archive Way Back Machine, 2012, 22 pages. |
Hefferman et al., “Efficacy of Transcutaneous Spinal Electroanalgesia in Acute Postoperative Pain Management,” Anesthesiology, 2001, 2 pages. |
Hilberstadt et al., “The Effect of Transcutaneous Spinal Electroanalgesia upon Chronic Pain: A single case study,” Physiotherapy, vol. 86 No. 3, Mar. 2000, 2 pages. |
MacDonald, Alexander J. R, and Coates, Tim W., “The Discovery of Transcutanaeous Spinal Electroanalgesia and Its Relief of Chronic Pain,” Physiotherapy, vol. 81. No. 11, Nov. 1995, 9 pages. |
Notice of Opposition to a European Patent, Argument and Facts, for European Patent No. 2207587, Proprietor of the Patent: Nevro Corporation; Opponent: Medtronic, Inc., Jan. 12, 2016, 22 pages. |
Notice of Opposition to a European Patent, Copy of Argument and Facts, for European Patent No. 2207587, Proprietor of the Patent: Nevro Corporation; Opponent: Boston Scientific Neuromodulation Corporation, Jan. 8, 2016, 17 pages. |
Palmer et al., “Transcutaneous electrical nerve stimulation and ; transcutaneous spinal electroanalgesia: A preliminary efficacy and mechanisms-based investigation,” Physiotherapy, 95, 2009, 7 pages. |
Remedi Pain Relief—ENM (Electronic Nerve Modulation), https://web.archive.org/web/20050906181041/http://www.remediuk.com/trials.htm, 2005, 5 pages. |
Robb et al., “Transcutaneous Electrical Nerve Stimulation vs. Transcutaneous Spinal Electroanalgesia for Chronic Pain Associated with ; Breast Cancer Treatments,” Journal of Pain and Symptom Management, vol. 33, No. 4, Apr. 2007, 10 pages. |
Royle, John., “Transcutaneous Spinal Electroanalgesia and Chronic Pain,” Physiotherapy, vol. 86, No. 5, May 2000, 1 page. |
Simpson et al., “A Randomized, Double-Blind, Crossover Study of the Use of Transcutaneous Spinal Electroanalgesia in Patients with Pain from ; Chronic Critical Limb Ischemia,” Journal of Pain and Symptom Management, vol. 28, No. 5, Nov. 2004, 6 pages. |
Thompson et al., “A double blind randomised controlled clinical trial on the effect of transcutaneous spinal electroanalgesia (TSE) on low back pain,” European Journal of Pain, vol. 12, Issue 3, Apr. 2008, 6 pages. |
Towell et al., “High Frequency non-invasive stimulation over the spine: Effects on mood and mechanical pain tolerance in normal subjects,” Behavioral Neurology, vol. 10, 1997, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20150105839 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13857960 | Apr 2013 | US |
Child | 14483061 | US | |
Parent | 13544727 | Jul 2012 | US |
Child | 13857960 | US | |
Parent | 12362244 | Jan 2009 | US |
Child | 13544727 | US |