The present invention relates, in general, to electrical power systems and, more specifically, to systems and methods for providing and managing high-availability power infrastructures with flexible load prioritization.
In recent years, the electric power industry has been burdened by an accelerated increase in demand that threatens the integrity of high-scale generation and transmission systems. As a consequence, customers often experience problems of restricted capacity (“brownouts”) and service interruptions (“blackouts”).
Even when operating under normal, non-peak conditions, modern power systems deliver services with only 99.9% of reliability, which represents an outage equivalent to about nine hours per year for a typical customer. This level of service is clearly inadequate in the information age, and represents a significant threat to data-processing centers, call centers, telecommunication switching facilities, emergency services, hospitals, and other critical applications. For example, where power is provided at 60 cycles per second, a two-cycle “hiccup” can frequently cause most computers and servers to reboot or lock-up.
Without immediate and adequate power for computers, communication systems, defense and security systems, appropriate response to terrorist attacks and natural catastrophes can be very difficult. Before the attacks of Sep. 11, 2001, concerns about power interruption focused primarily on the risk of equipment failures, extreme weather conditions, and accidents. Since then, however, there has been a growing concern regarding the possibility of deliberate attacks on the electric power system. Other recent events have further stressed the importance of securing our power supply systems.
It is generally accepted that satisfactory levels of electrical power services must be provided with at least 99.9999% of availability, or the equivalent of 32 seconds of outages per year. Unfortunately, it has become increasingly difficult for utilities to reach these relatively high levels, particularly due to the fact that power quality is adversely affected as loads increase. It will be virtually impossible to attain the desired degree of availability from current utility transmission and distribution power infrastructures in the foreseeable future.
A typical solution to these problems involves the local deployment of a distributed generation unit (“DG”) or battery operated, uninterruptible power supply (“UPS”) system. Because information, security, defense, and communications systems are often widely dispersed within a single premises, one of two approaches is commonly followed. First, a large DG and UPS unit may be deployed in order to fulfill the electrical loads of an entire building. Alternatively, a plurality of DG or UPS systems may be installed in different parts of the building, each unit thus servicing a particular portion thereof.
The deployment of DG or UPS systems often presents itself as a business decision. Customers adopting these solutions are, in fact, generating power on-site in lieu of purchasing power from the local utility and risking production shutdown because of poor power quality. Unfortunately, for many customers, purchasing a local power supply system that supports all building load or a widely dispersed collection of critical load is far too expensive.
Prior art system 100 shown in
As illustrated in
The present invention provides an electrical power infrastructure cap able of controlling the availability and distribution of power to power lines and devices connected thereto according to a priority system. In one exemplary embodiment, a high-availability “backbone” power line or circuit provided by a high-availability power supply unit (e.g., UPS, DG, etc.) selectively feeds power to one or more flexible priority power lines (collectively referred to as “sub power lines”). Each flexible priority line may serve a single device, a plurality of devices, or an entire site. Remotely controllable switches or power control devices connect the backbone line to one or more flexible priority lines. For example, under normal operating conditions, a switch may be closed and thus provide high-availability power to its respective flexible priority line. Upon the happening of a specific event, a controller may transmit a signal to the switch that opens the circuit and cuts off high-availability power to its flexible priority line.
In one embodiment of the present invention, each switch may be ranked as to its relative priority depending upon the available power, interaction with other switches, and/or relative importance of the devices connected thereto (e.g., security, communications, safety, protection, etc.). Each switch may provide information as to all sources and loads, and may also provide dynamic “islanding” or the creation of intelligent, interactive “microgrids” within a building or region. Switches may be remotely operated by a single programmable controller such as a computer, for instance, via a communications network. In one alternative embodiment, a controllable switch may be embedded directly into devices that connect directly to the backbone power line.
The foregoing has outlined rather broadly certain features and technical advantages of the present invention so that the detailed description that follows may be better understood. Additional features and advantages are described hereinafter. As a person of ordinary skill in the art will readily recognize in light of this disclosure, specific embodiments disclosed herein may be utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. Such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. Several inventive features described herein will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, the figures are provided for the purpose of illustration and description only, and are not intended to limit the present invention.
For a more complete understanding of the present invention, reference is now made to the following drawings, in which:
In one exemplary embodiment, remotely controllable switches 203-205 remain closed under normal operating conditions, thus allowing electrical current to flow from backbone line 201 to flexible priority lines 206-208. Each flexible priority line may have a priority level associated therewith. For example, different priority profiles may be programmed into, or associated with, each of switches 203-205. As such, when one of switches 206-208 receives a signal from switch control and monitoring center 202 that has a priority profile that is higher than the switch's priority profile, the switch opens and cuts off high-availability power to its respective flexible priority line. In these cases, each of flexible-priority lines 206-207 may be backed up by utility power line 101 to provide regular power to lower priority loads connected thereto. Additionally or alternatively, system 200 may be designed to respond to diminished DG or UPS 103 output when, for example, fuel supply or battery reserves reach a critical level.
Even though switches 203-205 have been shown as on/off switches, they alternatively be controllable power limiting devices such as, for example, variable current limiters, or the like. When power control devices are used in place of switches 203-205, system 200 is capable of controlling the maximum consumption of power distributed to each flexible priority line. Therefore, rather than turning low priority lines completely off, system 200 can allocate varying amounts of power to each line (or device) as a function of, or in proportion to, their respective priority profiles.
The term “high or higher priority load or device” is used throughout this disclosure to identify loads that must preferably be supplied electrical power to the detriment of “low or lower priority loads or devices” (when necessary), due to the relative importance of their operation. As shown in
Still referring to
Turning now to
In operation, switches S1-S4 maintain identical status (i.e., they are either all open or all closed). The status of switches S1-S4 is controlled by switch control module 301. Master switches MS1 and MS2 may be used for performance and reliability testing and provide normal condition override functionality by forcing switch 300 to be either open or closed regardless of the status of toggle switches S1-S4. In the embodiment shown in
Table I depicted below shows the overall functionality of switches 300 and/or 400 under a variety of S1-S4 switch faults:
The embodiments described above with respect to
Table II depicted below shows current sensor (CS1-CS3) status as a function of toggle switch (S1-S4) status:
Turning now to
Bus 502 is also coupled to input/output (“I/O”) controller card 505, communications adapter card 511, user interface card 508, and display card 509. I/O adapter card 505 connects storage devices 506, such as one or more of a hard drive, a CD drive, a floppy disk drive, a tape drive, to computer system 500. I/O adapter 505 is also connected to a printer (not shown), which would allow the system to print paper copies of information such as documents, photographs, articles, and the like. The printer may be a printer (e.g., dot matrix, laser, and the like), a fax machine, scanner, or a copier machine. Communications card 511 is adapted to couple the computer system 500 to network 512, which may be one or more of a telephone network, a local (“LAN”) and/or a wide-area (“WAN”) network, an Ethernet network, and/or the Internet. User interface card 508 couples user input devices, such as keyboard 513, pointing device 507, and the like, to computer system 500. Display card 509 is driven by CPU 501 to control the display on display device 510.
In one embodiment, computer 500 sends instructions to switches 203-205 using communications adapter 511 via network 512. Alternatively, computer 500 may comprise remote switch interface 514 operable to exchange messages, signals, or instructions with remote switches 203-205 and/or 211 shown in
In operation, computer 500 communicates with each of remotely controllable switches 203-205 and/or 211 individually or in groups. Command messages are sent from computer 500 to open or close remotely controllable switches based on their priority profiles. In one non-limiting example, a “priority 3” command opens all switches with a priority profile of 3 or lower (i.e., “priority 3,” “priority 4,” “priority 5,” etc.) without affecting the operation of switches with a higher priority profile (i.e., “priority 1” and “priority 2”). If, for any reason, any of remotely controlled switches 203-205 does not correctly respond to a command from computer 500, the faulty switch reports the problem to computer 500 via bus 515 (or network 512).
In one embodiment of the present invention, computer 500 executes software that allows users to monitor and manage the high-availability infrastructure. For instance, the software may have a graphical user interface (GUI) that presents a block diagram of the infrastructure, such as the one shown in
A user may assign priority profiles to each of switches 203-205 and/or 211, for example, in order to fulfill optimization objectives such as maximizing run times, available DG fuel supply, UPS battery reserves, peak load mitigation for overall improved electric load management, or the like. The user may also use a set of operations defined in natural language to manage and control switches 203-205 and/or 211 according to its individual requirements and priorities.
In one exemplary embodiment, the following set of operations is provided: (a) never turn off; (b) turn off instantly after utility power supply is lost; (c) turn off n seconds after utility power supply is lost; (d) never turn on equipment that is being threatened by utility power quality or power loss (imminent utility brownout or blackout); (e) turn off when the unit price of power exceeds a given amount; (f) turn off on utility demand response signal; (g) and change (reset) remote switch priority on ranked optimization signal(s) including fuel availability, occupancy levels, security threats, communication requirements, etc.
Using the aforementioned exemplary operators, priority profiles may be assigned to each switch, for instance, on a scale of 1 to 5. For example, a switch may be assigned a “priority level 1” when the user desires it to never be turned off. The user may assign a “priority level 2” to switches that cannot turn on equipment threatened by utility power quality or power loss. Another switch may be assigned a “priority level 3” when the user wants to turn it off 2 minutes after power supply is lost or when the unit price of power exceeds a preset limit, such as $200.00. Another switch may be assigned a “priority level 4” when the user wants to turn it off 30 seconds after power supply is lost or when the unit price of power exceeds $100.00. The user may assign a “priority level 5” to switches that should turn off instantly after power supply is lost or when the unit price of power exceeds $50.00.
The user may arbitrarily assign priority levels to each switch or group of switches. Further, the user may create, modify, or define the operations upon which the priority levels may be based. Additionally or alternatively, switch control and monitoring center 202 may be programmed to fulfill optimization by monitoring the operating conditions of switches 203-205 and/or 211 by adjusting their priority profiles without further user input.
The functions and/or algorithms described above may be implemented for example, in software or as a combination of software and human procedures. Software may comprise computer executable instructions stored on a computer readable medium such as memory or other type of storage device. Further, functions may correspond to modules, which may be software, hardware, firmware or any combination thereof. Multiple functions may be performed in one or more modules as desired, and the embodiments described are merely examples. Software may be executed on a digital signal processor, microprocessor ASIC, or other type of processor or controller.
Particularly in view of the foregoing, a person of ordinary skill in the art will readily recognize that the present invention provides numerous advantages over the prior art. For instance, a prior art system such as the one shown in
Meanwhile, the systems and methods of the present invention allow the provisioning of power using a flexible power priority principles that obviate the need for redundant power lines. The present invention also allows small, economical DG and UPS systems, to meet the exigent requirements of the information, security, defense, and telecommunications industries. In addition, the present invention successfully addresses the need for reliable power supply that is critical to public facilities during emergencies, avoids detrimental demand peaks that would otherwise lead to brownouts or service interruptions, lowers security risks involved in the operation of the electric power grid, improves grid reliability and efficiency, and reduces reliance on higher cost “must-run” generators. As will be readily recognized by a person of ordinary skill in the art in light of this disclosure, systems according to the present invention may also be advantageously adapted to fit existing infrastructures, thus allowing standard power lines to support a flexible, high-availability power infrastructure.
Although certain embodiments of the present invention and their advantages have been described herein in detail, it should be understood that various changes, substitutions and alterations can be made without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present invention is not intended to be limited to the particular embodiments of the processes, machines, manufactures, means, methods, and steps described herein. As a person of ordinary skill in the art will readily appreciate from this disclosure, other processes, machines, manufactures, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufactures, means, methods, or steps.
This application claims priority benefit of U.S. Provisional Application Ser. No. 60/765,770 entitled “DISTRIBUTED SYSTEM AND METHOD FOR MANAGING LOADS TO MEET ELECTRIC POWER AVAILABILITY AND POWER QUALITY,” filed Feb. 6, 2006, the disclosure of which is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60765770 | Feb 2006 | US |