Aspects of the disclosure relate to efficiently selecting explanatory or predictive features in a parallelized computing environment.
Feature selection is an effective technique for dimensionality reduction and relevance detection. It may be used to improve the accuracy, efficiency and interpretability of learning models. Feature selection has been used as a valuable component of successful data mining applications in a variety of fields, including text mining, image processing, and genetic analysis, to name a few.
Continual advances in computer-based technologies have enabled corporations and organizations to collect data at rapidly increasing pace. Accumulated business and scientific data from many fields, such as finance, genomics, and physics, are often measured in terabytes (10^12 bytes). The enormous proliferation of large-scale data sets brings new challenges to data mining techniques and may require novel approaches to address the big-data problem in feature selection.
This disclosure describes a method which include accessing a first set of features, wherein the first set of features includes multiple features, wherein the features are characterized by a variance measure, and wherein accessing the first set of features includes using a computing system to access the features, determining components of a covariance matrix, the components of the covariance matrix indicating a covariance with respect to pairs of features in the first set, and selecting multiple features from the first set, wherein selecting is based on the determined components of the covariance matrix and an amount of the variance measure attributable to the selected multiple features, and wherein selecting the multiple features includes executing a greedy search performed using parallelized computation.
This disclosure also describe a system comprising one or more processing units, one or more non transitory computer readable storage mediums comprising instructions configured to cause the one or more processing units to perform operations including accessing a first set of features, wherein the first set of features includes multiple features, and wherein the features are characterized by a variance measure, determining components of a covariance matrix, the components of the covariance matrix indicating a covariance with respect to pairs of features in the first set, and selecting multiple features from the first set, wherein selecting is based on the determined components of the covariance matrix and an amount of the variance measure attributable to the selected multiple features, and wherein selecting the multiple features includes executing a greedy search performed using parallelized computation.
This disclosure also describes a computer program product, tangibly embodied in a machine readable non transitory storage medium, including instructions configured to cause a data processing apparatus to perform operations comprising accessing a first set of features, wherein the first set of features includes multiple features, and wherein the features are characterized by a variance measure, computing determining components of a covariance matrix using parallelized computation involving multiple worker nodes, the components of the covariance matrix indicating a covariance with respect to pairs of features in the first set, selecting multiple features from amongst the features of the first set, wherein selecting is based on the computed determined components of the covariance matrix and an amount of the variance measure attributable to the selected selected multiple features, and wherein the amount of the variance measure attributable to the selected features is determined by executing a greedy search performed using parallelized computation involving the multiple worker nodes.
Aspects of the disclosure are illustrated by way of example. In the accompanying figures, like reference numbers indicate similar elements, and:
This disclosure describes parallel computing systems for handling large scale problems in feature selection. The computing systems can select a subset of features that best explain (preserve) the variance contained in the data, and can perform either unsupervised or supervised feature selection. For the supervised case, the systems support both regression and classification.
The systems of this disclosure are designed in view of mathematically-depicted variable selection formulations for preserving variance in the case of classification, linear regression, and unsupervised learning. Each of the formulations is associated with an optimal solution which can be obtained only by solving a combinatorial optimization problem which is NP-hard (nondeterministic polynomial-time hard). However, this disclosure details a parallelized computing system that applies a decomposition technique to each formulation. These decomposition techniques are based on the sequential forward selection (SFS) strategy. The systems disclosed herein execute efficient solvers which use the decomposition technique to achieve high-quality, suboptimal formulation solutions for high-performance, parallelized feature selection in different modeling contexts. Moreover, the systems achieve these solutions in polynomial time.
The systems disclosed herein are highly adaptable, and can be used to perform feature selection for models used in financial forecasting, risk evaluation, fraud detection, economic forecasting, weather forecasting, insurance pricing, business strategizing and planning, or any other activity in which model performance depends on identifying a most informative subset of variables from within a variable superset of significant cardinality. For example, in a regression setting, the systems can be used to analyze a large set of independent variables believed to have predictive value for forecasting a dependent variable. Based on the analysis, the systems may then determine a limited number of variables which are the most predictive variables of the set. The system may then use the identified dependent variables to forecast the dependent variable using a regression model.
As has been widely recognized, redundant features increase data dimensionality unnecessarily and worsen the performance of learning models. The systems of this disclosure select features by evaluating feature subsets and can therefore effectively minimize the selection of redundant features. For parallel feature selection, the computations used by the systems are fully optimized and parallelized based on data partitioning. The systems can execute analytics procedures which facilitate reading data in a distributed form and performing parallel feature selection in both symmetric multiprocessing (SMP) mode via multithreading and massively parallel processing (MPP) mode via MPI.
The systems of this disclosure use data partitioning to achieve scalability. Because data partitioning is used, the parallel processing units do not have to access the entire data, and computations on the data can be distributed.
Also the systems and methods of this disclosure iteratively select features such that a closed form solution results from each selection step, resulting in efficiency gains being achieved. Moreover, the systems disclosed herein are the first distributed parallel processing systems capable of performing unsupervised feature selection.
The systems disclosed herein have several additional capabilities. For example, the systems use algorithms that run in polynomial time and involve only computational steps that can be performed using basic matrix operations. Additionally, the algorithms employed by the systems enable parallelization of all expensive computation steps, based on either a symmetric multithreading or massively parallel processing via distributed computing arrangement.
Several illustrative embodiments will now be described with respect to the accompanying drawings, which form a part hereof. While particular embodiments, in which one or more aspects of the disclosure may be implemented, are described below, other embodiments may be used and various modifications may be made without departing from the scope of the disclosure or the spirit of the appended claims.
Moreover, a feature selection system 300 (depicted in
The data stores 36 may hold a vast breadth of variable observations accessible by the feature selection system. By way of example only, the data stores 36 may hold financial data, business analytics data, crime data, transactional data, medical data, or any other type of data which might be of relevance for data-mining, predictive modeling, classification, investigation, academic studies, forecasting, or other analytical purposes. Through access to the data stores, the computing entities may access data sets used to perform feature selection. The computing entities may be able to access data in matrix or vector form, such that each column, row or vector contains only observations which are representative of a common feature.
Also, the data stores may be formatted such that any of the computing entities are able to access equally-sized partitions of a comprehensive data set, for the purpose of selecting features represented within the comprehensive data set.
However, it shall be understood that the feature selection system need not involve a grid-based system such as the one depicted at 38. Rather, the feature selection system may involve any arrangement of processing entities configured to perform parallelized computations. Regardless of the arrangement of processing entities used by the feature selection system, this disclosure will hereinafter refer to computing entities which perform parallel processing as “worker nodes”. A processing entity which is not a worker node, but which collects data from worker nodes and performs other processing for feature selection will be referred to hereinafter as a “control node”.
A common problem which system 300 can effectively and efficiently solve involves selecting k variables (herinafter, the term “variable” and “feature” will be used interchangeably, and shall be understood as having the same meaning) from a large set of m available variables, each of which is quantified by n historical data samples (x1, . . . , xn) accessible to the system. That is, each of the m variables is associated with a vector f1, . . . , fm of length n, and each such vector holds zero-mean data which quantifies its corresponding variable. We will say that X ε n×m is a data set (also referred to hereinafter as a “feature matrix”) that contains the n samples, x1, . . . , xn for each of the m variables, f1, . . . , fm (i.e. the m columns of data set X are f1, . . . , fm.) Also, we will say that X=(X1, X2), where X1 ε n×k represents the k variables selected,and X2 ε n×(m−k) contains the m−k remaining ones.
Furthermore, UN ε n×(m−k) shall be understood to be the null-space of X1T. Since each row of X1T is a variable vector, UN is the null-space corresponding to the k selected variables. Let Z be the target matrix. Variable selection based on variance preservation can be achieved by minimizing the following formulation:
X1=arg minx1(fi
Given X1, UN can be obtained by applying singular vector decomposition on X1. It is also easy to verify that UNUNT=X1(I−X1TX1)X1T, where I is the diagonal matrix with 1 as its diagonal elements. Therefore Equation (1) can also be written into the following form:
X1=arg minx1=(fi
Let Yreg ε n×t be the response matrix containing t response vectors. Variable selection for regression can be achieved by solving the following problem:
X1=arg minx1=(fi
The formulation for feature selection based on variance preservation is applicable when system 300 is used to perform feature selection for use in a classification setting. In this case, the formulation may be understood using conventions and nomenclature specific to the classification setting. For example, given that a response vector (y) has C classification levels, {1, . . . , C}, then a response matrix Ycla εn×c can be generated from y. Y can be obtained using the following equation:
where nj is the number of instances in class j, and yi=j denotes that the i th instance belongs to the j th class. Variable selection for classification can be achieved by solving the following problem:
X1=arg minx1=(fi
In an unsupervised learning setting in which selecting variables are done in a manner that preserves the maximum amount of the data variance, variable selection is achieved by solving the following problem:
X1=arg minx1=(fi
When dealing with a sample of m candidate feautres, finding the k features which maximize equation (3), (5), or (6) is a combinatorial optimization problem which is NP-hard. Rather than searching for optimal solutions to these equations, system 300 uses a greedy search methodology involving k search iterations to generate high-quality, sub-optimal solutions in an efficient manner.
The following discussion will first explain the gready search methodologies employed by system 300 in the supervised feature selection context. With regards to a supervised selection context, assume that q variables have been selected. Let X1 contain the q selected variables, and let Y be the response matrix, e.g. Y=Yreg or Y=Ycla. With SFS and using the criteria specified in Equation (3) or (5), in the q+1 step, a variable is selected by
In equation (7), {circumflex over (X)}1 contains variable f and the q selected variables. Also, let
It can be shown that when system 300 solves the problem specified in Expression (7), the system 300 will have effectively maximized the following expression:
The above expression is a closed form solution for evaluating variable relevance in a supervised learning context. Based on Expression (8), the best variable in each search step can be selected by choosing the one with the maximum relevance score. Compared to Expression (7), Expression (8) singles out the computations that are common for evaluating different variables. This makes it possible to compute them only once in each step and therefore reduces the complexity inherant in solving the problem. In other words, the system 300 may employ equation (8) to evaluate variable relevance, while at the same time avoiding the redundant computational burden which would be imposed by reliance only on equation (7).
In the supervised feature selection context, the greedy search algorithm employed by system 300 effectively solves equation (8) at each iteration of greedy search. During each iteration, the system 300 selects the feature which maximizes equation (8).
Moreover, during each iteration, system 300 parallelizes, over a number (p) of worker nodes 304, several calculations involved in identifying the maximizing feature. Other calculations are performed at a control node 302 which distributes information for performing the parallelized calculations. For example, during each greedy search iteration after the first iteration, the control node 302 provides each worker node with information that identifies the feature selected during the most recently concluded iteration. By parallelizing the calculations over p nodes as opposed to performing all the calculations on a single node, system 300 achieves linear speedup as a function of p.
Also, system 300 achieves additional speedup of the supervised feature selection algorithm by using a tree-structured network for the sharing of information between the control node and the worker nodes. For example, the worker nodes may be layered in a tree structure which grows outwards from the control node. By using a tree structure, the communications required to execute the greedy search algorithm may be accelerated.
Let C be the number of columns in Y. The time complexity of selecting k variables using Expression (8) is
O(mk(n+k2)) (9)
To obtain Expression (9), it is assumed that m>>k>C.
When operating in the unsupervised feature selection context, system 300 employs a slightly different gready search algorithm. With regards to an unsupervised context, assume that q variables have been selected. Let X1 contain the q selected variables, and let X2 contain the remaining ones. Using sequential forward selection and the criterion specified in Equation (6), in the q+1 step, a variable is selected by
where {circumflex over (X)}1 contains f and the q selected variables, and {circumflex over (X)}2 contains the remaining ones. It can be shown that solving the problem specified in Expression (10) is equivalent to maximizing the following expression:
The above equation provides a closed form solution for evaluating variable relevance in a unsupervised learning context, based on which the best variable in each SFS step can be selected by choosing the one with the maximum relevance score. Compared to Expression (10), Expression (11) singles out the computations that are common for evaluating different variables. This makes it possible to compute them only once in each step and therefore improves the efficiency for solving the problem. Thus, the system 300 may evaluate variables and avoid redundant processing by performing the calculation of equation (11). Evaluated variables which reveal an appropriate level of informativeness, based on the calculations associated with equation (11), may be selected.
Let m be the number of all variables, n the number of samples, and k the number of variables to be selected. Also assume that m>>k . It can be verified in a centralized computing environment, the time complexity for selecting k variables by solving Expression (11) is:
O(m2(n+k2)) (12)
In the preceding expression, m2n corresponds to the complexity for computing the covariance matrix. And m2k2 corresponds to selecting k variables out of m.
such that (X1, X2 . . . Xp)=X, where X is the n×m feature matrix containing n zero-mean observations for each of the m features to be considered for selection. That is, X1, X2 . . . Xp are partitions of X. In this way, each of the m columns of X corresponds to a different one of the m variables.
Furthermore, at 402 the system 300 receives a response matrix Y. The response matrix may be received as p response matrix partitions which can be concatenated to form Y. Alternatively, the control node 302 may receive response matrix Y prior to the repsonse matrix being partitioned. In this case, the response matrix 302 may then partition Y into p (Y1, Y2 . . . , Yp) equal partitions. In either case, Y1, Y2 . . . , Yp are equivalently dimensioned
partitions of the response matrix Y, where C is the number of classification levels in the training data. At 404, the control node assigns X1, . . . Xp and Y1, Y2 . . . , Yp to the p worker nodes 304 in a distributed manner, such that the rth worker node is assigned Xr and Yr. At 406, each worker node 304 performs parallelized calculations as indicated in the flow diagram.
It should be understood that at 406, and everywhere in this disclosure, the symbol indicates element-wise matrix multiplicaton, i.e. computation of the Hadamard Product. At 408, following the parallelized computations performed at 406, each worker node 304 sends Er and Vr to the control node 302. The information sent at 408 may be sent via MPI_Reduce with the MPI_SUM option (both MPI_Reduce and MPI_SUM are Message Passing Interface functions). At 410, the control node receives the variable information sent, at 408, by each of the p worker nodes 304.
At 412, the control node 302 computes a variable score vector (s=1T(EE)) and then updates the variable score vector (s=Øv) as depicted. Here, it shall be understood that the symbol Ø indicates element-wise matrix division. At 414, the control node 302 determines the largest element (si) of s, and selects the feature corresponding to the feature observations in the ith column of X. At 416, the control node 302 initializes set to store this first selected feature, as well as the features to be subsequently selected. Also, at 416, the control node 302 initializes a counter variable l to 1.
At 418, an iterative process occurs involving k−1 additional greedy search iterations, so as to select the remaining k−1 additional features. At 418, the control node 302 verifies that l<k. The system 300 then repeats steps 418-436 until determining that l=k at 418. At 420 the control node sends to all the worker nodes via MPI_Beast (MPI_Beast is a Message Passing Interface function). At 422, each worker node 304 references the selected features in and performs covariance calculations as indicated on the flow diagram. For the purposes of understanding the equations shown at 422, the parallelized computations at 422 involve calculating the covariance between Fi and all other variables, as summarized by the following series of vector and matrix operations:
Each node calculates these covariances with regards to features represented in its respective feature matrix partition. At 424, the workers send the various calculated vectors ci to the control node. Next at 426, the control node 302 constructs a series of matrices, and performs the matrix construction based on: the various vectors provided by the control nodes at 424, the feature matrix and the response matrix, as depicted in the flow diagram.
The matrices constructed at 426 may be constructed using the following relationships: A−1=(X1TX1)−1, CY,1Y=YTX1, CY,2=YTX2, C1,2=X1TX2. Also, at 426, v2 contains the variance of all unselected variables, and can be calculated using v calculated at 410. In each iteration of greedy search after the second iteration (e.g. once l=2), the control node may incrementally construct A−1 and C1,2 by updating the versions of these matrices calculated during the previous iteration. Also, at 428, it should be recognized that the matrix E obtained at 410 can be used by the control node 302 to construct CY,1 and CY,2 incrementally, such that these matrices are also based on versions calculated during previous iterations.
At 430, the control node 302 performs matrix and vector operations which result in the computation of a vector g. At 432, the control node 302 performs further matrix and vector operations, as depicted. The operations at 432 result in computation of a vector S which contains feature scores for each of the unselected features. Next, at 434, the control node 302 determines the maximum score in vector S, and selects the feature in the feature matrix which corresponds to the position of the maximum score in vector S. At 436, the control node 302 adds the selected feature to the set () of selected features. Subsequently, the process returns to 418, at which point another iteration of steps 418-436 occurs, or the feature selection process ends.
With regards to the supervised feature selection process of
where C is the number of columns in Y, CPU is the average time to perform a computation during execution of the algorithm, and NET is the average node-node communication time delay during execution of the algorithm.
At 504, the worker nodes 304 perform distributed computation of the m×m covariance matrix with respect to the m features represented in the feature matrix. As depicted, the distributed computation involves each worker node computing
columns of the covariance matrix. For each worker node 304, the covariance matrix columns which the worker node 304 computes are the columns which correspond to those columns within the feature matrix partition that is assigned to the worker.
At 506, each of the worker nodes 304 calculates feature scores as depicted in the flow diagram. As depicted, at each worker node 304, the computed feature scores are based on the covariance matrix partition calculated at the node. At each worker node 304, the feature scores are computed with respect to the
features that correspond to the columns within the feature matrix partition assigned to the worker node 304. Moreover, at each worker node 304, the feature scores are contained within a vector (sr).
Subsequently, at 508, each worker node 304 sends its most recently computed feature score vector (sr) to the control node 302. This communication of feature score vectors may be performed using MPI_Gather (MPI_Gather is a Message Passing Interface function).
At 510, the control node 302 evaluates all the feature score vectors (s1, s2, . . . sr) to determine the highest feature score element found amongst the vectors. Once the highest element is found, the control node 302 selects the feature (the first selected feature) corresponding to the highest feature score.
At 512, the control node 302 initializes a list L for use in storing the feature matrix column indexes of selected features. The column index of the first selected feature (selected at 510) is included in the set. At 514, system 300 commences the second greedy search iteration by verifying that l<k. Subsequently, system 300 repeatedly performs steps 514-528, in that order, until l=k. When l=k at 514, system 300 detects that k iterations of greedy search have been performed, and ceases to perform further iterations.
Steps 516-528 will now be explained in detail. At 516, the control node 302 sends set to all worker nodes. Here, the set may be sent using MPI_Bcast. At 518, each worker node 304 evaluates its respective correlation matrix partition Cr to determine if the partition includes the column of the correlation matrix which corresponds to the most recently selected feature. The worker node 304 which locates this column within its respective correlation matrix then sends the column (which may be conceptualized as a column vector) to all other nodes via MPI_Bcast.
At 520, each worker node 304 constructs a series of matrices, as described in the flow diagram. For the purposes of undestanding the matrices constructed at 520, let Lr contain the index of unselected features on the r th worker, and Lu contain the index of all unselected features. Then A−1=(X1TX1)−1=CL×L is a symmetric matrix that contains the covariance of the selected features, Br=X1Xr=CL×L
The matrices constructed at 520 enable each worker node 304 to further compute a vector sr containing feature scores for all unselected features represented in the worker node's assigned feature matrix partition. The series of computations used by each worker node 304 to determine sr is depicted at 522. Subsequently, at 524, each worker node 304 sends sr to the control node via MPI_Gather.
At 526, the control node 302 determines the highest received feature score within the vectors sent by the worker nodes at 524. The feature which corresponds to this highest feature score is then selected and added to set at 528. Additionally, system 300 increments counting variable l at 528. Depending on the value of variable l at 514, system 300 may perform subsequent iterations of steps 516-528. As mentioned previously, however, system 300 ceases the iterative process once l=k. Subsequent to the iterative process terminating, the features indexed by set may then be used in any modeling process or other context in which the features may provide explanatory or predictive value.
At 604, the control node 302 accesses a parameter (k) which indicates a number of features to be selected. At 608, the control node 302 partitions the feature matrix and assigns one partition to each worker node 304. Each worker node 304 will later use its respective feature matrix partition to perform calculations used in determining the features to select.
At 610, the worker nodes 304 compute unique partitions of the covariance matrix with respect to the features represented in the feature matrix. As depicted at 504 in
At 616, the worker nodes 304 calculate feature scores for the unselected features in their respective feature matrix partition. For each worker node 304, this calculation process involves using the respective partition of the covariance matrix and respective partition of the feature matrix. If count is >1, the calculation process also involves the indices of feature matrix columns corresponding to features selected during previous iterations, and the covariance matrix columns corresponding to features selected during the previous search iterations.
At 618, each worker node 304 sends the feature scores most recently computed (at 616) to the control node 302. After receiving the feature scores, the control node 302 selects the feature associated with the highest feature score and adds the selected feature to a list (or set) of selected features.
As depicted at 622, system 300 then determines if count is less than k. If count is less than k, then, at 624, the control node 302 informs all the worker nodes 304 of the feature most recently selected. The control node 302 provides this information by indicating the feature matrix column corresponding to the most recently selected feature. Subsequently, at 626, each worker node 304 determines if its respective covariance matrix partition contains the column associated with the most recently selected feature. At 628, the elements of the covariance matrix column associated with the most recently selected feature are sent to all worker nodes 304. Here, the sending is performed by the worker node 304 which encountered the column within its covariance matrix partition, at 618. Next, the variable count is incremented at 630, and steps 616-630 are repeated in that order until count=k at 622.
Once the exit condition at 622 is satisfied (i.e., once the system 300 has selected k features), a model or other predictive or forecasting mechanism may be built, at 632, using the selected features.
At 704, the control node accesses a parameter (k) indicating a number of features represented in the feature matrix which are to be selected. At 706, the control node 302 receives a response matrix containing target data (in the case of linear regression) or target classifications (in the case of classification). Next, at 708, the control node 302 sends the complete feature matrix and response matrix to each worker node. At 710, the control node partitions the feature matrix and assigns one partition to each worker node so that the worker nodes 304 may calculate local feature scores with respect to the features represented in their respective assigned partitions.
At 712, the control node 302 partitions the response matrix and assigns one partition to each worker node. Next, at 714, each worker node initializes a node-specific selected feature tracking set to store selected features which are represented in its assigned feature matrix partition.
At 716, each worker node 304 uses its assigned feature matrix partition and response matrix partition to compute a feature score for each feature represented in its assigned feature matrix. All computed feature scores are then sent from the worker nodes 302 to the control node 302. At 718, the control node 302 identifies and selects the feature corresponding to the highest feature score. The control node 302 adds that feature to a list (or set) of selected features, thereby completing the first greedy search iteration.
At 720, the system 300 initializes the variable count to 2 so that k−1 additional greedy search iterations can be performed. Subsequently, system 300 performs steps 722-734 repeatedly, and in order, until the variable count is detected as being equal to k at 732.
At 722, the control node 302 provides all worker nodes 304 with the index of the feature matrix column that corresponds to the most recently selected feature. At 724, each worker node 304 determines if the most recently selected feature is represented in its assigned feature matrix partition. At this point, the worker node 304 which makes a positive determination then updates its node-specific feature tracking set to include the most recently selected feature.
At 726, each worker node 304 uses the feature matrix to calculate a covariance between every selected feature in its node-specific feature tracking set and every other feature represented in the feature matrix. The worker nodes 304 provide all such calculated covariance values to the control node.
At 728, the control node 302 computes feature scores for all unselected features. The control node computes the feature scores using the variances most recently provided by the worker nodes (at 728), the feature matrix, and the response matrix.
At 730, the control node 302 selects the feature associated with the highest feature score. The control node adds the selected feature to the list of selected features. At 732, system 300 determines if count continues to be less than k. If count is less than k, then count is incremented at 734, and a subsequent greedy search iteration commences at 722. Otherwise, if count is no longer less than k, a model may be built using the selected features, as depicted at 736.
In the aforementioned descriptions, specific details are given so as to enable a thorough understanding of certain of the various embodiments of the disclosed techniques, systems, methods, processes and the like. However, any such embodiments within the scope of this disclosure need not be characterized by these specific details. Also, well-known circuits, processes, algorithms, structures, and techniques have been shown without unnecessary detail in order to avoid obscuring the embodiments.
This description provides example embodiments only, and is not intended to limit the scope, applicability, or configuration of the disclosed subject matter. Rather, the preceding description of certain of the many embodiments will provide those skilled in the art with an enabling description which will facilitate implementation of the subject matter of this disclosure. Various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the disclosed subject matter.
Also, some embodiments were described as processes depicted as flow diagrams or block diagrams. Although each may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may have additional steps not included in the figure. Furthermore, embodiments of the methods may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware, or microcode, the program code or code segments to perform the associated tasks may be stored in a computer-readable medium such as a storage medium. Processors may perform the associated tasks.
Where the embodiments involve firmware and/or software implementation, certain functionality may be provided through instructions or code stored on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program. Computer-readable media includes physical computer storage media. A storage medium may be any available medium that can be accessed by a computer. By way of example, and not limitation, such computer- readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
Having described several embodiments, various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosure. For example, the above elements may merely be a component of a larger system, wherein other rules may take precedence over or otherwise modify the application of the disclosed subject matter. Also, a number of steps may be undertaken before, during, or after the above elements are considered. Accordingly, the above description does not limit the scope of the disclosure.
The present application is a non-provisional of and claims the benefit of priority under 35 U.S.C. 119(e) of U.S. Provisional App. No. 61/684,231 filed Aug. 17, 2012, and U.S. Provisional App. No. 61/801,410 filed Mar. 15, 2013, both of which are entitled “Systems and Method For Providing a Unified Variable Selection Approach Based on Variance Preservation”. The entire contents of both such provisional applications are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5386370 | Woo | Jan 1995 | A |
5944779 | Blum | Aug 1999 | A |
5959574 | Poore, Jr. | Sep 1999 | A |
6877387 | Certon | Apr 2005 | B1 |
7673295 | Lin | Mar 2010 | B1 |
7792895 | Juffa | Sep 2010 | B1 |
20030176931 | Pednault | Sep 2003 | A1 |
20030211486 | Frudakis | Nov 2003 | A1 |
20050181386 | Diamond | Aug 2005 | A1 |
20060173663 | Langheier | Aug 2006 | A1 |
20090123077 | Imaoka | May 2009 | A1 |
20090131803 | Heneghan | May 2009 | A1 |
20100118715 | Gu | May 2010 | A1 |
20100205124 | Ben-Hur | Aug 2010 | A1 |
Entry |
---|
SAS Institute Inc. (2012) “SAS® High-Performance Analytics 1.3: User's Guide” SAS Institute Inc., Cary NC, 552 pages, http://supportprod.unx.sas.com/documentation/solutions/hpa/13/hpaug.pdf. |
Number | Date | Country | |
---|---|---|---|
20140059073 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61684231 | Aug 2012 | US | |
61801410 | Mar 2013 | US |