This patent specification relates to the field of medication adherence. More specifically, this patent specification relates to systems and methods that are configured to increase patient compliance with medication and adherence to eye drop regimens.
Glaucoma is a highly prevalent cause of blindness worldwide. Glaucoma is an optic neuropathy, often associated with cupping of the optic nerve head, higher intraocular pressure, and visual field loss. Glaucoma is often an insidious disease and can be asymptomatic in patients for decades before causing serious vision loss. Glaucoma typically manifests in causing visual loss in the periphery. Patients are usually unaware of vision changes in their periphery due to the slow progression of the disease. Visual field testing is called perimetry and is essential in diagnosing glaucoma. Various patents have described testing of visual field on smartphones and tablets as a means of portable perimetry. Smartphone, tablet based portable perimetry are available in the market for testing. However, these programs or video games are a means to diagnosis to detect visual field loss. It is difficult enough to test a patient using a standard automated perimeter in the medical office, let alone in an uncontrolled environment, no matter how entertaining the visual stimuli may be. Testing peripheral vision does little to encourage medication regimen adherence without demonstrating vision loss to the patient.
Therefore, a need exists for new devices and systems to increase compliance with medication adherence for eye drop regimens. A further need exists for new devices and systems to inform patients of vision changes in their periphery due to disease progression. A need exists for new devices and systems which encourage medication regimen adherence by demonstrating vision loss to the patient. Finally, there is no currently available method of quantifying actual compliance of medication adherence, with respect to eye drops. Ophthalmologists are in need of this data to determine if poor treatment is due to compliance or simply the progression of the glaucoma.
A system for promoting medication adherence to a user of a client device is provided. In some embodiments, the system may include one or more client devices in communication with one or more servers allowing for the communication of data between the client devices and servers. The users may include patients and vision care providers, each of which may have access to a client device. The system may receive medical information and medication compliance information of a patient which may be used to form one or more which may be produced on the display screen of a patient's client device in which the blind spots are representative of glaucoma associated scotomas. The blind spots may obscure or otherwise black out portions of the display screen of a patient's client device thereby decreasing the amount of text or graphical information visible to the patient. As medical information and medication compliance information is received, the number, size, opacity, and/or shape of the blind spots produced on the display screen of a patient's client device may change to provide actual perception of visual loss which spurs patients to compliance and a better understanding of their disease. The client device does not test visual changes or scotomas, but rather is an educational tool to demonstrate vision loss.
A method for promoting user medication adherence with a client device is provided. In some embodiments, the method may include the steps of: receiving intraocular pressure information of the user; receiving medication information describing directions on how the user is to use the medication; determining if the user is taking the medication as directed in the medical information; and producing a blind spot on the display of the client device that obscures information on the display of the client device and which increases in size and opacity when the user does not take the medication as directed.
In further embodiments, a method for promoting medication adherence to a user of a client device may include the step of reminding the user to take the medication as directed. The reminders may visually indicate: which medication to take; in which eye the medication is to be taken; and/or at what time the medication is to be taken preferably by showing pictures of the medication container, packaging, name, and/or dosage. Aside from the medication adherence device alert sounds, the reminders may also include voice messages, optionally provided by a patient's doctor, which may be used to form audio reminders.
In still further embodiments, the system may include a medication adherence device which may include a housing configured to be removably coupled to a medicine container top of a medicine that is prescribed to a patient or user. The medication adherence device may be configured to provide medication access information to the system which may be used to determine if a user has missed and/or performed one or more compliance events. In further embodiments, the medication adherence device may include a housing having a container cavity and a housing cavity. A processing unit having a processor may be disposed in the housing cavity. A seal may be disposed between the container cavity and the housing cavity. An access switch may be in communication with the processing unit, and the access switch may be disposed in the housing cavity. The access switch may communicate medication access information to the processing unit in which the medication access information comprises data indicating that the medicine container top is received in the container cavity when the upper perimeter is pressed against the seal. The access switch may also communicate medication access information to the processing unit in which the medication access information comprises data indicating that the medicine container top is not received in the container cavity when the upper perimeter is not pressed against the seal. In yet further embodiments, the medication adherence device may include an inertial measurement unit (“IMU”), and the inertial measurement unit may generate medication access information when the housing is moved by being displaced from a medicine container top at a specific time period, which may be associated with a reminder. A medicine adherence device preferably may use either an access switch or an IMU or a combination of access switch and IMU to generate medication access information.
In still further embodiments, a computer-implemented method for promoting medication adherence by a user of a client device based on the medication adherence history of the user is provided. The method may include the steps of: receiving treatment plan information for the user, in which the treatment plan information comprises information describing a daily number of compliance events for a medication of the user; determining, via a computing device processor, if the user has missed a compliance event preferably using medication access information received from a medication adherence device; identifying, via a computing device processor, a cumulative number of missed compliance events for the medication of the user; and producing, via a computing device processor, a blind spot on the display screen of the client device, wherein the blind spot obscures information on a portion of the display screen, and wherein the blind spot increases in size and/or opacity in proportion to an increasing cumulative number of missed compliance events.
Some embodiments of the present invention are illustrated as an example and are not limited by the figures of the accompanying drawings, in which like references may indicate similar elements and in which:
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well as the singular forms, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one having ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
As used herein, the term “computer” refers to a machine, apparatus, or device that is capable of accepting and performing logic operations from software code. The term “application”, “software”, “software code” or “computer software” refers to any set of instructions operable to cause a computer to perform an operation. Software code may be operated on by a “rules engine” or processor. Thus, the methods and systems of the present invention may be performed by a computer based on instructions received by computer software.
The term “electronic device” as used herein is a type of computer comprising circuitry and configured to generally perform functions such as recording audio, photos, and videos; displaying or reproducing audio, photos, and videos; storing, retrieving, or manipulation of electronic data; providing electrical communications and network connectivity; or any other similar function. Non-limiting examples of electronic devices include: personal computers (PCs), workstations, laptops, tablet PCs including the iPad, cell phones including iOS phones made by Apple Inc., Android OS phones, Microsoft OS phones, Blackberry phones, digital music players, or any electronic device capable of running computer software and displaying information to a user, memory cards, other memory storage devices, digital cameras, external battery packs, external charging devices, and the like. Certain types of electronic devices which are portable and easily carried by a person from one location to another may sometimes be referred to as a “portable electronic device” or “portable device”. Some non-limiting examples of portable devices include: cell phones, smartphones, tablet computers, laptop computers, wearable computers such as Apple Watch, other smartwatches, Fitbit, other wearable fitness trackers, Google Glasses, and the like.
The term “client device” or sometimes “electronic device” as used herein is a type of computer generally operated by a person or user of the system. In some embodiments, a client device is a smartphone or computer configured to receive and transmit data to a server or other electronic device which may be operated locally or in the cloud. Non-limiting examples of client devices include: personal computers (PCs), workstations, laptops, tablet PCs including the iPad, cell phones including iOS phones made by Apple Inc., Android OS phones, Microsoft OS phones, Blackberry phones, or generally any electronic device capable of running computer software and displaying information to a user. Certain types of client devices which are portable and easily carried by a person from one location to another may sometimes be referred to as a “mobile device” or “portable device”. Some non-limiting examples of mobile devices include: cell phones, smartphones, tablet computers, laptop computers, wearable computers such as Apple Watch, other smartwatches, Fitbit, other wearable fitness trackers, Google Glasses, and the like.
The term “computer readable medium” as used herein refers to any medium that participates in providing instructions to the processor for execution. A computer readable medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical, magnetic disks, and magneto-optical disks, such as the hard disk or the removable media drive. Volatile media includes dynamic memory, such as the main memory. Transmission media includes coaxial cables, copper wire and fiber optics, including the wires that make up the bus. Transmission media may also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications.
As used herein the term “data network” or “network” shall mean an infrastructure capable of connecting two or more computers such as client devices either using wires or wirelessly allowing them to transmit and receive data. Non-limiting examples of data networks may include the internet or wireless networks or (i.e. a “wireless network”) which may include Wifi and cellular networks. For example, a network may include a local area network (LAN), a wide area network (WAN) (e.g., the Internet), a mobile relay network, a metropolitan area network (MAN), an ad hoc network, a telephone network (e.g., a Public Switched Telephone Network (PSTN)), a cellular network, or a voice-over-IP (VoIP) network.
As used herein, the term “database” shall generally mean a digital collection of data or information. The present invention uses novel methods and processes to store, link, and modify information such digital images and videos and user profile information. For the purposes of the present disclosure, a database may be stored on a remote server and accessed by a client device through the internet (i.e., the database is in the cloud) or alternatively in some embodiments the database may be stored on the client device or remote computer itself (i.e., local storage). A “data store” as used herein may contain or comprise a database (i.e. information and data from a database may be recorded into a medium on a data store).
In describing the invention, it will be understood that a number of techniques and steps are disclosed. Each of these has individual benefit and each can also be used in conjunction with one or more, or in some cases all, of the other disclosed techniques. Accordingly, for the sake of clarity, this description will refrain from repeating every possible combination of the individual steps in an unnecessary fashion. Nevertheless, the specification and claims should be read with the understanding that such combinations are entirely within the scope of the invention and the claims.
A novel system and methods for promoting medication adherence are discussed herein. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details.
The present disclosure is to be considered as an exemplification of the invention, and is not intended to limit the invention to the specific embodiments illustrated by the figures or description below.
The present invention will now be described by example and through referencing the appended figures representing preferred and alternative embodiments. As perhaps best shown by
In this example, the system 100 comprises at least one client device 400 (but preferably more than two client devices 400) configured to be operated by one or more users 101. Client devices 400 can be mobile devices, such as laptops, tablet computers, personal digital assistants, smart phones, and the like, that are equipped with a wireless network interface capable of sending data to one or more servers 300 with access to one or more data stores 308 over a network 105 such as a wireless local area network (WLAN). Additionally, client devices 400 can be fixed devices, such as desktops, workstations, and the like, that are equipped with a wireless or wired network interface capable of sending data to one or more servers 300 with access to one or more data stores 308 over a wireless or wired local area network 105. The system 100 may be implemented on at least one client device 400 and/or server 300 programmed to perform one or more of the steps described herein. In some embodiments, more than one client device 400 and/or server 300 may be used, with each being programmed to carry out one or more steps of a method or process described herein.
The system 100 is configured to promote medication adherence by a user 101 while also providing information to that user 101 and/or to one or more other users 101. A user 101 may include a first user 101A and a second user 101B. A first user 101A may comprise an individual that desires to reduce or prevent symptoms of a disease, such as Glaucoma, for themselves and may also be referred to as a patient. For the purposes of this disclosure a first user or patient 101A may include individuals under the care of a second user or vision care provider 101B and individuals not currently under the care of a second user or vision care provider 101B. A second user 101B may comprise an individual that may provide vision care to one or more first users 101A and may also be referred to as a vision care provider, optometrist, eye doctor, or other healthcare provider. In preferred embodiments, the system 100 may provide information and/or incentives to a patient 101A while promoting medication adherence for the patient 101A. In further preferred embodiments, the system 100 may provide information on the actions and activities of the patient 101A to the vision care provider 101B while promoting medication adherence for the patient 101A.
In preferred embodiments, the system 100 may be configured to promote medication adherence by reproducing visual field scotomas (areas of blind spots corresponding to glaucomatous disease) on the display screen input/output (I/O) interface 404 of the client device 400 being used by a patient 101A. The visual field scotomas may be reproduced on the client device 400 by blacking out or otherwise obstructing portions of the display screen 404 to mimic how a person suffering from a particular vision would see the display screen. Preferably, the size, opacity, and/or shape of the defects reproduced on the display screen 404 would increase, decrease, or otherwise change based on the medication adherence actions of the patient 101A using the client device 400. For example, as patients 101A use their medication, visit the doctor, or perform other medication adherence activities, the appearance, size, opacity, shape, and/or location of the portions of the display screen 404 that are blacked out or otherwise obstructed may change to mimic actual real glaucomatous defects and disease progression to the patient 101A when viewing the display screen 404.
The ability of the patient 101A to adhere to daily medication use and compliance with doctor visits may determine the appearance of the scotomas represented on the display screen 404. The less adherent the patient 101A is by missing a compliance event, such as by not taking medication, missing doctor appointments, and the like, portions of the display screen 404A may become blacked out or otherwise obstructed and/or increase in size to depict the scotomas in advanced time to show the patient 101A what their visual field looks like or may become like. Because glaucoma is so insidious and patients 101A are not compliant with medication because of a lack of symptoms, the novel system 100 and methods disclosed are able to show patients 101A their vision field loss with realistic and scientific representations of scotomas. Optionally, the more adherent the patient 101A is by a performing compliance event, such as by taking medication, completing doctor appointments, and the like, portions of the display screen 404A may cease to become blacked out or otherwise obstructed and/or decrease in size to depict the shrinking or disappearance of scotomas in advanced time, even though this is not medically possible, to show the patient 101A that their compliance is having a positive effect by reducing disease progression. In still further embodiments, the activities of the patient 101A while using the system 100 may result in the patient 101A being provided incentive information, such as coupons and special offers which may be redeemed for discounts on medication, discounts on copays or office visit costs, and the like.
While in some embodiments, the system 100 may receive medication access information that is self-reported by the patient 101A or a care giving party, via their client device 400, that describes if the patient 101A has taken or been administered the medication (performed a compliance event) corresponding to a provided reminder, in other embodiments, the system 100 may receive medication access information from a medication adherence device 150 (described in
Referring now to
The processor 302 is a hardware device for executing software instructions, such as the software instructions of the programs 320. The processor 302 may be any custom made or commercially available processor, a central processing unit (CPU), an auxiliary processor among several processors associated with the server 300, a semiconductor-based microprocessor (in the form of a microchip or chip set), or generally any device for executing software instructions. When the server 300 is in operation, the processor 302 is configured to execute software stored within the memory 310, to communicate data to and from the memory 310, and to generally control operations of the server 300 pursuant to the software instructions. The I/O interfaces 304 may be used to receive user input from and/or for providing system output to one or more devices or components. User input may be provided via, for example, a keyboard, touch pad, and/or a mouse. System output may be provided via a display device and a printer (not shown). I/O interfaces 304 may include, for example, a serial port, a parallel port, a small computer system interface (SCSI), a serial ATA (SATA), a fibre channel, Infiniband, iSCSI, a PCI Express interface (PCI-x), an infrared (IR) interface, a radio frequency (RF) interface, and/or a universal serial bus (USB) interface.
The network interface 306 may be used to enable the server 300 to communicate on a network, such as the Internet, the data network 105, the enterprise, and the like, etc. The network interface 306 may include, for example, an Ethernet card or adapter (e.g., 10BaseT, Fast Ethernet, Gigabit Ethernet, 10 GbE) or a wireless local area network (WLAN) card or adapter (e.g., 802.11a/b/g/n). The network interface 306 may include address, control, and/or data connections to enable appropriate communications on the network. A data store 308 may be used to store data. The data store 308 may include any of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, and the like)), nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, and the like), and combinations thereof. Moreover, the data store 308 may incorporate electronic, magnetic, optical, and/or other types of storage media. In one example, the data store 308 may be located internal to the server 300 such as, for example, an internal hard drive connected to the local interface 312 in the server 300. Additionally in another embodiment, the data store 308 may be located external to the server 300 such as, for example, an external hard drive connected to the I/O interfaces 304 (e.g., SCSI or USB connection). In a further embodiment, the data store 308 may be connected to the server 300 through a network, such as, for example, a network attached file server.
The memory 310 may include any of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)), nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, etc.), and combinations thereof. Moreover, the memory 310 may incorporate electronic, magnetic, optical, and/or other types of storage media. Note that the memory 310 may have a distributed architecture, where various components are situated remotely from one another, but can be accessed by the processor 302. The software in memory 310 may include one or more software programs, each of which includes an ordered listing of executable instructions for implementing logical functions. The software in the memory 310 may include a suitable operating system (O/S) 314 and one or more programs 320.
The operating system 314 essentially controls the execution of other computer programs, such as the one or more programs 320, and provides scheduling, input-output control, file and data management, memory management, and communication control and related services. The operating system 314 may be, for example Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10, Windows Server 2003/2008 (all available from Microsoft, Corp. of Redmond, Wash.), Solaris (available from Sun Microsystems, Inc. of Palo Alto, Calif.), LINUX (or another UNIX variant) (available from Red Hat of Raleigh, N.C. and various other vendors), Android and variants thereof (available from Google, Inc. of Mountain View, Calif.), Apple OS X and variants thereof (available from Apple, Inc. of Cupertino, Calif.), or the like. The one or more programs 320 may be configured to implement the various processes, algorithms, methods, techniques, etc. described herein.
Referring to
The processor 402 is a hardware device for executing software instructions, such as the software instructions of the programs 420. The processor 402 can be any custom made or commercially available processor, a central processing unit (CPU), an auxiliary processor among several processors associated with the client device 400, a semiconductor-based microprocessor (in the form of a microchip or chip set), or generally any device for executing software instructions. When the client device 400 is in operation, the processor 402 is configured to execute software stored within the memory 410, to communicate data to and from the memory 410, and to generally control operations of the client device 400 pursuant to the software instructions. In an exemplary embodiment, the processor 402 may include a mobile optimized processor such as optimized for power consumption and mobile applications.
The I/O interfaces 404 can be used to receive data and user input and/or for providing system output. User input can be provided via a plurality of I/O interfaces 404, such as a keypad, a touch screen, a camera, a microphone, a scroll ball, a scroll bar, buttons, bar code scanner, voice recognition, eye gesture, and the like. System output can be provided via a display device type I/O interface 404 or display screen 404A, such as a liquid crystal display (LCD), touch screen, and the like. The I/O interfaces 404 can also include, for example, a serial port, a parallel port, a small computer system interface (SCSI), an infrared (IR) interface, a radio frequency (RF) interface, a universal serial bus (USB) interface, and the like. The I/O interfaces 404 can include a graphical user interface (GUI) that enables a user to interact with the client device 400. Additionally, the I/O interfaces 404 may be used to output notifications to a user and can include a speaker or other sound emitting device configured to emit audio notifications, a vibrational device configured to vibrate, shake, or produce any other series of rapid and repeated movements to produce haptic notifications, and/or a light emitting diode (LED) or other light emitting element which may be configured to illuminate to provide a visual notification.
The radio 406 enables wireless communication to an external access device or network. Any number of suitable wireless data communication protocols, techniques, or methodologies can be supported by the radio 406, including, without limitation: RF; IrDA (infrared); Bluetooth; ZigBee (and other variants of the IEEE 802.15 protocol); IEEE 802.11 (any variation); IEEE 802.16 (WiMAX or any other variation); Direct Sequence Spread Spectrum; Frequency Hopping Spread Spectrum; Long Term Evolution (LTE); cellular/wireless/cordless telecommunication protocols (e.g. 3G/4G, etc.); wireless home network communication protocols; paging network protocols; magnetic induction; satellite data communication protocols; wireless hospital or health care facility network protocols such as those operating in the WMTS bands; GPRS; proprietary wireless data communication protocols such as variants of Wireless USB; and any other protocols for wireless communication. The data store 408 may be used to store data. The data store 408 may include any of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, and the like)), nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, and the like), and combinations thereof. Moreover, the data store 408 may incorporate electronic, magnetic, optical, and/or other types of storage media.
The memory 410 may include any of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)), nonvolatile memory elements (e.g., ROM, hard drive, etc.), and combinations thereof. Moreover, the memory 410 may incorporate electronic, magnetic, optical, and/or other types of storage media. Note that the memory 410 may have a distributed architecture, where various components are situated remotely from one another, but can be accessed by the processor 402. The software in memory 410 can include one or more software programs, each of which includes an ordered listing of executable instructions for implementing logical functions. In the example of
The operating system 414 essentially controls the execution of other computer programs, and provides scheduling, input-output control, file and data management, memory management, and communication control and related services. The operating system 414 may be, for example, LINUX (or another UNIX variant), Android (available from Google), Symbian OS, Microsoft Windows CE, Microsoft Windows 7 Mobile, iOS (available from Apple, Inc.), webOS (available from Hewlett Packard), Blackberry OS (Available from Research in Motion), and the like. The programs 420 may include various applications, add-ons, etc. configured to provide end user functionality with the client device 400. For example, exemplary programs 420 may include, but not limited to, a web browser, social networking applications, streaming media applications, games, mapping and location applications, electronic mail applications, financial applications, and the like. In a typical example, the end user typically uses one or more of the programs 420 along with a network such as the system 100.
The system 100 may comprise a system database 106 stored on one or more data stores 308, 408, preferably accessible to the incentivization application 421 and/or optionally accessible to the defect representation application 422 and/or communication module 423. In some embodiments, the system database 106 may comprise data and information on one or more users 101 such as data describing one or more first users or patients 101A and second users or vision care providers.
Data describing a patient 101A may include data on the amount of time the patient has used system 100, data inputted by the patient 101A into the system such as access codes, incentives earned by the patient 101A, medication compliance data of the patient 101A, incentives redeemed by the patient 101A, information viewed by the patient 101A, information not viewed by the patient 101A, location of the patient 101A, one or more vision care providers 101B associated with a patient 101A, prescribed medications of the patient 101A, or any other information descriptive of a patient 101A and/or the activities of the patient 101A.
Data describing a vision care provider 101B may include data and information describing one or more patients 101A, such as intraocular pressure (TOP), that a vision care provider 101B may input, and information desired to be displayed to one or more patients 101A that a vision care provider 101B may input, vision care provider 101B contact information and other information describing a vision care provider 101B, incentives desired to be displayed to one or more patients 101A that a vision care provider 101B may select or input, one or more patients 101A associated with a vision care provider 101B, medications prescribed to a patient 101A by the vision care provider 101B, medication directions, or any other information descriptive of a vision care provider 101B and/or the activities of the vision care provider 101B.
In preferred embodiments, a system database 106 may comprise data describing treatment plan information for each first user or patient 101A of the system. Treatment plan information for a patient 101A may comprise information describing a daily number of compliance events for a medication of the first user or patient 101A. A compliance event may generally describe a dose of a medication and a time or time period at which the dose of a medication is to be taken by or otherwise provided to the patient 101A. For example, a treatment plan for a first medication may include that one drop of a first medication is to be instilled into each eye of the patient 101A three times a day approximately eight hours apart at approximately 6 AM, 2 PM, and 10 PM and each dose may be taken in a time period such as plus or minus one hour to each dosing time. In this example, the treatment plan comprises three daily compliance events for the medication so that if the medication is not used within plus or minus one hour to a dosing time, the system 100 may record this as a missed compliance event. Conversely, if the medication is used within plus or minus one hour to a dosing time, the system 100 may record this as a performed compliance event.
In further preferred embodiments, the system 100 may be configured to track or tally a cumulative number of missed and/or performed compliance events for each patient 101A and preferably for each medication of each patient 101A in one or more system databases 106. The cumulative number of missed and/or performed compliance events for each patient 101A may be stored in one or more system databases 106 which may be in a data store 408 of a client device 400 associated with the patient 101A and/or which may be in a data store 308 of a server 300 of the system 300. Data describing missed and/or performed compliance events for each patient 101A may be synced between system databases 106 when client devices 400 and servers 300 are in communication.
In further preferred embodiments, the system 100 may be configured to track the intraocular pressure of one or both eyes for each patient 101A of the system 100 in one or more system databases 106. Preferably, intraocular pressure measurements may be provided to the system 100 via the treatment plan information which may be created by a second user or vision care provider 101B or their agent, although the intraocular pressure of one or both eyes for a patient 101A may be provided or uploaded to the system 100 via any other method.
The incentivization application 421 may be configured to send, receive, access, modify, and otherwise manipulate data in a system database 106. In some embodiments, the incentivization application 421 may be configured to track and record activities of a patient 101A while using the system 100. In some embodiments, the incentivization application 421 may track activities by a patient 101A such as taking medication, completing doctor appointments, using a client device 400 of the system 100 and the like, which may describe how adherent the patient 101A is to medication and treatment. In further embodiments, the incentivization application 421 may track activities by a patient 101A such as not taking medication, not completing doctor appointments, not using a client device 400 of the system 100 and the like, which may describe how adherent the patient 101A is to medication and treatment.
In some embodiments, the incentivization application 421 may be configured to associate one or more patients 101A with one or more vision care providers 101B. Once a patient 101A is associated with the vision care provider 101B, the incentivization application 421 may allow data associated with the vision care provider 101B to be provided to the patient 101A, such as through the client device 400 of the patient 101A, and/or data associated with the patient 101A to be provided to the vision care provider 101B, such as through the client device 400 of the vision care provider 101B.
In some embodiments, the incentivization application 421 may be configured to receive data provided by or selected by a vision care provider 101B and to associate that data with the vision care provider 101B in the system database 106. The data or information may include financial incentives, such as coupons, offers, discounts, medical information of a patient 101A, medication of a patient 101A, medication and/or treatment directions for a patient 101A and the like, which may optionally be provided to a patient 101A which is associated with the vision care provider 101B in the system database 106. Also, the data may include notices, such as appointment reminders, communications, such as messages to one or more patients 101A, or any other type of message a vision care provider 101B may desire to have associated with themselves in the system database 106.
In some embodiments, the incentivization application 421 may be configured to retrieve data associated with one or more patients 101A in the system database 106 and to provide the data to a vision care provider 101B such as through the client device 400 of the vision care provider 101B. In preferred embodiments, the incentivization application 421 may be configured to retrieve and display to a vision care provider 101B data associated with one or more patients that are associated with that vision care provider 101B.
The defect representation application 422 may be configured to reproduce visual field scotomas (areas of blind spots corresponding to glaucomatous disease) on the display screen input/output (I/O) interface 404 of the client device 400 being used by a patient 101A. The visual field scotomas may be reproduced on the client device 400 by blacking out or otherwise obstructing portions of the display screen 404 to mimic how a person suffering from a particular vision would see the display screen. The defect representation application 422 may determine if a patient 101A has missed and/or performed one or more compliance events, and preferably based on a cumulative number of missed compliance events, the defect representation application 422 may form one or more blind spots 110 on a display screen 404 which may visually obscure information that would otherwise be visible on the display screen 404 where the blind spot 110 is. The defect representation application 422 may be configured to control the size, opacity, position, and/or shape of one or more blind spots 110 or defects reproduced on the display screen 404 to increase, decrease, or otherwise change based on the medication adherence actions of the patient 101A using the client device 400 which may be provided to the defect representation application 422 by the incentivization application 421. The defect representation application 422 may be configured to control the individual pixels of the display screen 404 to reproduce visual field scotomas on the display screen 404. Preferably, blind spots 110 produced on a display screen 404A of a client device 400 may generally comprise a shape of a glaucoma associated scotoma as shown in
The defect representation application 422 may be configured to generate one or more blind spots 110 on the display screen 404A of the client device 400 of the user 101A based on a cumulative number of missed compliance events and/or a cumulative number of performed compliance events. In some embodiments, the defect representation application 422 may be configured to generate one or more blind spots 110 on the display screen 404A in response or in proportion to an increasing cumulative number of missed compliance events for a patient 101A on their respective client device 400. In further embodiments, the defect representation application 422 may be configured to increase the size of one or more blind spots 110 on the display screen 404A in response or in proportion to an increasing cumulative number of missed compliance events for a patient 101A on their respective client device 400. In still further embodiments, the defect representation application 422 may be configured to increase the opacity (such as from being somewhat transparent so some information can be seen through or in spite of the blind spot 110 to being less transparent) of one or more blind spots 110 on the display screen 404A in response or in proportion to an increasing cumulative number of missed compliance events for a patient 101A on their respective client device 400. In some embodiments, the defect representation application 422 may be configured to increase the size and/or opacity of one or more blind spots 110 on a display screen 404A by approximately between one and 100 pixels, and preferably between one and five pixels, for each missed compliance event.
In still further embodiments, the defect representation application 422 may be configured to cease generating one or more blind spots 110 on the display screen 404A in response or in proportion to an increasing cumulative number of performed compliance events for a patient 101A on their respective client device 400. In yet further embodiments, the defect representation application 422 may be configured to decrease the size of one or more blind spots 110 on the display screen 404A in response or in proportion to an increasing cumulative number of performed compliance events for a patient 101A on their respective client device 400. In still further embodiments, the defect representation application 422 may be configured to decrease the opacity (such as from being less transparent to being more transparent so more information can be seen through or in spite of the blind spot 110) of one or more blind spots 110 on the display screen 404A in response or in proportion to an increasing cumulative number of performed compliance events for a patient 101A on their respective client device 400. In some embodiments, the defect representation application 422 may be configured to decrease the size and/or opacity of one or more blind spots 110 on a display screen 404A by approximately between one and 100 pixels, and preferably between one and five pixels, for each missed compliance event.
In still further embodiments, the defect representation application 422 may be configured to generate one or more blind spots 110 on the display screen 404A of the client device 400 of the user 101A based on an intraocular pressure measurement for the patient 101A increasing from the previous most recent intraocular pressure measurement to the most recent intraocular pressure measurement. In some embodiments, the defect representation application 422 may be configured to generate one or more blind spots 110 on the display screen 404A in response or in proportion to an increase between a first intraocular pressure measurement (previous most recent intraocular pressure measurement) and a second intraocular pressure measurement (most recent intraocular pressure measurement) for a patient 101A on their respective client device 400. In further embodiments, the defect representation application 422 may be configured to increase the size and/or opacity of one or more blind spots 110 on the display screen 404A in response or in proportion to an increase between a first intraocular pressure measurement (previous most recent intraocular pressure measurement) and a second intraocular pressure measurement (most recent intraocular pressure measurement) for a patient 101A on their respective client device 400.
In yet further embodiments, the defect representation application 422 may be configured to cease generating one or more blind spots 110 on the display screen 404A of the client device 400 of the user 101A based on an intraocular pressure measurement for the patient 101A decreasing from the previous most recent intraocular pressure measurement to the most recent intraocular pressure measurement. In still further embodiments, the defect representation application 422 may be configured to cease generating one or more blind spots 110 on the display screen 404A in response or in proportion to a decrease between a first intraocular pressure measurement (previous most recent intraocular pressure measurement) and a second intraocular pressure measurement (most recent intraocular pressure measurement) for a patient 101A on their respective client device 400. In further embodiments, the defect representation application 422 may be configured to decrease the size and/or opacity of one or more blind spots 110 on the display screen 404A in response or in proportion to a decrease between a first intraocular pressure measurement (previous most recent intraocular pressure measurement) and a second intraocular pressure measurement (most recent intraocular pressure measurement) for a patient 101A on their respective client device 400.
The communication module 423 be configured to govern electronic communication between one or more client devices 400, data stores 308, 408, and/or severs 300. Data from severs 300, data stores 308, 408, and client devices 400 may be received by the communication module 423 which may then electronically communicate the data to the incentivization application 421 and/or defect representation application 422. Likewise, data from the incentivization application 421 and/or defect representation application 422 may be received by the communication module 423 which may then electronically communicate the data to severs 300, data stores 308, 408, and client devices 400. In some embodiments, the communication module 423 may govern the electronic communication by initiating, maintaining, reestablishing, and terminating electronic communication between one or more data stores 308,408, client devices 400, and servers 300. In further embodiments, the communication module 423 may control the network interface 306 of the server 300 and/or radio 406 of a client device 400 to send and receive data to and from one or more data stores 308, client devices 400, and other servers 300 through a network connection 104 over a network 105.
In some embodiments, the method 500 may start and the vision care provider 101B may diagnose the patient 101A as being either a glaucoma suspect or glaucoma patient in step 501. The term glaucoma may include all variations of the optic neuropathy, i.e. primary open glaucoma, narrow angle glaucoma, low tension glaucoma, normal tension glaucoma, pigmentary dispersion glaucoma, uveitic glaucoma, pseudoexfoliation glaucoma, neovascular glaucoma, etc.
In step 502, the patient's 101A intraocular pressure (TOP) information and/or other medical information describing the patient 101A may be entered by the vision care provider 101B. Information and input may be received through a keyboard I/O interface 404, a microphone I/O interface 404, or any other I/O interface 404 of a client device 400 operated by the vision care provider 101B which may then be communicated to an incentivization application 421 by a communication module 423. In some embodiments, the information may include: incentives, such as discounts, special offers, coupons, and the like; educational information, such as information on glaucoma, and other health and wellness information; information describing the vision care provider 101B, such as the vision care provider's 101B contact information (such as office telephone number and website address), credentials, insurance plans accepted, address, pricing information; or any other information which may be provided by a vision care provider 101B.
Continuing to step 503, the current medication noted or prescribed by the vision care provider 101B to the patient 101A may be entered by the vision care provider 101B as treatment plan information preferably comprising a daily number of compliance events for a medication of a patient 101A and preferably comprising an intraocular pressure measurement for the patient 101A. Information and input may be received through a keyboard I/O interface 404, a microphone I/O interface 404, or any other I/O interface 404 of a client device 400 operated by the vision care provider 101B which may then be communicated to an incentivization application 421 by a communication module 423.
In step 504, the user 101A may be presented with a first medication that was prescribed to them by the vision care provider 101B on the client device 400 by the incentivization application 421. At decision block 505, the patient 101A may then indicate that they have taken the medication and data describing this may be sent to a system database 106 accessible to the system 100 by the communication module 423. At decision block 505 if the patient 101A indicates that they have not taken the medication, the method 500 may proceed to providing a reminder system 506 comprising one or more audio and/or visual reminders that may be provided to the patient 101A through an I/O interface of the client device 400 by the incentivization application 421, where at a later point in time, the patient 101A will be again presented with a medication confirmation. If after 3 attempts or a number of attempts designated by the user 101A or provider 101B, the patient 101A has not used the medication, this information may be sent to a system database 106 accessible to the system 100 by the communication module 423. Optionally, the vision care provider's 101B voice 515 or another alternate voice is recorded which may then be incorporated. The voice may be used periodically, such as throughout the day, to remind the patient 101A to use their medication.
In step 507, the user 101A may be presented with a second medication that was prescribed to them by the vision care provider 101B on the client device 400 by the incentivization application 421. At decision block 508, the patient 101A may then indicate that they have taken the medication and data describing this may be sent to a system database 106 accessible to the system 100 by the communication module 423. At decision block 508 if the patient 101A indicates that they have not taken the medication, the method may proceed to providing a reminder system 509 comprising one or more audio and/or visual reminders may be provided to the patient 101A through an I/O interface of the client device 400 by the incentivization application 421, where at a later point in time, the patient 101A will be again presented with a medication confirmation. If after 3 attempts or a number of attempts designated by the user 101A or provider 101B, the patient 101A has not used the medication, this information may be sent to a system database 106 accessible to the system 100 by the communication module 423. Optionally, the vision care provider's 101B voice 515 or another alternate voice is recorded which may then be incorporated. The voice may be used periodically, such as throughout the day, to remind the patient 101A to use their medication.
In step 510, the medication adherence information may be used to generate representative scotomas or blind spots 110 based upon the adherence to the medication(s) and/or based on any other actions by the patient 101A. Optionally, the information may be collected and distributed by a central server 300. Representative examples of blind spots 110 displayed on the display screen 404 of a client device are shown in
In step 511 the one or more blind spots 110 may be positioned on the display screen 404 of the client device 400 of the patient 101A by the defect representation application 422. In some embodiments, this may include gamification wherein the blind spots 110 may be positioned on the display screen 404 of the client device 400 which is being used for gaming or other entertainment or amusement purposes. Gamification is the term applied to using games to increase a form of adherence to medication use. Gamification is the use of game elements and game design techniques in a non-game context. Game elements are not the game itself, but the use of points, quests, avatars, resource collection, progression, social graph, and levels. In some embodiments, blind spots 110 may be configured in the shape of actual glaucoma scotomas on proprietary games, as well as games available as free domain. For example, the blind spots 110 in the shape of scotomas may appear in a shooting game, a shape fitting tetris type game, a driving game, and a bird navigating game during gamification.
The blind spots 110 may obscure the patient's 101A ability to observe portions of the game displayed on the client device 400 thereby hindering the patient's ability to play the game. In further embodiments, this may include gamblification wherein the blind spots 110 may be positioned on the display screen 404 of the client device 400 which is being used for gambling games or other wagering entertainment or amusement purposes. The blind spots 110 may obscure the patient's 101A ability to observe portions of the gambling games displayed on the client device 400 thereby hindering the patient's ability to play the gambling games. In further embodiments, feedback may be provided to the patient 101A, such as daily, in step 514.
Optionally, the method 500 may proceed to step 512 in which periodic, such as monthly or quarterly, feedback and other patient compliance information may be provided to the vision care provider 101B by the incentivization application 421. This information may include patient compliance with medication regimes and any other information describing the activities of the patient 101A while using the system 100. Monthly and quarterly feedback may be provided to the vision care provider 101B and relevant parties to include insurance companies, medical groups, the pharmacy, etc. as to the compliance of the patient 101B. This compliance may be calculated as an overall percentage of: Total doses taken/Total doses prescribed during a time period such as 1 week, 1 month, 3 months, or the like.
Optionally, the method 500 may proceed to step 513 in which incentive or reward information may be provided to patient 101A upon completing medication compliance or other activities with the system 100 by the incentivization application 421. This incentive information may include coupons and special offers which may be redeemed for discounts on medication, discounts on copays or office visit costs, and the like. Upon completion of steps 512, 513, and/or 514, the method may continue to any previously discussed step or the method 500 may finish.
In some embodiments, the method 600 may start and the vision care provider 101B may diagnose the patient 101A as being either a glaucoma suspect or glaucoma patient. The term glaucoma may include all variations of the optic neuropathy, i.e. primary open glaucoma, narrow angle glaucoma, low tension glaucoma, normal tension glaucoma, pigmentary dispersion glaucoma, uveitic glaucoma, pseudoexfoliation glaucoma, neovascular glaucoma, etc. The vision care provider 101B may provide treatment plan information via a client device 400 so that treatment plan information may be received by the system 100 in step 602. In preferred embodiments, the treatment plan information may include a daily number of compliance events for a medication for the patient 101A. In further preferred embodiments, the treatment plan information may include information describing one or more intraocular pressure measurements of an eye of the patient 101A, such as a first intraocular pressure measurement of an eye of the patient 101A and a second intraocular pressure measurement of the eye of the patient 101A. The treatment plan information may be communicated to an incentivization application 421 by a communication module 423. In some embodiments, the treatment plan information may include: incentives, such as discounts, special offers, coupons, and the like; educational information, such as information on glaucoma, and other health and wellness information; information describing the vision care provider 101B, such as the vision care provider's 101B contact information (such as office telephone number and website address), credentials, insurance plans accepted, address, pricing information; or any other information which may be provided by a vision care provider 101B.
In step 603, a reminder may be provided to the patient 101A for each daily compliance event via the respective client device 400 of the patient 101A. Preferably, the reminder may comprise a visual reminder displayed on the display screen 404A optionally comprising a picture of the medication, an audible reminder provided by a speaker-type IO interface 404 optionally comprising a tone, a vocal message, song, or the like, and/or a tactile reminder provided by a vibration-type I/O interface 404.
While in some embodiments, the system 100 may receive medication access information that is self-reported by the patient 101A or a care giving party via their client device 400 that describes if the patient 101A has taken or been administered the medication (performed a compliance event) corresponding to a provided reminder, in other embodiments, the system 100 may receive medication access information from a medication adherence device 150 as described in
In decision block 605, the defect representation application 422 may determine if the patient or first user 101A has missed a compliance event. If the defect representation application 422 determines that the patient or first user 101A has not missed a compliance event then the defect representation application 422 may determine that the patient or first user 101A has performed the compliance event. In some embodiments, the defect representation application 422 may determine if the patient or first user 101A has missed a compliance event using self-reported medication access information provided by the patient 101A via their client device 400. In preferred embodiments, the defect representation application 422 may determine if the patient or first user 101A has missed a compliance event using medication access information provided by a medication adherence device 150. For example, if an access switch 170 indicates that the medication adherence device 150 was not uncoupled from the medicine container 190 in a time period associated with a reminder, the defect representation application 422 may determine that the patient or first user 101A has missed a compliance event. Conversely, if an access switch 170 indicates that the medication adherence device 150 was uncoupled from the medicine container 190 in a time period associated with a reminder, the defect representation application 422 may determine that the patient or first user 101A has performed a compliance event. As another example, if a inertial measurement unit (IMU) 171 provided movement information, positional information, or the like that indicates that the medication adherence device 150 was not moved in one or more motions that are associated with the medication adherence device 150 being uncoupled from the medicine container 190 or motions that are associated with a patient 101A using the medication in a time period associated with a reminder, the defect representation application 422 may determine that the patient or first user 101A has missed a compliance event. Conversely, if a inertial measurement unit (IMU) 171 provided movement information, positional information, or the like that indicates that the medication adherence device 150 was moved in one or more motions that are associated with the medication adherence device 150 being uncoupled from the medicine container 190 or motions that are associated with a patient 101A using the medication in a time period associated with a reminder, the defect representation application 422 may determine that the patient or first user 101A has performed a compliance event.
In step 606, the defect representation application 422 may identify cumulative number of missed compliance events. Preferably, the defect representation application 422 may track or tally the number of missed compliance events as determined in decision block 605.
Continuing to step 607, the defect representation application 422 may produce one or more blind spots on the display screen 404A of the client device 400 of the patient 101A based on the cumulative number of missed compliance events identified in step 606. In preferred embodiments, the defect representation application 422 may produce one or more blind spots on the display screen 404A in which a blind spot 110 increases in size in proportion to an increasing cumulative number of missed compliance events identified in step 606 versus a blind spot 110 produced when the cumulative number of missed compliance events was a lesser number. In further embodiments, the defect representation application 422 may increase the size of a blind spot 110 produced on the display screen 404A by approximately between one and one hundred pixels, and more preferably between one and five pixels, for each missed compliance event. In still further embodiments, the defect representation application 422 may increase the opacity of a blind spot 110 produced on the display screen 404A by approximately between one and one hundred pixels, and more preferably between one and five pixels, and/or between one and two hundred fifty six intensity levels for each missed compliance event.
In optional step 608, the defect representation application 422 may identify cumulative number of performed compliance events. Preferably, the defect representation application 422 may track or tally the number of performed compliance events as determined in decision block 605.
Continuing to optional step 609, the defect representation application 422 may remove one or more blind spots 110, decrease the size of a blind spot 110, and/or decrease the intensity level of a blind spot 110 produced on the display screen 404A of the client device 400 of the patient 101A based on the cumulative number of performed compliance events identified in step 608. In preferred embodiments, the defect representation application 422 may produce one or more blind spots on the display screen 404A in which a blind spot 110 decreases in size and/or opacity in proportion to an increasing cumulative number of performed compliance events identified in step 606 versus a blind spot 110 produced when the cumulative number of performed compliance events was a lesser number. In further embodiments, the defect representation application 422 may decrease the size and/or opacity of a blind spot 110 produced on the display screen 404A by approximately between one and one hundred pixels, and preferably between one and five pixels, and/or between one and two hundred fifty six intensity levels for each performed compliance event. After step 607 and/or after optional step 609, the method 600 may finish 610.
Referring now to
In some embodiments, the system 100 may produce one or more blind spots 110 in the general shape of one or more glaucoma associated scotomas for gamblification or gamification. Gamblification may refer to using blind spots 110 to promote medication adherence via a client device 400 in which the blind spots 110 may be shaped as glaucoma associated scotomas which obscure portions of a game of chance or gambling type of program or application from being observed on the display screen 404A of the client device 400. The gamblification examples of
In some embodiments, the device 150 may comprise one or more housings, such as a top housing 151 and a bottom housing 152 which may contain one or more other elements of the device 150. The bottom housing 152 may be configured to be removably coupled to portions of a medicine container 190, such as medicine container top 191. Preferably, the bottom housing 152 may comprise a container cavity 153 and a housing cavity 154. The container cavity 153 may be shaped to receive portions of a medicine container 190, such as the medicine container top 191. In some embodiments, the container cavity 153 may be generally cylindrical in shape and may comprise a width dimension (W1) and a height dimension (H1) as shown in
In some embodiments, the medicine container top 191 of a medicine container 190 may be removably coupled to the device 150 by inserting the medicine container top 191 into the container cavity 153 where it may be frictionally retained. In other embodiments, the medicine container 190 may be removably coupled to the device 150 with a threaded or turn-to-lock coupling method, such as by threading portions of the medicine container top 191 into the container cavity 153. In alternative embodiments, a medicine container 190 may be removably coupled to the device 150 with any suitable removable coupling method which preferably enables portions of the medicine container top 191 to be received into the container cavity 153.
The housing cavity 154 may be shaped to receive one or more other elements of the device 150 and to preferably sequester the elements from contact with the medicine within the medicine container 190. In some embodiments, the housing cavity 154 may be bound at the lower end (end closest to the container cavity 153) with a seal 155 and bounded at the top end (end farthest from the container cavity 153) with the top housing 151. The top housing 151 may be optionally removably coupled to the bottom housing 152, such as with threading or a friction fit, so that one or more elements within the housing cavity 154 may be accessed, or optionally non-removably coupled, such as with adhesive or heat bonding. In some embodiments, the top housing 151 may comprise one or more grooves 157 or channels into which one or more complementarily shaped teeth 158, such as which may be positioned on a circuit board-type local interface 168 of a processing unit 160, may be positioned. The grooves 157 and teeth 158 may be used to position and or couple one or more elements of the device 150 within the housing cavity 154.
In some embodiments, the device 150 may comprise a processing unit 160 which may be disposed within the housing cavity 154, and the processing unit 160 may be configured to detect opening and closing activity of the medicine container 190 by a patient 101A or other individual. In some embodiments, the device 150 may comprise an access switch 170 which may be configured to generate medication access information when the housing is uncoupled from the medicine container top In preferred embodiments, the processing unit 160 may comprise an access switch 170 which may detect the physical opening and closing activity of the medicine container 190 which may be communicated to a processor 161 of the processing unit 160. In some embodiments, an access switch 170 may comprise a pressure sensing switch that may be configured to detect the presence or absence of pressure. Preferably, when a medicine container top 191 is inserted into the container cavity 153, the upper perimeter 192 of the medicine container top 191 may come into contact with one or more elements of the device 150 and this contact may be detected by the access switch 170 to detect opening and closing activity of the medicine container 190. For example, when the medicine container top 191 is inserted into the container cavity 153, the upper perimeter 192 of the medicine container top 191 may contact the seal 155 to press the seal 155 or another element proximate to the seal 155 into contact with the access switch 170, and the processor 161 may determine that the medicine container 190 is closed or not open as shown in
In some embodiments, the device 150 may comprise a seal 155 and an optional washer 156 which may be movable within the housing cavity 154. A seal 155 may comprise any material which may contact the upper perimeter 192 of a medicine container top 191 when the medicine container top 191 is fully inserted (inserted so as to contact the seal 155) into the container cavity 153. Preferably, the seal 155 may be made from or comprise an elastomer material such as rubber, flexible plastic, or silicone, which may enable the seal 155 to form a water-tight seal with the upper perimeter 192. A washer 156, preferably made from plastic or any other material, may optionally be placed between the seal 155 and the access switch 170. The washer 156 may be movable between a first position 181 (
In preferred embodiments, an access switch 170 may be offset from center in the housing cavity 154, so that the access switch 170 is not centrally positioned within the housing 152, and the device 150 may comprise a seal 155 and a washer 156. Generally, the device 150 may comprise a line of symmetry or central access 180 (
In some embodiments and in the present example, the device 150 can be a digital device that, in terms of hardware architecture, comprises a processing unit 160 which optionally includes a processor 161, input/output (I/O) interfaces 162, a radio module 163, and memory 165. It should be appreciated by those of ordinary skill in the art that
The processor 161 is a hardware device for executing software instructions. The processor 161 can be any custom made or commercially available processor, a central processing unit (CPU), an auxiliary processor among several processors associated with the processing unit 160, a semiconductor-based microprocessor (in the form of a microchip or chip set), or generally any device for executing software instructions. When the processing unit 160 is in operation, the processor 161 is configured to execute software stored within the memory 165, to communicate data to and from the memory 165, and to generally control operations of the device 150 pursuant to the software instructions and/or from instructions received from a server 300 or a client device 400. In an exemplary embodiment, the processor 161 may include a mobile optimized processor such as optimized for power consumption and mobile applications.
The I/O interfaces 162 can be used to by a user to provide input or to receive information from one or more sensors or switches. The I/O interfaces 162 can also include, for example, buttons, knobs, switches, LED indicator lights, LED display, LCD display, a serial port, a parallel port, a small computer system interface (SCSI), an infrared (IR) interface, a radio frequency (RF) interface, a universal serial bus (USB) interface, and the like.
A radio module 163 operable by the processor 161 enables wireless communication to an external access device, such as to one or more servers 300 and client devices 400, or a network 105. In some embodiments, a radio module 163 may operate on with carrier frequencies such as are commonly used in commercially available RF modules, including those in the industrial, scientific and medical (ISM) radio bands such as 433.92 MHz, 915 MHz, and 2400 MHz and/or frequencies available for unlicensed use such as 315 MHz and 868 MHz. The radio module 163 may comply with a defined protocol for RF communications such as Zigbee, Bluetooth low energy, or Wi-Fi, or they may implement a proprietary protocol. Any number of suitable wireless data communication protocols, techniques, or methodologies can be supported by the radio module 163, including, without limitation: RF; IrDA (infrared); Bluetooth; ZigBee (and other variants of the IEEE 802.15 protocol); IEEE 802.11 (any variation); IEEE 802.16 (WiMAX or any other variation); Direct Sequence Spread Spectrum; Near-Field Communication (NFC); Frequency Hopping Spread Spectrum; Long Term Evolution (LTE); cellular/wireless/cordless telecommunication protocols (e.g. 3G/4G, etc.); wireless home network communication protocols; paging network protocols; magnetic induction; satellite data communication protocols; wireless hospital or health care facility network protocols such as those operating in the WMTS bands; GPRS; proprietary wireless data communication protocols such as variants of Wireless USB; and any other protocols for wireless communication.
The memory 165 may include any of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)), nonvolatile memory elements (e.g., ROM, NAND Flash, EEPROM, hard drive, etc.), One-Time Programmable Memory (OTP), and combinations thereof. Moreover, the memory 165 may incorporate electronic, magnetic, optical, and/or other types of storage media. Note that the memory 165 may have a distributed architecture, where various components are situated remotely from one another, but can be accessed by the processor 161 or optionally integral to the processor 161. The software in memory 165 can include one or more software programs, each of which includes an ordered listing of executable instructions for implementing logical functions. In the example of
In some embodiments, the device 150 may comprise an inertial measurement unit (IMU) 171 which may provide medication access information describing movement of the device 150. An IMU 171 is an electronic device that measures and reports a body's specific force, angular rate, and sometimes the magnetic field surrounding the body, using a combination of accelerometers and gyroscopes, sometimes also magnetometers. An IMU 171 works by detecting linear acceleration using one or more accelerometers and rotational rate using one or more gyroscopes, preferably as 6-axis. Some also include a magnetometer which is commonly used as a heading reference. Typical configurations contain one accelerometer, gyro, and magnetometer per axis for each of the three vehicle axes: pitch, roll and yaw. An IMU 171 may be configured to communicate position data, orientation data, position change data, and/or orientation change data about the device 150 to a processor 161, such as when the housing 152 is moved by being displaced from a medicine container top 191 at a specific time period. In preferred embodiments, an IMU 171 may provide data to the processor 161 which describes twisting and/or turning motions of the device 150, and a medicine container 190 coupled thereto, and this data may be used by the processor 161 to determine if the medicine is being taken or administered to the patient 101A associated with the medicine container 190.
In some embodiments, an IMU 171 may comprise a micro electro-mechanical system (MEMS) gyroscope. In other embodiments, an IMU 171 may comprise a fiber optic gyroscope (FOG) gyroscope, a hemispherical resonator gyroscope (HRG), a vibrating structure gyroscope (VSG) or a Coriolis Vibratory Gyroscope (CVG), a dynamically tuned gyroscope (DTG), a ring laser gyroscope (RLG), a London moment gyroscope, a tilt sensor such as a MEMS tilt sensor, any other type of tilt sensor, or any other suitable device that is able to measure and electrically communicate tilt data, positional data, and/or orientation data. In further embodiments, an IMU 171 may comprise any type of accelerometer including capacitive accelerometers, piezoelectric accelerometers, piezo-resistive accelerometers, hall effect accelerometers, magneto resistive accelerometers, heat transfer accelerometers, micro-electro mechanical system (MEMS) accelerometers, NANO technology accelerometers, or any other suitable device that is able to measure acceleration and to electrically communicate acceleration data.
In some embodiments, the device 150 may comprise a power source 172 which may provide electrical power to any component that may require electrical power. A power source 172 may comprise a battery, such as a lithium ion battery, nickel cadmium battery, alkaline battery, or any other suitable type of battery, a fuel cell, a capacitor, a super capacitor, or any other type of energy storing and/or electricity releasing device. In further embodiments, a power source 172 may comprise a power cord, kinetic or piezo electric battery charging device, a solar cell or photovoltaic cell, and/or inductive charging or wireless power receiver. In further embodiments, a power source 172 may comprise a power charging and distribution module which may be configured to control the recharging of the power source 172, discharging of the power source 172, and/or distribution of power to one or more components of the device that may require electrical power.
In some embodiments, the device 150 may comprise an indicator element 173 which may be configured to visually apprise a user 101 of the status of one or more elements of the device 150 and/or of one or more conditions that the device 150 is in. For example, if all elements of the device 150 are working properly, a light emitting type of indicator element 173, such as a LED light, may be operated by the processor 161 to emit green light. As another example, an indicator element 173 may be configured to visually apprise a user 101 of the status or charge level of a power source 172. Optionally, an indicator element 173 may be configured as a light emitting element which may be used to provide visual reminders to a patient 101A. To provide visual information to a user 101, embodiments of an indicator element 173 can be implemented with one or more light emitting elements or other display devices, e.g., a LED (light emitting diode) display or LCD (liquid crystal display) monitor, for displaying information.
In some embodiments, the device 150 may comprise a vibration device 174. Optionally, a vibration device 174 may be configured as a speaker which may be used to provide audible reminders to a patient 101A, and/or a vibration device 174 may be configured as a buzzer or shaking device which may be used to provide tactile reminders to a patient 101A. In further embodiments, a vibration device 174 may comprise a long life brushless (BLDC) vibration motor, a coin or pancake vibration motor, an encapsulated vibration motor, an enclosed vibration motor, a pager motor, an eccentric rotating mass (ERM) motor, a linear resonant actuator (LRA), a printed circuit board (PCB) mounted vibration motor, or any other electrical device capable of producing a series of rapid and repeated movements. In further embodiments, a vibration device 174 may comprise a speaker or sound emitting type of vibration device 174, such as a buzzer, a piezoelectric sound producing device, a dielectric elastomer sound producing device, a buzzer, a moving coil loudspeaker, an electrostatic loudspeaker, an isodynamic loudspeaker, a piezo-electric loudspeaker, or any other device capable of producing one or more sounds.
In some embodiments, the method 800 may start preferably after a treatment plan for the patient 101A has been created in step 503 of the method of promoting medication adherence 500 detailed in
In step 802, the user 101A may be presented with a reminder to take a first medication that was prescribed to them by the vision care provider 101B on the client device 400 by the incentivization application 421. At decision block 804, the system 100 may determine if the medication adherence device 150 associated with the medicine container 190 of the first medicine was accessed or opened via the access switch 170 of the device 150. If the medicine container 190 was not accessed, the method 800 may continue to step 801 and another reminder may be provided to the patient 101A.
If the medicine container 190 was accessed, the method 800 may continue to decision block 805 and the system 100 may determine if the patient 101A performed a compliance event (by taking or being administered the first medication) or if the patient 101A missed a compliance event (by not taking or not being administered the first medication). Decision block 805 may be used to prevent false performed compliance events. Preferably, the system 100 may use positional information provided by the inertial measurement unit (IMU) 171 of the device 150 for the determination. The accelerations and positional information provided by the IMU 171 may be used by a processor of the system 100 to differentiate between performed compliance events and missed compliance events, such as simply opening and closing (coupling and uncoupling) the device 150 from its respective medicine container 190 as detected solely by an access switch 170. If the system 100 determines that the patient 101A has performed a compliance event, the method 800 may continue to step 807 in which the performed compliance data may be transmitted by a device 150 to a client device 400 and/or server 300 or transmitted by a client device 400 to a server 300, and the method 800 may also continue to step 808 in which the system database 106 may be updated or otherwise provided with the performed compliance data for the patient 101A.
If the patient 101A missed a compliance event or after 3 attempts or a number of attempts designated by the user 101A or provider 101B, the patient 101A has not used the medication, the system 100 may determine that the patient 101A has missed the compliance event and the method may proceed to step 809. In step 809, the missed compliance data may be transmitted by a device 150 to a client device 400 and/or server 300 or transmitted by a client device 400 to a server 300, and the system database 106 may be updated or otherwise provided with the missed compliance data for the patient 101A.
In step 803, the user 101A may be presented with a reminder to take a second medication that was prescribed to them by the vision care provider 101B on the client device 400 by the incentivization application 421. At decision block 804, the system 100 may determine if the medication adherence device 150 associated with the medicine container 190 of the second medicine was accessed or opened via the access switch 170 of the device 150. If the medicine container 190 was not accessed, the method 800 may continue to step 801 and another reminder may be provided to the patient 101A.
If the medicine container 190 was accessed, the method 800 may continue to decision block 805 and the system 100 may determine if the patient 101A performed a compliance event (by taking or being administered the second medication) or if the patient 101A missed a compliance event (by not taking or not being administered the second medication). Decision block 805 may be used to prevent false performed compliance events. Preferably, the system 100 may use positional information provided by the inertial measurement unit (IMU) 171 of the device 150 for the determination. The accelerations and positional information provided by the IMU 171 may be used by a processor of the system 100 to differentiate between performed compliance events and missed compliance events. If the system 100 determines that the patient 101A has performed a compliance event, the method 800 may continue to step 807 in which the performed compliance data may be transmitted by a device 150 to a client device 400 and/or server 300 or transmitted by a client device 400 to a server 300, and the method 800 may also continue to step 808 in which the system database 106 may be updated or otherwise provided with the performed compliance data for the patient 101A.
If the patient 101A missed a compliance event, or after a number of attempts, such as three, designated by the user 101A or provider 101B, the system 100 may determine that the patient 101A has missed the compliance event and the method may proceed to step 809. In step 809, the missed compliance data may be transmitted by a client device 400 that is in communication with the device 150 to a server 300 and the system database 106 may be updated or otherwise provided with the missed compliance data for the patient 101A.
It will be appreciated that some exemplary embodiments described herein may include one or more generic or specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the methods and/or systems described herein. Alternatively, some or all functions may be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches may be used. Moreover, some exemplary embodiments may be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer, server, appliance, device, etc. each of which may include a processor to perform methods as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), a Flash memory, and the like.
Embodiments of the subject matter and the functional operations described in this specification can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Embodiments of the subject matter described in this specification can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a tangible program carrier for execution by, or to control the operation of, data processing apparatus. The tangible program carrier can be a propagated signal or a computer readable medium. The propagated signal is an artificially generated signal, e.g., a machine generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus for execution by a computer. The computer readable medium can be a machine readable storage device, a machine readable storage substrate, a memory device, a composition of matter effecting a machine readable propagated signal, or a combination of one or more of them.
A computer program (also known as a program, software, software application, application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and it can be deployed in any form, including as a standalone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
Additionally, the logic flows and structure block diagrams described in this patent document, which describe particular methods and/or corresponding acts in support of steps and corresponding functions in support of disclosed structural means, may also be utilized to implement corresponding software structures and algorithms, and equivalents thereof. The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, solid state drives, or optical disks. However, a computer need not have such devices.
Computer readable media suitable for storing computer program instructions and data include all forms of non volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
To provide for interaction with a user, embodiments of the subject matter described in this specification can be implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input.
Embodiments of the subject matter described in this specification can be implemented in a computing system that includes a back end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front end component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described is this specification, or any combination of one or more such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), e.g., the Internet.
The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network or the cloud. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client server relationship to each other.
Further, many embodiments are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs)), by program instructions being executed by one or more processors, or by a combination of both. Additionally, these sequence of actions described herein can be considered to be embodied entirely within any form of computer readable storage medium having stored therein a corresponding set of computer instructions that upon execution would cause an associated processor to perform the functionality described herein. Thus, the various aspects of the invention may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the embodiments described herein, the corresponding form of any such embodiments may be described herein as, for example, “logic configured to” perform the described action.
The computer system may also include a main memory, such as a random access memory (RAM) or other dynamic storage device (e.g., dynamic RAM (DRAM), static RAM (SRAM), and synchronous DRAM (SDRAM)), coupled to the bus for storing information and instructions to be executed by processor. In addition, the main memory may be used for storing temporary variables or other intermediate information during the execution of instructions by the processor. The computer system may further include a read only memory (ROM) or other static storage device (e.g., programmable ROM (PROM), erasable PROM (EPROM), and electrically erasable PROM (EEPROM)) coupled to the bus for storing static information and instructions for the processor.
The computer system may also include a disk controller coupled to the bus to control one or more storage devices for storing information and instructions, such as a magnetic hard disk, and a removable media drive (e.g., floppy disk drive, read-only compact disc drive, read/write compact disc drive, compact disc jukebox, tape drive, and removable magneto-optical drive). The storage devices may be added to the computer system using an appropriate device interface (e.g., small computer system interface (SCSI), integrated device electronics (IDE), enhanced-IDE (E-IDE), direct memory access (DMA), or ultra-DMA).
The computer system may also include special purpose logic devices (e.g., application specific integrated circuits (ASICs)) or configurable logic devices (e.g., simple programmable logic devices (SPLDs), complex programmable logic devices (CPLDs), and field programmable gate arrays (FPGAs)).
The computer system may also include a display controller coupled to the bus to control a display, such as a cathode ray tube (CRT), liquid crystal display (LCD) or any other type of display, for displaying information to a computer user. The computer system may also include input devices, such as a keyboard and a pointing device, for interacting with a computer user and providing information to the processor. Additionally, a touch screen could be employed in conjunction with display. The pointing device, for example, may be a mouse, a trackball, or a pointing stick for communicating direction information and command selections to the processor and for controlling cursor movement on the display. In addition, a printer may provide printed listings of data stored and/or generated by the computer system.
The computer system performs a portion or all of the processing steps of the invention in response to the processor executing one or more sequences of one or more instructions contained in a memory, such as the main memory. Such instructions may be read into the main memory from another computer readable medium, such as a hard disk or a removable media drive. One or more processors in a multi-processing arrangement may also be employed to execute the sequences of instructions contained in main memory. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions. Thus, embodiments are not limited to any specific combination of hardware circuitry and software.
As stated above, the computer system includes at least one computer readable medium or memory for holding instructions programmed according to the teachings of the invention and for containing data structures, tables, records, or other data described herein. Examples of computer readable media are compact discs, hard disks, floppy disks, tape, magneto-optical disks, PROMs (EPROM, EEPROM, flash EPROM), DRAM, SRAM, SDRAM, or any other magnetic medium, compact discs (e.g., CD-ROM), or any other optical medium, punch cards, paper tape, or other physical medium with patterns of holes, a carrier wave (described below), or any other medium from which a computer can read.
Stored on any one or on a combination of computer readable media, the present invention includes software for controlling the computer system, for driving a device or devices for implementing the invention, and for enabling the computer system to interact with a human user. Such software may include, but is not limited to, device drivers, operating systems, development tools, and applications software. Such computer readable media further includes the computer program product of the present invention for performing all or a portion (if processing is distributed) of the processing performed in implementing the invention.
The computer code or software code of the present invention may be any interpretable or executable code mechanism, including but not limited to scripts, interpretable programs, dynamic link libraries (DLLs), Java classes, and complete executable programs. Moreover, parts of the processing of the present invention may be distributed for better performance, reliability, and/or cost.
Various forms of computer readable media may be involved in carrying out one or more sequences of one or more instructions to processor for execution. For example, the instructions may initially be carried on a magnetic disk of a remote computer. The remote computer can load the instructions for implementing all or a portion of the present invention remotely into a dynamic memory and send the instructions over the air (e.g. through a wireless cellular network or wifi network). A modem local to the computer system may receive the data over the air and use an infrared transmitter to convert the data to an infrared signal. An infrared detector coupled to the bus can receive the data carried in the infrared signal and place the data on the bus. The bus carries the data to the main memory, from which the processor retrieves and executes the instructions. The instructions received by the main memory may optionally be stored on storage device either before or after execution by processor.
The computer system also includes a communication interface coupled to the bus. The communication interface provides a two-way data communication coupling to a network link that is connected to, for example, a local area network (LAN), or to another communications network such as the Internet. For example, the communication interface may be a network interface card to attach to any packet switched LAN. As another example, the communication interface may be an asymmetrical digital subscriber line (ADSL) card, an integrated services digital network (ISDN) card or a modem to provide a data communication connection to a corresponding type of communications line. Wireless links may also be implemented. In any such implementation, the communication interface sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
The network link typically provides data communication to the cloud through one or more networks to other data devices. For example, the network link may provide a connection to another computer or remotely located presentation device through a local network (e.g., a LAN) or through equipment operated by a service provider, which provides communication services through a communications network. In preferred embodiments, the local network and the communications network preferably use electrical, electromagnetic, or optical signals that carry digital data streams. The signals through the various networks and the signals on the network link and through the communication interface, which carry the digital data to and from the computer system, are exemplary forms of carrier waves transporting the information. The computer system can transmit and receive data, including program code, through the network(s) and, the network link and the communication interface. Moreover, the network link may provide a connection through a LAN to a client device such as a personal digital assistant (PDA), laptop computer, or cellular telephone. The LAN communications network and the other communications networks such as cellular wireless and wifi networks may use electrical, electromagnetic or optical signals that carry digital data streams. The processor system can transmit notifications and receive data, including program code, through the network(s), the network link and the communication interface.
Although the present invention has been illustrated and described herein with reference to preferred embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples may perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the present invention, are contemplated thereby, and are intended to be covered by the following claims.
This application claims priority to and the benefit of the filing date of U.S. Provisional Application No. 62/419,606, filed on Nov. 9, 2016, entitled “SYSTEMS AND METHODS FOR PROMOTING MEDICATION ADHERENCE”, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62419606 | Nov 2016 | US |