The present disclosure relates to systems and methods for producing oil and/or gas.
Enhanced Oil Recovery (EOR) may be used to increase oil recovery in fields worldwide. There are three main types of EOR, thermal, chemical/polymer and gas injection, which may be used to increase oil recovery from a reservoir, beyond what can be achieved by conventional means—possibly extending the life of a field and boosting the oil recovery factor.
Thermal enhanced recovery works by adding heat to the reservoir. The most widely practiced form is a steamdrive, which reduces oil viscosity so that it can flow to the producing wells. Chemical flooding increases recovery by reducing the capillary forces that trap residual oil. Polymer flooding improves the sweep efficiency of injected water. Miscible injection works in a similar way to chemical flooding. By injecting a fluid that is miscible with the oil, trapped residual oil can be recovered.
Referring to
U.S. Pat. No. 4,026,583 discloses an oil well pipe incorporating a corrosion-resistant, metallic liner which is intimately metallurgically bonded to the pipe bore. A non-metallic annular seal may be provided in an annular groove to seal off between the tapered interfitting surfaces between the liner box and pin sections; for example, the seal may consist of polytetrafluoroethylene material, as for example TEFLON or VITON, and may comprise an O-ring having a radial thickness of between 0.025 and 0.225 inches. U.S. Pat. No. 4,026,583 is herein incorporated by reference in its entirety.
U.S. Patent Application Publication Number 2006/0048941 discloses an apparatus and method for controlling and/or minimizing the formation or accumulation of unwanted deposits on the inside of fluid flow paths by employing at various locations along the path an assembly of permanent magnets oriented such that the fluid flow is preferably from the North magnetic pole to the South magnetic pole. Suitable materials for use as seals include but are not limited to fluorocarbon rubber (FKM)-type seals and O-rings, including KEL-F and FLUOREL (both available from 3M, St. Paul, Minn.), VITON and KALREZ (both available from E.I. DuPont de Nemours Co.); chlorosulfonated polyethylenes, such as HYPHALON (available from DuPont Dow Elastomers); PTFE (TEFLON) and filled PTFE such as FLUOROSINT (available from Quadrant DSM Engineering Plastic Products, Reading, Pa.); copolymers of butadiene and acrylonitrile, known as Buna-N (nitrile; NBR), such as HYVCAR (available from Goodrich Chemical Co.); and silicone or silicone rubber. Typically, seals are fluorocarbon rubber-type seals, such as VITON. U.S. Patent Application Publication Number 2006/0048941 is herein incorporated by reference in its entirety.
Co-pending U.S. Patent Application Publication Number 2006/0254769, published Nov. 16, 2006, and having attorney docket number TH2616, discloses a system including a mechanism for recovering oil and/or gas from an underground formation, the oil and/or gas comprising one or more sulfur compounds; a mechanism for converting at least a portion of the sulfur compounds from the recovered oil and/or gas into a carbon disulfide formulation; and a mechanism for releasing at least a portion of the carbon disulfide formulation into a formation. U.S. Patent Application Publication Number 2006/0254769 is herein incorporated by reference in its entirety.
There is a need in the art for improved systems and methods for enhanced oil recovery. There is a further need in the art for improved systems and methods for enhanced oil recovery using a solvent, for example through viscosity reduction, chemical effects, and miscible flooding. There is a further need in the art for improved systems and methods for solvent miscible flooding. There is a further need in the art for improved systems and methods for transporting a miscible solvent in a pipe during an enhanced oil recovery operation. There is a need in the art for improved seals to be used with a miscible solvent in a pipe during an enhanced oil recovery operation.
In one aspect, the invention provides a system for producing oil and/or gas from an underground formation comprising a first well above the formation; a second well above the formation; the first well comprises a mechanism to inject a miscible enhanced oil recovery formulation into the formation; the first well comprises a seal comprising a composite material, the composite material comprising a plurality of fibers in a matrix, the matrix material comprising a fluorinated polymer or a polyketone, the seal adapted to contain the miscible enhanced oil recovery formulation within a tubular; and the second well comprises a mechanism to produce oil and/or gas from the formation.
In another aspect, the invention provides a method for producing oil and/or gas comprising injecting a carbon disulfide formulation into a formation from a first well; producing oil and/or gas from the formation from a second well; and installing a seal in the first well, the seal comprising a composite material, the composite material comprising a plurality of fibers in a matrix, the matrix comprising a polyketone or a fluorinated polymer.
Advantages of the invention include one or more of the following:
Improved systems and methods for enhanced recovery of hydrocarbons from a formation with a solvent.
Improved systems and methods for enhanced recovery of hydrocarbons from a formation with a fluid containing a miscible solvent.
Improved systems and methods for secondary recovery of hydrocarbons.
Improved systems and methods for enhanced oil recovery.
Improved systems and methods for enhanced oil recovery using a miscible solvent.
Improved systems and methods for enhanced oil recovery using a compound which may be miscible with oil in place.
Improved systems and methods for transporting and/or containing a compound in a pipe which may be miscible with oil in place.
Improved systems and methods for sealing a compound in a pipe which may be miscible with oil in place.
a-3c illustrate oil and/or gas production systems.
a and 5b illustrate an oil and/or gas production system with a concentric tubular arrangement.
Referring now to
As shown in
In some embodiments, miscible enhanced oil recovery formulation may be pumped into formation 206 below the fracture pressure of the formation, for example from about 40% to about 90% of the fracture pressure.
The recovery of oil and/or gas with one or more wells (such as well 212) from underground formation 206 may be accomplished by any known method. Suitable methods include subsea production, surface production, primary, secondary, or tertiary production. The selection of the method used to recover the oil and/or gas from underground formation 206 is not critical.
a and 3b:
Referring now to
As shown in
After the soaking period, as shown in
In some embodiments, miscible enhanced oil recovery formulation may be pumped into formation 206 below the fracture pressure of the formation, for example from about 40% to about 90% of the fracture pressure.
c:
Referring now to
In some embodiments, a quantity of miscible enhanced oil recovery formulation or miscible enhanced oil recovery formulation mixed with other components may be injected into well 332, followed by another component to force miscible enhanced oil recovery formulation or miscible enhanced oil recovery formulation mixed with other components across formation 306, for example air; water in gas or liquid form; water mixed with one or more salts, polymers, and/or surfactants; carbon dioxide; other gases; other liquids; and/or mixtures thereof.
Referring now to
Well 732 is separated from well 712 by a distance d 740. In some embodiments, distance d 740 is from about 1 to about 1000 kilometers, for example from about 5 to about 250 kilometers, or for example from about 10 to about 100 kilometers, or for example about 50 to 75 kilometers.
a & 5b:
Referring now to
Referring now to
Packer 906 may have one or more sealing elements on its interior surface adjacent tubular 902 and/or one or more sealing elements on its exterior surface adjacent tubular 904.
Referring now to
One or more seals 1014 and/or 1016 may be provided adjacent the threaded connections. Seals 1014 and/or 1016 may be o-rings or other seal configurations as are known in the art. Seals 1014 and/or 1016 may be fitted into grooves on tubulars 1020 and/or 1030. Seals 1014 and/or 1016 may be used to provide a seal between an interior and exterior of tubulars 1020 and 1030, for example to contain fluids within tubulars 1020 and 1030 and/or to keep fluids out of tubulars 1020 and 1030.
Tubular system 1000 may be representative of one or more parts of well 212, 312, 332, 712, 732, and/or tubular 900, 902, and/or 904.
Seal Materials:
In some embodiments, one or more parts of a tubular system, such as wells 212, 312, 332, 712, 732, and/or tubular 900, 902, and/or 904; seals 1014 and/or 1016; and packer 906 may be made of composite materials. Suitable composite materials include one or more types of fibers in a matrix material.
Suitable fibers include fiberglass, graphite, boron, aluminum silicate, silicon carbide, and/or other materials resistant to a miscible enhanced oil recovery agent. Suitable matrix materials include fluorinated polymers such as PTFE (polytetrafluoroethylene), fluorinated ethylene-propylene copolymers, commercially available as Teflon™ from Du Pont, or ETFE (ethylene tetrafluoroethylene) commercially available as Tefzel™ from Du Pont; fluoroelastomers such as a copolymer of vinylidene fluoride and hexafluoropropylene, commercially available as Viton™ from Du Pont, for example Viton A; or perfluoroelastomers such as a copolymer of vinylidene fluoride and hexafluoropropylene, commercially available as Kalrez™ from Du Pont, for example Kalrez AS-568 3018-1. Other suitable matrix materials include polyketones such as polyetheretherketone (PEEK).
In some embodiments, seals 1014 and/or 1016 and packer 906 may be made of a composite material having a matrix material of fluorocarbon polymers, perfluorocarbon polymers, fluoroelastomers, or perfluoroelastomers.
In some embodiments, seals 1014 and/or 1016 and packer 906 may be made of a composite material having a matrix material of a fluorinated polymer, where at least about 25% of the hydrogens attached to a carbon have been replaced with a fluorine or chlorine, for example replacing at least about 50% of the hydrogens, at least about 75% of the hydrogens, or at least about 90% of the hydrogens.
In some embodiments, oil and/or gas may be recovered from a formation into a well, and flow through the well and flowline to a facility. In some embodiments, enhanced oil recovery, with the use of an agent for example steam, water, a surfactant, a polymer flood, and/or a miscible agent such as a carbon disulfide formulation, a carbon oxysulfide formulation, and/or carbon dioxide, may be used to increase the flow of oil and/or gas from the formation.
In some embodiments, oil and/or gas recovered from a formation may include a sulfur compound. The sulfur compound may include hydrogen sulfide, mercaptans, sulfides and disulfides other than hydrogen disulfide, or heterocyclic sulfur compounds for example thiophenes, benzothiophenes, or substituted and condensed ring dibenzothiophenes, or mixtures thereof.
In some embodiments, a sulfur compound from the formation may be converted into a carbon disulfide formulation or a carbon oxysulfide formulation. The conversion of at least a portion of the sulfur compound into a carbon disulfide formulation may be accomplished by any known method. Suitable methods may include oxidation reaction of the sulfur compound to sulfur and/or sulfur dioxides, and by reaction of sulfur and/or sulfur dioxide with carbon and/or a carbon containing compound to form the carbon disulfide formulation. The selection of the method used to convert at least a portion of the sulfur compound into a carbon disulfide formulation is not critical.
In some embodiments, a suitable miscible enhanced oil recovery agent may be a carbon disulfide formulation. The carbon disulfide formulation may include carbon disulfide and/or carbon disulfide derivatives for example, thiocarbonates, xanthates and mixtures thereof; and optionally one or more of the following: hydrogen sulfide, sulfur, carbon dioxide, hydrocarbons, and mixtures thereof.
In some embodiments, a suitable method of producing a carbon disulfide formulation is disclosed in copending U.S. patent application having Ser. No. 11/409,436, filed on Apr. 19, 2006, having attorney docket number TH2616. U.S. patent application having Ser. No. 11/409,436 is herein incorporated by reference in its entirety.
In some embodiments, suitable miscible enhanced oil recovery agents include carbon disulfide, carbon oxysulfide, hydrogen sulfide, carbon dioxide, octane, pentane, LPG, C2-C6 aliphatic hydrocarbons, nitrogen, diesel, mineral spirits, naptha solvent, asphalt solvent, kerosene, acetone, xylene, trichloroethane, or mixtures of two or more of the preceding, or other miscible enhanced oil recovery agents as are known in the art. In some embodiments, suitable miscible enhanced oil recovery agents are first contact miscible or multiple contact miscible with oil in the formation.
In some embodiments, suitable immiscible enhanced oil recovery agents include water in gas or liquid form, air, mixtures of two or more of the preceding, or other immiscible enhanced oil recovery agents as are known in the art. In some embodiments, suitable immiscible enhanced oil recovery agents are not first contact miscible or multiple contact miscible with oil in the formation.
In some embodiments, immiscible and/or miscible enhanced oil recovery agents injected into the formation may be recovered from the produced oil and/or gas and re-injected into the formation.
In some embodiments, oil as present in the formation prior to the injection of any enhanced oil recovery agents has a viscosity of at least about 100 centipoise, or at least about 500 centipoise, or at least about 1000 centipoise, or at least about 2000 centipoise, or at least about 5000 centipoise, or at least about 10,000 centipoise. In some embodiments, oil as present in the formation prior to the injection of any enhanced oil recovery agents has a viscosity of up to about 5,000,000 centipoise, or up to about 2,000,000 centipoise, or up to about 1,000,000 centipoise, or up to about 500,000 centipoise.
Releasing at least a portion of the miscible enhanced oil recovery agent and/or other liquids and/or gases may be accomplished by any known method. One suitable method is injecting the miscible enhanced oil recovery formulation into a single conduit in a single well, allowing carbon disulfide formulation to soak, and then pumping out at least a portion of the carbon disulfide formulation with gas and/or liquids. Another suitable method is injecting the miscible enhanced oil recovery formulation into a first well, and pumping out at least a portion of the miscible enhanced oil recovery formulation with gas and/or liquids through a second well. The selection of the method used to inject at least a portion of the miscible enhanced oil recovery formulation and/or other liquids and/or gases is not critical.
In some embodiments, the miscible enhanced oil recovery formulation and/or other liquids and/or gases may be pumped into a formation at a pressure up to the fracture pressure of the formation.
In some embodiments, the miscible enhanced oil recovery formulation may be mixed in with oil and/or gas in a formation to form a mixture which may be recovered from a well. In some embodiments, a quantity of the miscible enhanced oil recovery formulation may be injected into a well, followed by another component to force carbon the formulation across the formation. For example air, water in liquid or vapor form, carbon dioxide, other gases, other liquids, and/or mixtures thereof may be used to force the miscible enhanced oil recovery formulation across the formation.
In some embodiments, the miscible enhanced oil recovery formulation may be heated prior to being injected into the formation to lower the viscosity of fluids in the formation, for example heavy oils, paraffins, asphaltenes, etc.
In some embodiments, the miscible enhanced oil recovery formulation may be heated and/or boiled while within the formation, with the use of a heated fluid or a heater, to lower the viscosity of fluids in the formation. In some embodiments, heated water and/or steam may be used to heat and/or vaporize the miscible enhanced oil recovery formulation in the formation.
In some embodiments, the miscible enhanced oil recovery formulation may be heated and/or boiled while within the formation, with the use of a heater. One suitable heater is disclosed in copending U.S. patent application having Ser. No. 10/693,816, filed on Oct. 24, 2003, and having attorney docket number TH2557. U.S. patent application having Ser. No. 10/693,816 is herein incorporated by reference in its entirety.
In some embodiments, oil and/or gas produced may be transported to a refinery and/or a treatment facility. The oil and/or gas may be processed to produced to produce commercial products such as transportation fuels such as gasoline and diesel, heating fuel, lubricants, chemicals, and/or polymers. Processing may include distilling and/or fractionally distilling the oil and/or gas to produce one or more distillate fractions. In some embodiments, the oil and/or gas, and/or the one or more distillate fractions may be subjected to a process of one or more of the following: catalytic cracking, hydrocracking, hydrotreating, coking, thermal cracking, distilling, reforming, polymerization, isomerization, alkylation, blending, and dewaxing.
In one embodiment of the invention, there is disclosed a system for producing oil and/or gas from an underground formation comprising a first well above the formation; a second well above the formation; the first well comprises a mechanism to inject a miscible enhanced oil recovery formulation into the formation; the first well comprises a seal comprising a composite material, the composite material comprising a plurality of fibers in a matrix, the matrix material comprising a fluorinated polymer or a polyketone, the seal adapted to contain the miscible enhanced oil recovery formulation within a tubular; and the second well comprises a mechanism to produce oil and/or gas from the formation. In some embodiments, the first well is at a distance of 10 meters to 1 kilometer from the second well. In some embodiments, the underground formation is beneath a body of water. In some embodiments, the system also includes a mechanism for injecting an immiscible enhanced oil recovery formulation into the formation, after the miscible enhanced oil recovery formulation has been released into the formation. In some embodiments, the system also includes a miscible enhanced oil recovery formulation selected from the group consisting of a carbon disulfide formulation, a carbon oxysulfide formulation, hydrogen sulfide, carbon dioxide, octane, pentane, LPG, C2-C6 aliphatic hydrocarbons, nitrogen, diesel, mineral spirits, naptha solvent, asphalt solvent, kerosene, acetone, xylene, trichloroethane, and mixtures thereof. In some embodiments, the miscible enhanced oil recovery formulation comprises a carbon disulfide formulation, a carbon oxysulfide formulation, or mixtures thereof. In some embodiments, the system also includes an immiscible enhanced oil recovery formulation selected from the group consisting of water in gas or liquid form, air, and mixtures thereof. In some embodiments, the system also includes a miscible enhanced oil recovery formulation comprising a carbon disulfide formulation. In some embodiments, the system also includes a mechanism for producing a carbon disulfide formulation. In some embodiments, the underground formation comprises an oil having a viscosity from 100 to 5,000,000 centipoise.
In one embodiment of the invention, there is disclosed a method for producing oil and/or gas comprising injecting a carbon disulfide formulation into a formation from a first well; producing oil and/or gas from the formation from a second well; and installing a seal in the first well, the seal comprising a composite material, the composite material comprising a plurality of fibers in a matrix, the matrix comprising a polyketone or a fluorinated polymer. In some embodiments, the method also includes recovering carbon disulfide formulation from the oil and/or gas, if present, and then injecting at least a portion of the recovered carbon disulfide formulation into the formation. In some embodiments, injecting the carbon disulfide formulation comprises injecting at least a portion of the carbon disulfide formulation into the formation in a mixture with one or more of hydrocarbons; sulfur compounds other than carbon disulfide; carbon dioxide; carbon monoxide; or mixtures thereof. In some embodiments, the method also includes heating the carbon disulfide formulation prior to injecting the carbon disulfide formulation into the formation, or while within the formation. In some embodiments, the carbon disulfide formulation is injected at a pressure from 0 to 37,000 kilopascals above the initial reservoir pressure, measured prior to when carbon disulfide injection begins. In some embodiments, the underground formation comprises a permeability from 0.0001 to 15 Darcies, for example a permeability from 0.001 to 1 Darcy. In some embodiments, any oil, as present in the underground formation prior to the injecting the carbon disulfide formulation, has a sulfur content from 0.5% to 5%, for example from 1% to 3%. In some embodiments, the method also includes converting at least a portion of the recovered oil and/or gas into a material selected from the group consisting of transportation fuels such as gasoline and diesel, heating fuel, lubricants, chemicals, and/or polymers. In some embodiments, the fluorinated polymer is at least 40% fluorinated. In some embodiments, the fluorinated polymer is at least 80% fluorinated. In some embodiments, the matrix comprises a material selected from the group consisting of polytetrafluoroethylene, ethylene tetrafluoroethylene, fluorinated ethylene-propylene copolymers, fluoroelastomers, copolymers of vinylidene fluoride and hexafluoropropylene, and perfluoroelastomers. In some embodiments, the fibers comprise a material selected from the group consisting of fiberglass and graphite. In some embodiments, the method also includes the fibers comprise fiberglass, and wherein the matrix comprises polyetheretherketone. In some embodiments, the fibers comprise graphite, and wherein the matrix comprises ethylene tetrafluoroethylene. In some embodiments, the fibers comprise fiberglass, and wherein the matrix comprises polytetrafluoroethylene.
Those of skill in the art will appreciate that many modifications and variations are possible in terms of the disclosed embodiments of the invention, configurations, materials and methods without departing from their spirit and scope. Accordingly, the scope of the claims appended hereafter and their functional equivalents should not be limited by particular embodiments described and illustrated herein, as these are merely exemplary in nature.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/020426 | 1/8/2010 | WO | 00 | 8/18/2011 |
Number | Date | Country | |
---|---|---|---|
61145178 | Jan 2009 | US |