All publications, including patents and patent applications, mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
The present invention relates to devices and related methods for treatment of benign prostatic hyperplasia using a minimally invasive approach.
Benign prostatic hyperplasia (BPH) is a common disorder in middle-aged and older men, with prevalence increasing with age. At age 70, more than one-half of men have symptomatic BPH, and nearly 90% of men have microscopic evidence of an enlarged prostate. The severity of symptoms also increase with age with 27% of patients in the 60-70 age bracket having moderate-to-severe symptoms, and 37% of patients in their 70's suffering from moderate-to-severe symptoms.
The prostate gland early in life is the size and shape of a walnut and weighs about 20 grams. Prostate enlargement appears to be a normal process. With age, the prostate gradually increases in size to twice or more its normal size. The fibromuscular tissue of the outer prostatic capsule restricts expansion after the gland reaches a certain size. Because of such restriction on expansion, the intracapsular tissue will compress against and constrict the prostatic urethra thus causing resistance to urine flow.
Referring to
BPH is typically diagnosed when the patient seeks medical treatment complaining of bothersome urinary difficulties. The predominant symptoms of BPH are an increase in frequency and urgency of urination. BPH can also cause urinary retention in the bladder which in turn can lead to lower urinary tract infection (LUTI). In many cases, the LUTI then can ascend into the kidneys and cause chronic pyelonephritis, and can eventually lead to renal insufficiency. BPH also may lead to sexual dysfunction related to sleep disturbance or psychological anxiety caused by severe urinary difficulties. Thus, BPH can significantly alter the quality of life with aging of the male population.
BPH is the result of an imbalance between the continuous production and natural death (apoptosis) of the glandular cells of the prostate. The overproduction of such cells leads to increased prostate size, most significantly in the transition zone TZ which traverses the prostatic urethra (
In early stage cases of BPH, drug treatments can alleviate the symptoms. For example, alpha-blockers treat BPH by relaxing smooth muscle tissue found in the prostate and the bladder neck, which may allow urine to flow out of the bladder more easily. Such drugs can prove effective until the glandular elements cause overwhelming cell growth in the prostate.
More advanced stages of BPH, however, can only be treated by surgical interventions. A number of methods have been developed using electrosurgical or mechanical extraction of tissue, and thermal ablation or cryoablation of intracapsular prostatic tissue. In many cases, such interventions provide only transient relief, and there often is significant perioperative discomfort and morbidity.
In one prior art ablation method for treating BPH, an RF needle in inserted into the prostate and RF energy is delivered to prostate tissue. In a first aspect of the prior art system and method, the elongated RF needle can be extended from an introducer member into the prostate lobes from the urethra. Some prior art systems further utilize an insulator sleeve extended over the RF needle through the urethral wall to prevent thermal damage to the urethra. The resulting RF treatment thus ablates tissue regions away from the prostatic urethra and purposefully does not target tissue close to and parallel to, the prostatic urethra. The prior art systems and method leave an untreated tissue region around the urethra in which smooth muscle cells and alpha adrenergic receptors are not ablated. Thus, the untreated tissue can continue to compress the urethra and subsequent growth of such undamaged tissue can expand into the outwardly ablated regions.
In another aspect of some prior art RF methods, the application of RF energy typically extends for 2 to 3 minutes or longer which can allow thermal diffusion of the ablation to reach the capsule periphery of the prostate. In some instances, the application of RF energy for such a long duration can cause lesions that extend beyond the prostate and into the urethra. Such prior art RF energy delivery methods may not create a durable effect, since smooth muscle tissue and are not uniformly ablated around the prostatic urethra. Due to the size of lesions created with RF ablation, these prior art systems typically ablate at a suboptimal location within the prostate (e.g., at a distance of 2 cm or greater from the prostatic urethra) to prevent damage to this tissue. The result can be leaving non-ablated tissue adjacent the urethra that may once again be subject to hyperplasia. As a result, the hyperplasia in the lobes can continue resulting in tissue impinging on the urethra thus limiting long term effectiveness of the RF ablation treatment.
A method for treating benign prostatic hyperplasia (BPH) is provided, comprising introducing a vapor delivery member into a transition zone tissue of a prostate, and injecting a condensable vapor media from the vapor delivery member into the transition zone tissue, wherein the condensable vapor media propagates interstitially in the transition zone tissue and is confined in the transition zone tissue by a boundary tissue adjacent the transition zone tissue.
In some embodiments, the boundary tissue comprises a prostatic urethra. In other embodiments, the boundary tissue comprises a fibrous plane between lateral lobes of the prostate. In other embodiments, the boundary tissue comprises a central zone tissue. In yet additional embodiments, the boundary tissue comprises a fibrous plane between transition zone tissue and a peripheral zone tissue. In one embodiment, the boundary tissue comprises an anterior fibromuscular stromal tissue.
In some embodiments, the condensable vapor media is injected for an interval of 20 second or less. In another embodiment, the condensable vapor media is injected at a pressure at the tissue interface ranging from about 20 mm Hg to 200 mm Hg.
In some embodiments, the vapor deliver member is introduced transversely relative to a urethra. In another embodiment, the vapor deliver member is introduced substantially aligned with a urethra.
In some embodiments, the condensable vapor media is injected in a plurality of selected locations in the transition zone tissue.
In one embodiment, the vapor delivery member is introduced into the transition zone tissue through a wall of a urethra from a trans-urethral probe. In another embodiment, the vapor delivery member is introduced into the transition zone tissue from a trans-rectal probe.
In some embodiments, a pressure of the vapor media introduction is controlled by a computer controller.
A method for treating benign prostatic hyperplasia (BPH) is provided, comprising introducing a probe into a prostatic urethra, extending a vapor delivery member from the probe into a transition zone tissue of a prostate at a depth of less than 12 mm outward from the prostatic urethra, and delivering a condensable vapor media from the vapor delivery member to the transition zone tissue.
In some embodiments, the condensable vapor media is delivered into the transition zone tissue for a delivery interval of less than 20 seconds. In other embodiments, the condensable vapor media is delivered into the transition zone tissue for a delivery interval of less than 10 seconds.
In some embodiments, the condensable vapor media is delivered into the transition zone tissue at a delivery pressure ranging from approximately 20 mm Hg to 200 mm Hg. In other embodiments, the condensable vapor media is configured to provide energy ranging from 1 to 40 cal/sec into the transition zone tissue.
A method for treating benign prostatic hyperplasia (BPH) is provided, comprising introducing a vapor delivery member into at least one selected location in transition zone tissue of a prostate, and injecting a condensable vapor media from the vapor delivery member into the transition zone tissue so as to ablate transition zone tissue adjacent a urethra without ablating transition zone tissue adjacent a fibromuscular stroma.
Handle and Introducer Portion
In
Referring to
In one embodiment of probe 100, referring to
Referring to
Microcatheter and Spring-Actuator
Returning now to
Now turning to the energy-delivery aspect of the system, a vapor source 250 is provided for delivering a vapor media through the microcatheter 105 to ablate tissue. The vapor source can be a vapor generator that can deliver a vapor media, such as water vapor, that has a precisely controlled quality to provide a precise amount of thermal energy delivery, for example measured in calories per second. Descriptions of suitable vapor generators can be found in the following U.S. application Ser. Nos. 11/329,381; 12/167,155; 12/389,808; 61/068,049; 61/068,130; 61/123,384; 61/123,412; 61/126,651; 61/126,612; 61/126,636; 61/126,620 all of which are incorporated herein by reference in their entirety. The vapor generation system also can comprise an inductive heating system similar to that described in U.S. Application Nos. 61/123,416, 61/123,417, and 61/126,647. The system further includes a controller 255 that can be set to control the various parameters of vapor delivery, for example, the controller can be set to delivery vapor media for a selected treatment interval, a selected pressure, or selected vapor quality.
Referring to
As can be seen in
Still referring to
In another aspect of the invention, referring to
In another embodiment, referring again to
Method of Use
Referring to
In a method of use, the physician can first prepare the patient for trans-urethral insertion of the extension portion 110 of probe 100. In one example, the patient can be administered orally or sublingually a mild sedative such as Valium, Lorazepam or the like from 15 to 60 minutes before the procedure. Of particular interest, it has been found that prostate blocks (injections) or other forms of anesthesia are not required due to lack of pain associated with an injection of a condensable vapor. The physician then can actuate the needle-retraction actuator 210, for example with an index finger, to retract and cock the microcatheter 105 by axial movement of the actuator (see
Next, the physician can advance the extension portion 110 of the probe 100 trans-urethrally while viewing the probe insertion on a viewing monitor coupled to endoscope 118. After navigating beyond the verumontanum 422 to the bladder neck 420 (
As can be seen in
In another embodiment, the urethra can be irrigated with a cooling fluid from source 300 (see
By comparing the method of the present invention of
In another embodiment of the method of the invention, referring again to
In another aspect of the invention, referring to
One method corresponding to the invention is shown in the block diagram of
In another aspect of the invention, referring to
In another embodiment, the system include a vapor delivery mechanism that delivers controlled and substantially predetermined amount of energy, and thus controlled amount of energy, over a variable time interval wherein injection pressure varies in response to tissue characteristics.
As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.
This application claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 61/173,108, filed Apr. 27, 2009, titled “Medical Systems and Methods”. This application is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
408899 | Small | Aug 1889 | A |
1719750 | Bridge et al. | Jul 1929 | A |
4672963 | Barken | Jun 1987 | A |
4920982 | Goldstein | May 1990 | A |
4950267 | Ishihara et al. | Aug 1990 | A |
5117482 | Hauber | May 1992 | A |
5222185 | McCord, Jr. | Jun 1993 | A |
5300099 | Rudie | Apr 1994 | A |
5312399 | Hakky et al. | May 1994 | A |
5330518 | Neilson et al. | Jul 1994 | A |
5366490 | Edwards et al. | Nov 1994 | A |
5370609 | Drasler et al. | Dec 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5370677 | Rudie et al. | Dec 1994 | A |
5385544 | Edwards et al. | Jan 1995 | A |
5409453 | Lundquist et al. | Apr 1995 | A |
5413588 | Rudie et al. | May 1995 | A |
5421819 | Edwards et al. | Jun 1995 | A |
5435805 | Edwards et al. | Jul 1995 | A |
5464437 | Reid et al. | Nov 1995 | A |
5470308 | Edwards et al. | Nov 1995 | A |
5470309 | Edwards et al. | Nov 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5499998 | Meade | Mar 1996 | A |
5531676 | Edwards et al. | Jul 1996 | A |
5531763 | Mastri et al. | Jul 1996 | A |
5542915 | Edwards et al. | Aug 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5545171 | Sharkey et al. | Aug 1996 | A |
5549644 | Lundquist et al. | Aug 1996 | A |
5554110 | Edwards et al. | Sep 1996 | A |
5556377 | Rosen et al. | Sep 1996 | A |
5558673 | Edwards et al. | Sep 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5591125 | Edwards et al. | Jan 1997 | A |
5599294 | Edwards et al. | Feb 1997 | A |
5601591 | Edwards et al. | Feb 1997 | A |
5628770 | Thome et al. | May 1997 | A |
5630794 | Lax et al. | May 1997 | A |
5645528 | Thome | Jul 1997 | A |
5667488 | Lundquist et al. | Sep 1997 | A |
5672153 | Lax et al. | Sep 1997 | A |
5709680 | Yates et al. | Jan 1998 | A |
5720718 | Rosen et al. | Feb 1998 | A |
5720719 | Edwards et al. | Feb 1998 | A |
5776176 | Rudie | Jul 1998 | A |
5792070 | Kauphusman et al. | Aug 1998 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5800486 | Thome et al. | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5830179 | Mikus et al. | Nov 1998 | A |
5843144 | Rudie et al. | Dec 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5861021 | Thome et al. | Jan 1999 | A |
5871481 | Kannenberg et al. | Feb 1999 | A |
5873877 | McGaffigan et al. | Feb 1999 | A |
5897553 | Mulier et al. | Apr 1999 | A |
5899932 | Dann et al. | May 1999 | A |
5938692 | Rudie | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5957922 | Imran | Sep 1999 | A |
5964752 | Stone | Oct 1999 | A |
5964756 | McGaffigan et al. | Oct 1999 | A |
5976123 | Baumgardner et al. | Nov 1999 | A |
5987360 | McGrath et al. | Nov 1999 | A |
5990465 | Nakaoka et al. | Nov 1999 | A |
6007571 | Neilson et al. | Dec 1999 | A |
6009351 | Flachman | Dec 1999 | A |
6017358 | Yoon et al. | Jan 2000 | A |
6017361 | Mikus et al. | Jan 2000 | A |
6036631 | McGrath et al. | Mar 2000 | A |
6036713 | Kieturakis | Mar 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6063081 | Muller et al. | May 2000 | A |
6067475 | Graves et al. | May 2000 | A |
6077257 | Edwards et al. | Jun 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6122551 | Rudie et al. | Sep 2000 | A |
6123083 | McGrath et al. | Sep 2000 | A |
6147336 | Oshijima et al. | Nov 2000 | A |
6148236 | Dann | Nov 2000 | A |
6156036 | Sussman et al. | Dec 2000 | A |
6161049 | Rudie et al. | Dec 2000 | A |
6179805 | Sussman et al. | Jan 2001 | B1 |
6179836 | Eggers et al. | Jan 2001 | B1 |
6206847 | Edwards et al. | Mar 2001 | B1 |
6210404 | Shadduck | Apr 2001 | B1 |
6223085 | Dann et al. | Apr 2001 | B1 |
6231591 | Desai | May 2001 | B1 |
6238389 | Paddock et al. | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6241702 | Lundquist et al. | Jun 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6272384 | Simon et al. | Aug 2001 | B1 |
6287297 | Woodruff et al. | Sep 2001 | B1 |
6302903 | Mulier et al. | Oct 2001 | B1 |
6312391 | Ramadhyani et al. | Nov 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6348039 | Flachman et al. | Feb 2002 | B1 |
6398759 | Sussman et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6423027 | Gonon | Jul 2002 | B1 |
6440127 | McGovern et al. | Aug 2002 | B2 |
6494902 | Hoey et al. | Dec 2002 | B2 |
6496737 | Rudie et al. | Dec 2002 | B2 |
6508816 | Shadduck | Jan 2003 | B2 |
6517534 | McGovern et al. | Feb 2003 | B1 |
6524270 | Bolmsjo et al. | Feb 2003 | B1 |
6537248 | Mulier et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6544211 | Andrew et al. | Apr 2003 | B1 |
6551300 | McGaffigan | Apr 2003 | B1 |
6565561 | Goble et al. | May 2003 | B1 |
6575929 | Sussman et al. | Jun 2003 | B2 |
6575968 | Eggers et al. | Jun 2003 | B1 |
6579270 | Sussman et al. | Jun 2003 | B2 |
6589201 | Sussman et al. | Jul 2003 | B1 |
6607529 | Jones et al. | Aug 2003 | B1 |
6638275 | McGaffigan et al. | Oct 2003 | B1 |
6640139 | Ueberle | Oct 2003 | B1 |
6669694 | Shadduck | Dec 2003 | B2 |
6676628 | Sussman et al. | Jan 2004 | B2 |
6706039 | Muller et al. | Mar 2004 | B2 |
6716252 | Lazarovitz et al. | Apr 2004 | B2 |
6719738 | Mehier | Apr 2004 | B2 |
6726696 | Houser et al. | Apr 2004 | B1 |
6730079 | Lovewell | May 2004 | B2 |
6736810 | Hoey et al. | May 2004 | B2 |
6740108 | Just et al. | May 2004 | B1 |
6760616 | Hoey et al. | Jul 2004 | B2 |
6780178 | Palanker et al. | Aug 2004 | B2 |
6827718 | Hutchins et al. | Dec 2004 | B2 |
6855141 | Lovewell | Feb 2005 | B2 |
6887237 | McGaffigan | May 2005 | B2 |
6905475 | Hauschild et al. | Jun 2005 | B2 |
6911028 | Shadduck | Jun 2005 | B2 |
6969376 | Takagi et al. | Nov 2005 | B2 |
6974455 | Garabedian et al. | Dec 2005 | B2 |
7014652 | Cioanta et al. | Mar 2006 | B2 |
7041121 | Williams et al. | May 2006 | B1 |
7066935 | Swoyer et al. | Jun 2006 | B2 |
7089064 | Manker et al. | Aug 2006 | B2 |
7130697 | Chornenky et al. | Oct 2006 | B2 |
7238182 | Swoyer et al. | Jul 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7261709 | Swoyer et al. | Aug 2007 | B2 |
7261710 | Elmouelhi et al. | Aug 2007 | B2 |
7322974 | Swoyer et al. | Jan 2008 | B2 |
7328068 | Spinelli et al. | Feb 2008 | B2 |
7328069 | Gerber | Feb 2008 | B2 |
7335197 | Sage et al. | Feb 2008 | B2 |
7340300 | Christopherson et al. | Mar 2008 | B2 |
7369894 | Gerber | May 2008 | B2 |
7429262 | Woloszko et al. | Sep 2008 | B2 |
7437194 | Skwarek et al. | Oct 2008 | B2 |
7470228 | Connors et al. | Dec 2008 | B2 |
7549987 | Shadduck | Jun 2009 | B2 |
7865250 | Mrva et al. | Jan 2011 | B2 |
7894913 | Boggs et al. | Feb 2011 | B2 |
7959577 | Schmitz et al. | Jun 2011 | B2 |
8048069 | Skwarek et al. | Nov 2011 | B2 |
8216217 | Sharkey et al. | Jul 2012 | B2 |
8244327 | Fichtinger et al. | Aug 2012 | B2 |
8301264 | Achenbach et al. | Oct 2012 | B2 |
8313485 | Shadduck | Nov 2012 | B2 |
8409109 | Tiesma et al. | Apr 2013 | B2 |
8550743 | Bonde et al. | Oct 2013 | B2 |
8900223 | Shadduck | Dec 2014 | B2 |
9345507 | Hoey et al. | May 2016 | B2 |
20020078956 | Sharpe et al. | Jun 2002 | A1 |
20020111617 | Cosman et al. | Aug 2002 | A1 |
20020177846 | Mulier et al. | Nov 2002 | A1 |
20030069575 | Chin et al. | Apr 2003 | A1 |
20030092689 | Escandon et al. | May 2003 | A1 |
20030097126 | Woloszko et al. | May 2003 | A1 |
20030130575 | Desai | Jul 2003 | A1 |
20030206730 | Golan | Nov 2003 | A1 |
20040006334 | Beyar et al. | Jan 2004 | A1 |
20040068306 | Shadduck | Apr 2004 | A1 |
20040186422 | Rioux et al. | Sep 2004 | A1 |
20040230316 | Cioanta et al. | Nov 2004 | A1 |
20040267340 | Cioanta et al. | Dec 2004 | A1 |
20050010203 | Edwards et al. | Jan 2005 | A1 |
20050096629 | Gerber et al. | May 2005 | A1 |
20050124915 | Eggers et al. | Jun 2005 | A1 |
20050149020 | Jahng | Jul 2005 | A1 |
20050159676 | Taylor et al. | Jul 2005 | A1 |
20060135955 | Shadduck | Jun 2006 | A1 |
20060178670 | Woloszko et al. | Aug 2006 | A1 |
20060224154 | Shadduck et al. | Oct 2006 | A1 |
20060224169 | Weisenburgh, II et al. | Oct 2006 | A1 |
20060253069 | Li et al. | Nov 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20070032785 | Diederich et al. | Feb 2007 | A1 |
20070038089 | Hatano et al. | Feb 2007 | A1 |
20070142846 | Catanese, III et al. | Jun 2007 | A1 |
20070179491 | Kratoska et al. | Aug 2007 | A1 |
20070197864 | Dejima et al. | Aug 2007 | A1 |
20070213703 | Naam et al. | Sep 2007 | A1 |
20080021484 | Catanese, III et al. | Jan 2008 | A1 |
20080021485 | Catanese, III et al. | Jan 2008 | A1 |
20080033232 | Catanese, III et al. | Feb 2008 | A1 |
20080033458 | McLean et al. | Feb 2008 | A1 |
20080033488 | Catanese, III et al. | Feb 2008 | A1 |
20080039833 | Catanese, III et al. | Feb 2008 | A1 |
20080039872 | Catanese, III et al. | Feb 2008 | A1 |
20080039874 | Catanese, III et al. | Feb 2008 | A1 |
20080039875 | Catanese, III et al. | Feb 2008 | A1 |
20080039876 | Catanese, III et al. | Feb 2008 | A1 |
20080039893 | McLean et al. | Feb 2008 | A1 |
20080039894 | Catanese, III et al. | Feb 2008 | A1 |
20080046045 | Yon et al. | Feb 2008 | A1 |
20080110457 | Barry et al. | May 2008 | A1 |
20080132826 | Shadduck et al. | Jun 2008 | A1 |
20080188811 | Kim | Aug 2008 | A1 |
20080208187 | Bhushan et al. | Aug 2008 | A1 |
20080214956 | Briggs et al. | Sep 2008 | A1 |
20080217325 | Von Buren et al. | Sep 2008 | A1 |
20080249399 | Appling et al. | Oct 2008 | A1 |
20080262491 | Swoyer et al. | Oct 2008 | A1 |
20080269737 | Elmouelhi et al. | Oct 2008 | A1 |
20080269862 | Elmouelhi et al. | Oct 2008 | A1 |
20080275440 | Kratoska et al. | Nov 2008 | A1 |
20080297287 | Shachar et al. | Dec 2008 | A1 |
20080312497 | Elmouelhi et al. | Dec 2008 | A1 |
20090018553 | McLean et al. | Jan 2009 | A1 |
20090054871 | Sharkey et al. | Feb 2009 | A1 |
20090138001 | Barry et al. | May 2009 | A1 |
20090149846 | Hoey et al. | Jun 2009 | A1 |
20090199855 | Davenport | Aug 2009 | A1 |
20090216220 | Hoey et al. | Aug 2009 | A1 |
20090227998 | Aljuri et al. | Sep 2009 | A1 |
20090277457 | Hoey et al. | Nov 2009 | A1 |
20090306640 | Glaze et al. | Dec 2009 | A1 |
20100016757 | Greenburg et al. | Jan 2010 | A1 |
20100049031 | Fruland et al. | Feb 2010 | A1 |
20100094270 | Sharma | Apr 2010 | A1 |
20100114083 | Sharma | May 2010 | A1 |
20100145254 | Shadduck et al. | Jun 2010 | A1 |
20100145325 | Hoey et al. | Jun 2010 | A1 |
20100145326 | Hoey et al. | Jun 2010 | A1 |
20100193568 | Scheib et al. | Aug 2010 | A1 |
20100204688 | Hoey et al. | Aug 2010 | A1 |
20100256636 | Fernandez et al. | Oct 2010 | A1 |
20100262133 | Hoey et al. | Oct 2010 | A1 |
20100262137 | Nye et al. | Oct 2010 | A1 |
20100292767 | Hoey et al. | Nov 2010 | A1 |
20110060328 | Skwarek et al. | Mar 2011 | A1 |
20110077628 | Hoey et al. | Mar 2011 | A1 |
20110160648 | Hoey | Jun 2011 | A1 |
20110264176 | Jackson et al. | Oct 2011 | A1 |
20110319759 | Liu et al. | Dec 2011 | A1 |
20120259271 | Shadduck et al. | Oct 2012 | A1 |
20130006231 | Sharma et al. | Jan 2013 | A1 |
20130158534 | Hoey et al. | Jun 2013 | A1 |
20140200568 | Sharma | Jul 2014 | A1 |
20140288543 | Hoey et al. | Sep 2014 | A1 |
20150025515 | Hoey et al. | Jan 2015 | A1 |
20150126990 | Sharma et al. | May 2015 | A1 |
20150157384 | Hoey et al. | Jun 2015 | A1 |
20160015445 | Hoey et al. | Jan 2016 | A1 |
20160081736 | Hoey et al. | Mar 2016 | A1 |
20160220296 | Hastings et al. | Aug 2016 | A1 |
20160270838 | Hastings et al. | Sep 2016 | A1 |
20160331435 | Hoey et al. | Nov 2016 | A1 |
20170056089 | Hoey et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2061443 | Sep 1990 | CN |
2418844 | Feb 2001 | CN |
101072544 | Nov 2007 | CN |
101257855 | Sep 2008 | CN |
101006939 | Nov 2008 | CN |
101491458 | Jul 2009 | CN |
101803947 | Aug 2010 | CN |
7-507696 | Aug 1995 | JP |
8-501957 | Mar 1996 | JP |
8-504613 | May 1996 | JP |
11-318925 | Nov 1999 | JP |
200014663 | Jan 2000 | JP |
2000005191 | Jan 2000 | JP |
2001-500763 | Jan 2001 | JP |
2005137916 | Jun 2005 | JP |
WO 9210142 | Jun 1992 | WO |
WO 0124715 | Apr 2001 | WO |
WO 03088851 | Oct 2003 | WO |
WO03096871 | Nov 2003 | WO |
WO 2006004482 | Jan 2006 | WO |
WO 2008083407 | Jul 2008 | WO |
WO2010080467 | Jul 2010 | WO |
Entry |
---|
US 5,326,343, 07/1994, Rudie et al. (withdrawn) |
Hai; Photoselective Vaporization Prostatectomy: A Palliative Treatment Option for Men with Urinary Obstruction Secondary to Prostate Cancer; PCRI Prost.Cancer Rsrch.Inst. Reprint.from PCRI Insights Nov. 2005, vol. 8(4); Dwnld from http://www.prostate-cancer.org/pcricms/node/233 on May 10, 2012; 4 pages. |
Hoey et al.; U.S. Appl. No. 13/072,573 entitled “Systems and Methods for Prostate Treatment,” filed Mar. 25, 2011. |
Hoey et al.; U.S. Appl. No. 13/595,914 entitled “Systems and Methods for Treatment of Prostatic Tissue,” filed Aug. 27, 2012. |
Hoey et al.; U.S. Appl. No. 13/626,657 entitled “Systems and Methods for Male Sterilization,” filed Sep. 25, 2012. |
Hoey et al.; U.S. Appl. No. 12/614,218 entitled “Systems and Methods for Treatment of Prostatic Tissue,” filed Nov. 6, 2009. |
Shadduck et al.; U.S. Appl. No. 12/687,722 entitled “Systems and Methods for Treatment of Prostatic Tissue,” filed Jan. 14, 2010. |
Hoey et al.; U.S. Appl. No. 12/687,734 entitled “Medical Systems and Methods,” filed Jan. 14, 2010. |
Hoey et al.; U.S. Appl. No. 12/768,558 entitled “Systems and Methods for Prostate Treatment,” filed Apr. 27, 2010. |
Hoey et al.; U.S. Appl. No. 13/352,198 entitled “Systems and methods for prostate treatment,” filed Jan. 17, 2012. |
Shadduck et al.; U.S. Appl. No. 13/779,616 entitled “Systems and Methods for Treatment of Prostatic Tissue,” filed Feb. 27, 2013. |
Shadduck et al.; U.S. Appl. No. 13/861,109 entitled “Systems and Methods for Treatment of Prostatic Tissue,” filed Apr. 11, 2013. |
Hoey et al.; U.S. Appl. No. 14/106,388 entitled “Systems and Methods for Prostate Treatment,” filed Dec. 13, 2014. |
Number | Date | Country | |
---|---|---|---|
20100286679 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61173108 | Apr 2009 | US |