Systems and methods for providing biofeedback information to a cellular telephone and for using such information

Information

  • Patent Grant
  • 9675875
  • Patent Number
    9,675,875
  • Date Filed
    Tuesday, February 10, 2015
    9 years ago
  • Date Issued
    Tuesday, June 13, 2017
    7 years ago
Abstract
The present invention provides systems, methods and apparatus for a wearable band adapted to be worn by a user. The wearable band may include one or more biometric sensors such as a pulse monitor adapted to monitor a pulse of the user, and a transmitter adapted to wirelessly transmit pulse information from the pulse monitor to a mobile device such as a cellular telephone or PDA. The wearable band does not include a display for the biometric information. Numerous additional embodiments are disclosed.
Description
FIELD OF THE INVENTION

The present invention relates to the use of biofeedback devices, and more particularly to systems and methods for providing authenticated biofeedback information to a mobile device such as a cellular telephone and for using such information.


BACKGROUND

Biofeedback devices such as portable heart rate monitoring (HRM) devices are commonly used in fitness related activities for weight loss, goal heart rate (HR) training, and general HR monitoring. Such devices may sometimes be employed by healthcare professionals for chronic and/or acute heart condition monitoring and/or diagnosis.


Portable HRMs and other monitoring devices typically are expensive, and in some cases are cost prohibitive for many consumers. A need exists for inexpensive and/or simplified monitoring systems.


SUMMARY

In some embodiments, the present invention provides a wearable band adapted to be worn by a user. The wearable band includes a pulse monitor adapted to monitor a pulse of the user at the user's wrist; and a transmitter adapted to wirelessly transmit pulse information from the pulse monitor to a cellular telephone. The wearable band does not include a display for the pulse information.


In some other embodiments, the present invention provides a system adapted to monitor biometric information of a user. The system includes a wearable band having a pulse monitor adapted to monitor a pulse of the user; and a transmitter adapted to wirelessly transmit pulse information from the pulse monitor to a cellular telephone. The wearable band does not include a display for the pulse information and the cellular telephone is adapted to receive the pulse information from the wearable band.


In still other embodiments, the present invention provides a system which includes a plurality of wearable bands, the wearable bands each including one or more accelerometers, an identification indicia, one or more proximity sensors, and a communications device; and a mobile device adapted to communicate with one or more of the plurality of wearable bands and to determine an activity of a wearer of the plurality of wearable bands based on information transmitted by the wearable bands.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of an exemplary system for sensing, collecting and/or monitoring biometric information from a user according to some embodiments of the present invention.



FIG. 2 is a schematic diagram of an alternative exemplary system for sensing, collecting and/or monitoring biometric information from a user according to some embodiments of the present invention.



FIG. 3 is a side perspective view of an exemplary wearable band provided in accordance with some embodiments of the invention.



FIG. 4 is a block diagram depicting an example system according to some embodiments of the present invention.



FIG. 5 is a flow chart depicting an example method according to some embodiments of the present invention.





DETAILED DESCRIPTION

In one or more embodiments of the invention, wearable monitors and/or sensors are provided which may communicate wirelessly with a mobile device such as a cellular telephone, personal digital assistant or other portable computing device. For example, a wrist, ankle or other body part band, strap, bracelet or other securing mechanism may include one or more monitors or sensors adapted to sense biometric information from a user and to transmit this information to a cellular telephone, personal digital assistant or other portable device. Exemplary biometric information that may be monitored includes, but is not limited to, heart rate, pulse rate, temperature, respiration, acceleration, skin resistivity, etc.


In some embodiments, a band or bracelet may be provided for each arm and/or each ankle of a user to monitor arm and leg position during golf, tennis, running, etc., and to provide this or other biometric information to a cellular telephone, personal digital assistant or other portable device. Such a system may be used, for example, to determine stride length during running, body position during a golf or tennis swing, “hang time” during a basketball dunk, and the like.


In one or more embodiments, an accelerometer may be provided within a band or bracelet. The accelerometer may be employed to measure acceleration during a golf, tennis, hockey, or other swing. Such acceleration information may be wirelessly transmitted to a cellular telephone, personal digital assistant or other portable device and used to determine club, racquet or stick speed, club, racquet or stick velocity, swing tempo, or the like. In some embodiments, such acceleration information may be adjusted to compensate for the affects of gravity. Software and/or one or more computer program products on the cellular telephone or other portable device may be employed to calculate or otherwise determine any relevant information.


For example, in a golf embodiment, the portable device may employ the acceleration information from a band or bracelet to determine (1) acceleration of a club during a swing (e.g., club head acceleration); (2) velocity and/or speed of a club during a swing (3) swing tempo; (4) ball-club contact; (5) ball-club contact force; (6) ball-club contact timing; (7) follow through speed, timing and/or tempo; (8) number of strokes of a golf club and/or golfer; (9) predicted ball travel distance (e.g., based on ball-club contact force, club type, swing speed, etc.); (10) predicted ball position (e.g., based on ball-club contact force, club type, swing speed, etc.); (11) golf score; (12) golf handicap; and/or any other similar information.


In another exemplary embodiment, an accelerometer or other sensor may be used to monitor acceleration and/or striking force during a boxing or mixed martial arts (MMA) event (e.g., by embedding the accelerometer in a band or glove worn by a participant) and to provide this or other biometric information to a cellular telephone, personal digital assistant or other portable device.


The present invention also aggregates various inputs from one or more sensors (e.g., in the wearable bands) and provides messages (e.g., signals) to a central system (e.g., a game console, a mobile device running a game program, etc.) indicating sensed “macro” status information (e.g., compound activities/statuses) about a user and/or the user's activity or experiences. In other words, based on verifiable data collected/acquired and aggregated from one or more sensors, the present invention provides an authenticated or verified indication that a user is taking an action or experiencing a particular sensation or physical, physiological, or mental “occurrence.” This authenticated information may then be used to impact, alter, and/or adjust the central system (e.g., change game play on a game console). For example, a video game that wants to require that the user is maximally exerting himself may rely upon an authenticated message from the apparatus of the present invention that confirms the user's maximal exertion. Thus the video game does not have to evaluate or even be aware of the whole array of parameters and corresponding raw data collected from various sensors (e.g., in the wearable bands) such as the user's heart rate (e.g., from an HRM) being above a certain percentage threshold, user perspiration level (e.g., from a moisture sensor) being above a certain threshold, user body temperature level (e.g., from a thermometer) being above a certain threshold, user impact shock level (e.g., from an accelerometer) being above a certain threshold, user acceleration/deceleration (e.g., from an accelerometer) being above a certain threshold, user motion frequency (e.g., from accelerometer(s) and/or proximity sensor(s)) being above a certain threshold, user speed of movement (e.g., from a GPS and clock) being above a certain threshold, user breathing frequency being above a certain threshold (e.g., from a microphone, HRM, etc.), user breathing depth level (e.g., from a microphone, HRM, etc.) being above a certain threshold, user muscle flexing frequency (e.g., from accelerometer(s) and/or proximity sensor(s)) being above a certain threshold, user blood pressure (e.g., from a blood pressure monitor) being above a certain threshold, user pulse oxygen level (e.g., from a pulse oxygen monitor) being above a certain threshold, user blood sugar or insulin or cholesterol levels being above or below certain thresholds (e.g., from an automated blood tester), user muscle expansion (e.g., from a measurement of the muscle size), etc. In other words, the present invention defines a protocol and an interface for providing authenticated activity or status information about a user based on an aggregation of sensed data.



FIG. 1 is a schematic diagram of an exemplary system 100 for sensing, collecting and/or monitoring biometric information from a user (not shown). The system 100 includes a wearable band 102 having one or more monitors or sensors (not shown) adapted to monitor or otherwise sense, for example, heart rate, pulse rate, temperature, respiration, acceleration, skin resistivity, or any other biometric information. The wearable band 102 may (wirelessly) transmit the biometric information to one or more cellular telephones 104a-b or other portable devices such as personal digital assistants, MP3 players, portable video game players, or the like. While two cellular telephones are shown in FIG. 1, it will be understood that any number of portable devices (e.g., 1, 2, 3, 4, 5, etc.), differing types of portable devices, etc., may receive biometric information from the band 102.


Each cellular telephone 104a-b, or any other portable device receiving information from the band 102, may be programmed to process the biometric information received from the band 102 (e.g., for general health monitoring, determining swing information, monitoring sleep patterns, enhancing video game performance by affecting a video game character or characteristic based on the biometric information, etc.).


In some embodiments, the band 102 may be flexible, continuous and/or water resistant.



FIG. 2 is a schematic diagram of an alternative system 200 for sensing, collecting and/or monitoring biometric information from a user (not shown). In the embodiment of FIG. 2, four bands 102a-d communicate information to a cellular telephone 104 (or other portable device). For example, a user may employ a band 102 on each arm and each ankle, or multiple users may employ a band 102. Other numbers of bands and/or portable devices may be used.



FIG. 3 is a side perspective view of an exemplary band 102 provided in accordance with the invention. In the embodiment shown, the band 102 includes a temperature sensor 201, a pulse monitor 202, an accelerometer 204 and an RF transmitter 206 for wirelessly transmitting information from each monitor/sensor 200-204 to a cellular telephone, mobile device/HCD or other portable device. In some embodiments, each monitor/sensor 201-204 is embedded in the band 102 so as to be protected, such as from moisture (e.g., sweat, water, rain, snow, etc.). Other numbers and/or types of monitors/sensors may be used. Any suitable communication protocol may be used to transmit information between the band 102 and a portable device (e.g., Bluetooth, WiFi, RF, optical, etc.).


In some embodiments, a cellular telephone or other portable device may be employed to display exercise information for a user during exercise. For example, a stepper, elliptical or other piece of exercise equipment may include a crude or rudimentary display of calories burned, steps taken, miles walked, pulse rate, etc. A cellular telephone, portable video game device, personal digital assistant, etc., receiving information from a band, bracelet, strap or the like may provide a much more enjoyable and interactive interface, for example, displaying an avatar representation of an exerciser, a mountain or hill or any other environment for the exerciser to climb or pass through, exercise statistics, graphs of exercise level and/or performance, etc.


In some embodiments, for example using multiple bands, the bands may operate as a mobile ad hoc and/or mesh network to allow the bands to communicate with each other and collectively provide relative positioning information using information derived from, for example, built-in accelerometers, GPS sensors, identification signals, proximity sensors (e.g., sensors that determine distance from other bands based on, e.g., received signal relative strength), etc. The relative positioning information may be used to deduce the activity or position of the wearer or wearers of the bands. For example, if four bands worn on the four appendages of a single user collectively determine and report (e.g., via a wireless signal to a mobile device) that they are all within approximately 10 cm of each other, the mobile device receiving the signal may determine that the user is touching his toes. If within, for example, approximately 10 seconds, the signal is preceded by a prior signal from the bands worn on the user's ankles that the ankle bands are less than approximately 10 cm apart from each other but both the wrist bands are greater than approximately 40 cm from the ankle bands, the mobile device may deduce that the user has just bent over to touch his toes.


As indicated above, in addition to proximity sensors, accelerometers in the bands may be used to sense and report data that corroborates the deduction that the user has bent over. In addition to corroborating the user's body motion, the accelerometers may also be used to determine the orientation of the user's body before, after, and/or at the time of the motion so that, for example, it may be determined that the user is touching his toes while seated versus toe touching while standing. Further, a fifth band (or strap or sensor e.g., included in the mobile device) may be worn on the user's torso and allow the system to determine for example, whether the user's arms and/or legs are extending (e.g., stretched) during the toe touch or retracted (e.g., in an “Indian-style” position) during the toe touch.


In some embodiments, the body position and user activity information that may be deduced by the system of wearable bands and mobile device described above, may be further enhanced by incorporating other sensed biometric information such as, e.g., heart rate, body temperature, and identification (e.g., voice identification) information. For example, heart rate information detected and transmitted by the wearable bands may be used to deduce that the user is engaging in strenuous activity and combined with, e.g., corroborating body positioning and orientation information as well as identity information (e.g., a recorded response to a voice prompt from the mobile device, a user specific heart rhythm pattern, etc.), the system can reliably deduce that the particular user is, e.g., performing a particular exercise or has achieve a particular body status, e.g., physical exhaustion.


In one or more embodiments of the invention, a flight simulator video game may be provided on a cellular telephone (and/or other mobile device, e.g., any number of handheld computing devices (HCDs) including cellular or other telephones) and biometric data from one or more of the wearable bands (or other measurement/sensor devices) may be used to affect the flight simulator video game. For example, for a plane to take off or land safely from an airstrip in the game, a user may be required to have a relatively rapid pulse or heart rate (e.g., 130 plus pulses/minute). In this manner, a user may have to pedal, run, row, walk or otherwise exercise harder to take-off or land a plane in the video game. Thereafter, the user may be required to maintain a predetermined pulse or heart rate in order keep the plane in flight. The longer the user exercises, the longer and/or better the user does at the video game (e.g., by keeping the plane airborne). Some cellular telephones/HCDs, such as, for example, an iPhone available from Apple, Inc., of Cupertino, Calif., include one or more accelerometers for measuring the orientation of the cellular telephone (for affecting display size and orientation). In some embodiments of the invention, such accelerometers may be used as part of the flight simulator to control position (e.g., level, climbing, lowering) of the plane. In other embodiments, external accelerometers or other sensors, such as in one or more wearable bands, may measure arm and/or leg position and/or orientation and provide such information to the cellular telephone. The cellular telephone may then use this position and/or orientation information to control position of the plane. For example, a game player may be required to wear two wrist bands and two ankle bands, each with accelerometers or other position and/or orientation sensors. Movement of the game player's arms and legs may be used to control movement of the plane. For example, a game player may be required to lay on his or her back and raise his or her legs together to have a plane climb, lower his or her legs together to have the plane dive, raise one leg only to have the plane bank right, raise the other leg only to have the plane bank left, or the like. Similar or other plane movements may be controlled by arm position and/or orientation. Note that such a video game embodiment may be performed on a non-mobile or non-portable video game platform (e.g., a Microsoft® xBox, Sony® Playstation®, Nintendo® Wii™, etc.).


In another embodiment, an MMA or similar fight-based video game may be provided on a cellular telephone/HCD and biometric data from one or more of the wearable bands or other measurement devices may be used to affect the fight-based video game. For example, a video game player may be required to wear two wrist bands and two ankle bands, each with accelerometers or other position and/or orientation sensors. Movement of the game player's arms and legs may be used to control movement of a video game player (e.g., blocking, striking, kicking, kneeing, throwing, jumping, etc.). The difference between blocking and striking (or kicking) may be determined based on, for example, movement of an arm or wrist band toward the cellular telephone (e.g., using multi-axis accelerometers or other multi-axis sensors). Such a system may additionally or alternatively be used to teach self defense and/or Martial arts, or other exercise activities, such as Kung Fu, Tae Kwon Do, Muay Thai Boxing, Tai Chi, Pilates, Yoga, Dance or the like by providing a user real time feedback about proper and improper body position and/or orientation. For example, biometric readings from multiple acceleration and/or other monitors coupled to a user may be correlated with body position and/or orientation (e.g., arm, leg, torso, hip, head or other body part position, relative position and/or orientation) and then used during a video game or instruction lesson. Note that such a video game embodiment may be performed on a non-mobile or non-portable video game platform (e.g., a Microsoft® xBox, Sony® Playstation®, Nintendo® Wii™, etc.).


In some other embodiments, a user may employ one or more wearable bands and/or other biometric sensors in combination with a cellular telephone/HCD or other similar device to collect biometric information during a predetermined time period (e.g., during all or part of a work day, daily, weekly, monthly, etc.) and then employ this information to affect video game play. For example, a user may wear a band (e.g., a wrist band) that measures and transmits pulse or heart rate information to a cellular telephone during the course of a work day. Other information may be collected such as calories consumed. At the end of the work day, the user may analyze the collected data to determine one or more of periods of high stress, calories burned, etc., and/or may use the information to affect video game play (e.g., such as on a train ride back from the office). The cellular phone may also employ this information to determine (1) recommended food choices based on calories consumed or burned, types of food already eaten, etc.; (2) additional types or amounts of exercise the user should perform; or (3) the like.


Any of the above or alternative embodiments may be used alone or in combination to provide “fitness-enhanced” entertainment.


In some embodiments, the system may include a calibration function that allows the user to provide examples to the system of the way the user performs/achieves particular activities, body positions/orientations, and body status information. For example, the mobile device/HCD may instruct the user to lie still for ten second, jog in place for ten seconds, perform ten “jumping jack” exercises, perform ten “squat-thrust” exercises, and then lie still again for ten seconds. While the user executes the five different exercises/activities under the direction of the mobile device (e.g., via voice commands from the mobile device), the system may sense and record data that will allow the system to reliably recognize similar body positions, activities, and body status as well as combinations of data that indicate other body positions, activities, and body status. Along with activities that the system actually “observes” (e.g., senses and records) during normal activity, the example data captured during the calibration function (e.g., during directed resting, jogging, jumping jacks, squat-thrusts, and post-exertion resting) may be used to build a database (e.g., stored on the mobile device) of activities, body positions/orientations, and body status correlated to sensed data so that particular activities (and sequences of activities) may be quickly and reliably be identified. For example, in embodiments where the system includes a GPS and a clock, the activities, status, and locations of a user may be logged throughout a full day or over a period of weeks or years.


In some embodiments, the system may include an authentication function that uses various pieces of sensed information to corroborate the actual performance of activities, body positions/orientations/locations/identity, and body status of the user and to provide a signal that reliable indicates that a particular user has in fact, e.g., performed an activity at a given time and place. The signal from this authentication function may be used and relied upon as proof, for example, that a user performed an exercise (e.g., ran 10 laps at a track in 20 minutes on Aug. 10, 2009) or engaged in an activity (e.g., loaded a truck with heavy items, drove 150 miles, and unloaded the truck all in four hours). For example, the combination of heart rate data indicating the exertions of user, voice identification data indicating the identity of the user, GPS data indicating the locations over time of the user, wearable band proximity and accelerometer data indicating the body position/motion of the user, may all be captured, stored and correlated to authenticate the user's actual performance of a specific activity or set of activities.


In some embodiments, the present invention may include a protocol (e.g., a software protocol implementable and executable on a mobile or other device, including a system in accordance with the present invention) for sensing, collecting, storing, authenticating, and securely reporting a user's actual performance of activities, body positions/orientations/locations/identity, and/or body status of the user. In addition the protocol may include a function (e.g., an application program interface (API)) for requesting authentication of a particular activity or body position/status. In other words, the present invention may include software (e.g., an authentication module) that allows, for example, another program (e.g., a video game application, a medical treatment program, a business workflow tracking program, etc.) to request and receive an indicia (e.g., a signal, an encrypted code, etc.) from the system of the present invention that reliably verifies that a user has engaged in a particular activity or achieved a particular body status. For example, the system 200 of the present invention may provide an interface to a game system (e.g., a video game console, a program running on the mobile device of the system itself, etc.) that (1) rewards the user with enhanced game features and/or (2) allows the user to control the game, based on performance of specific activities, body positions/orientations/locations/identity, and/or body status. The interface may include a set of predefined activities/statuses such that the game may request and receive verification of the activities/statuses by calling the function with any number of various pre-defined parameters such as an identifier of the particular activity/status of interest (e.g., activity ID), the time of the activity/status (e.g., timestamp), a degree of exertion associated with the activity/status (e.g., level, intensity), a rate associated with the activity/status (e.g., pace), an efficiency or performance rating associated with the activity/status, etc.


Further, in some embodiments the interface may provide the game with access to historical information regarding the activities/statuses of the user stored in a historical database. The database may include one or more fields that identify recognized or deduced activities of the user wearing the bands. The activities may be macro or compound activities/statuses that are aggregated combinations or sets of sub-activities and/or sensed data that together corroborate the performance of the compound activities/statues.


An example list of compound activities or macro status information that may be determined/deduced and authenticated using the systems and protocols of the present invention (e.g., an authentication module 406) includes determining that a user is maximally exerting himself (e.g., based on heart rate being greater than a percentage of the user's maximum heart rate, perspiration, body temperature, impact shock level/acceleration/de-acceleration, motion frequency, speed (delta GPS information), breath frequency, breath depth, muscle flexing, blood pressure, pulse oxygen level); user is sleeping; user is relaxed; user is moderately exerting; user is minimally exerting; user is dead; user is unconscious; user is intoxicated; user is in pain; user is in shock; user is experiencing a heart attack (fibrillation); user is aroused; user is experiencing a particular physical sensation or stimulation; user is conscious; user is awake; user is in free fall; user is dizzy; user is X % exhausted; user is at physical failure; user is hot/cold; user is dehydrated (e.g., based on electrical measurement of user's body relative water content); user blood sugar level is high/low (e.g., based on an automated blood test); user insulin level is high/low; user is hungry/thirsty; user is laughing; user is suffocating; user is asphyxiating (e.g., based on blood oxygen level measurement); user is overweight; user is out of shape; user is fit; user is under-weight; user is tense; user is nervous; user is angry; user is lying; user is being tickled; user is sneezing; user is depressed; user is happy; user is confused; user is afraid; user is running at X % maximum speed; user is walking at X % maximum speed; user is dancing; user is swimming; user is skipping; user is jumping; user is punching (with left/right) (jab/cross/hook/upper cut/8 point blocking); user is kicking (left/right) (front/side/round house/back); user is rowing; user is prone (front/back); user is kneeling/sitting/standing; user is throwing (left/right); user is balancing; user is dribbling a ball; user is cradling a lacrosse stick; user is cradling a baby; user is eating/drinking; user is crying; user is driving; user is swinging a bat/tennis racket/golf club/lacrosse stick; user is typing; user is thinking; user is talking, and the like. These activities may be stored in a database of activities 408 that associates each of the activities with stored patterns of biometric information.


Further, in some embodiments the interface may provide real time access to the current activities/statues of the user. For example, the system of the present invention may provide a stream of data reporting actual sensed data and/or recognized activities that are deduced from and corroborated by the sensed data. The stream of recognized activities delivered by the interface may be encoded or even encrypted so that the game (or other application requesting the information) can have a high degree of confidence that the activities/statuses are authentic. Thus, the game (or other application requesting the information) can reasonably decide to transfer value based on the authenticated information. For example, a valuable contest prize can be awarded to the winner of a game that relies on the protocol of the present invention to verify that the winner in fact performed the required activities to win the game. Likewise, an employer can allow a workflow program running on a host system to decide to pay an employee for performing a task (e.g., load and drive a truck) by using the systems and protocols of the present invention to verify timely and efficient performance of the task.


Turning to FIG. 4, an example system 200 of the present invention is depicted. Any number of wearable bands 102 (only one pictured) or other sensors may be in communication (e.g., wirelessly) with one or more mobile devices/HCDs 104 (only one pictured). The wearable bands 102 may include the features 201, 202, 204, 206 as described above with respect to FIG. 3. The mobile device/HCD 104 may include any number of game applications 402A, 402B, 402N or other applications. The game applications 402A, 402B, 402N may run on an operating system 404 that general directs and controls basic functions of the mobile device/HCD 104. The mobile device/HCD 104 may also include an application program interface (API) 406 that allows game applications 402A, 402B, 402N to present requests and receive data from an authentication module 408 that includes an activity database 410. As described above, an authentication module 408 may provide authentication of a users activities to the game applications 402A, 402B, 402N via the API 406. In some embodiments the API 406 may include the authentication module 408 and/or the activity database 410 or other databases discussed above.


Turning to FIG. 5, an example method 500 of the present invention is depicted as a flow chart. In step 502, a plurality of biometric information of a user is sensed. In step 504, the biometric information is transmitted from wearable bands worn by the user to a mobile device/HCD. In step 506, the transmitted information is received in the mobile device. In steps 508 to 512, an activity associated with the information is identified or determined. In step 508, the information is aggregated together. In step 510, the aggregated information is compared to a database of activities. In step 512, a best match between the aggregated information and stored patterns of information each associated with an activity in the database of activities is found. In step 514, a signal indicative of an authentication that the activity has been performed by the user is provided to a game application running on the mobile device.


Accordingly, while the present invention has been disclosed in connection with the exemplary embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention, as defined by the following claims.

Claims
  • 1. A system comprising: a wearable band including one or more accelerometers, one or more proximity sensors, and a communications device; anda mobile device including one or more accelerometers, one or more proximity sensors, and a communications device, adapted to communicate with the wearable band and to determine a relative distance to the wearable band over time, and further adapted to determine an exercise being performed by a wearer of the wearable band based on information transmitted by the wearable band and measured by the mobile device,wherein the information transmitted by the wearable band indicates a relative position and motion of a user appendage upon which the wearable band is worn,wherein the relative position and motion of the user appendage is computed based upon relative position and motion of the wearable band to the mobile device as determined by tracking changes in the position, movement, and orientation over time of the wearable band using the one or more accelerometers and one or more proximity sensors, andwherein the exercise determined by the mobile device is used to play a video game running on the mobile device;wherein the mobile device further includes a calibration module and a database of activities configured to store a plurality of data sets, each data set characteristic of an exercise performed by the wearer wherein each dataset is generated using a calibration function by tracking and storing position, movement, and orientation over time of the wearable band using the one or more accelerometers and one or more proximity sensors while the wearer performs a exercise specified by the calibration module.
  • 2. The system of claim 1 wherein the mobile device includes an authentication module and one or more game modules.
  • 3. The system of claim 2 wherein the authentication module is operative to aggregate information transmitted by the wearable band with information measured by the mobile device and provide authenticated activity information to the one or more game modules.
  • 4. The system of claim 3wherein the authentication module is operative to match aggregated information transmitted by the wearable band to one or more exercises in the database of activities and to select a best match from among the matched one or more exercises.
  • 5. The system of claim 2 wherein the authentication module includes using sensed information regarding performance of an activity, body position and body status to confirm a user has performed an activity.
  • 6. The system of claim 1 wherein the calibration module includes directing the user perform at least one of executing an activity, holding a body position and achieving a body status.
  • 7. The system of claim 6 wherein the activity includes at least one of lying still, jumping jacks, squat thrusts and jogging.
  • 8. A method comprising: creating a database of activities on a mobile device by directing a user to perform specified exercises and measuring biometric information of the user with a wearable band worn by the user while the specified exercises are performed, the wearable band including one or more accelerometers, one or more proximity sensors for determining distance to the mobile device, and a communications device for transmitting the measured biometric information to the mobile device;sensing a plurality of biometric information of a user playing a game application on the mobile device;transmitting the biometric information from the wearable band worn by the user to the mobile device;receiving the transmitted information in the mobile device, the mobile device including one or more accelerometers, and one or more proximity sensors;determining a physical exercise associated with the information; andproviding a signal indicative of an authentication that the physical exercise has been performed by the user to the game application running on the mobile device,wherein the biometric information indicates a relative position and motion of a user appendage upon which the wearable band is worn,wherein the relative position and motion of the user appendage is computed based upon relative position and motion of the wearable band to the mobile device determined by tracking changes in the position, movement, and orientation over time of the wearable band using the one or more accelerometers and one or more proximity sensors, andwherein the physical exercise determined by the mobile device is used to play the game application running on the mobile device.
  • 9. The method of claim 8 wherein determining a physical exercise associated with the information includes: aggregating the information; andcomparing the aggregated information to the database of activities.
  • 10. The method of claim 9 wherein determining a physical exercise associated with the information further includes finding a best match between the aggregated information and stored patterns of information each associated with an exercise in the database of activities.
  • 11. The method of claim 8 wherein creating a database of activities includes performing a calibration function that includes directing the user perform at least one of executing an activity, holding a body position and achieving a body status.
  • 12. The method of claim 11 wherein the activity includes at least one of lying still, jumping jacks, squat thrusts and jogging.
  • 13. The method of claim 8 wherein providing a signal indicative of an authentication that the physical exercise has been performed by the user includes using sensed information regarding performance of an activity, body position and body status to confirm a user has performed an activity.
  • 14. A method comprising: creating a database of activities on a mobile device by directing a user to perform specified exercises and measuring biometric information of the user with the mobile device and a wearable band worn on a wrist of the user while the specified exercises are performed, the wearable band including one or more accelerometers, and a communications device for transmitting the measured biometric information to the mobile device;sensing a plurality of biometric information regarding the user indicative of a relative position and movement of the wrist of the user while the user is playing a game application on the mobile device, wherein the wearable band worn on the wrist and the mobile device carried by the user are used to sense at least some of the biometric information using one or more accelerometers in each of the mobile device and the wearable band;transmitting the biometric information from the wearable band to the mobile device;receiving the transmitted biometric information in the mobile device;determining a physical exercise associated with the biometric information; andproviding a signal indicative of an authentication that the physical exercise has been performed by the user to the game application running on the mobile device,wherein the biometric information indicates a relative position and motion of a user appendage upon which the band is worn,wherein the relative position and motion of the user appendage is computed based upon relative position and motion of the wearable band relative to the mobile device as determined by tracking changes in the position, movement, and orientation over time of the wearable band using the one or more accelerometers, andwherein the physical exercise determined by the mobile device is used to play the game application running on the mobile device.
  • 15. The method of claim 14 wherein determining a physical exercise associated with the biometric information includes: aggregating the biometric information; andcomparing the aggregated information to the database of activities.
  • 16. The method of claim 15 wherein determining a physical exercise associated with the biometric information further includes finding a best match between the aggregated information and stored patterns of information each associated with an exercise in the database of activities.
  • 17. The method of claim 14 wherein the wearable band is used to sense at least some of the biometric information using one or more proximity sensors in the mobile device, and wherein relative position and motion of the wearable band is determined by tracking changes in the position, movement, and orientation over time of the wearable band using the one or more accelerometers and one or more proximity sensors.
  • 18. The method of claim 14 wherein creating a database of activities includes performing a calibration function that includes directing the user perform at least one of executing an activity, holding a body position and achieving a body status.
  • 19. The method of claim 18 wherein the activity includes at least one of lying still, jumping jacks, squat thrusts and jogging.
  • 20. The method of claim 14 wherein providing a signal indicative of an authentication that the physical exercise has been performed by the user includes using sensed information regarding performance of an activity, body position and body status to confirm a user has performed an activity.
RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 12/538,862 filed Aug. 10, 2009, and titled “SYSTEMS AND METHODS FOR PROVIDING BIOFEEDBACK INFORMATION TO A CELLULAR TELEPHONE AND FOR USING SUCH INFORMATION”, which claims priority to U.S. Provisional Patent Application No. 61/087,698 filed Aug. 9, 2008 and entitled “SYSTEMS AND METHODS FOR PROVIDING BIOFEEDBACK INFORMATION TO A CELLULAR TELEPHONE AND FOR USING SUCH INFORMATION” and which claims priority to and is a continuation-in-part of U.S. patent application Ser. No. 12/426,193 filed Apr. 17, 2009 and entitled “SYSTEMS AND METHODS FOR PROVIDING AUTHENTICATED BIOFEEDBACK INFORMATION TO A MOBILE DEVICE AND FOR USING SUCH INFORMATION”. All of the above applications are hereby incorporated by reference herein in their entirety.

US Referenced Citations (160)
Number Name Date Kind
3834702 Bliss Sep 1974 A
4484743 Williams Nov 1984 A
4542897 Melton et al. Sep 1985 A
4735410 Nobuta Apr 1988 A
4817938 Nakao et al. Apr 1989 A
4858930 Sato Aug 1989 A
4976435 Shatford et al. Dec 1990 A
5001632 Hall-Tipping Mar 1991 A
5142358 Jason Aug 1992 A
RE34728 Hall-Tipping Sep 1994 E
5362069 Hall-Tipping Nov 1994 A
5377100 Pope et al. Dec 1994 A
5462504 Trulaske et al. Oct 1995 A
5515865 Scanlon May 1996 A
5527239 Abbondanza Jun 1996 A
5591104 Andrus et al. Jan 1997 A
5592401 Kramer Jan 1997 A
5624316 Roskowski et al. Apr 1997 A
5645513 Haydocy et al. Jul 1997 A
5667459 Su Sep 1997 A
5672107 Clayman Sep 1997 A
5702323 Poulton Dec 1997 A
5781698 Teller et al. Jul 1998 A
5885156 Toyohara et al. Mar 1999 A
5902250 Verrier et al. May 1999 A
5918603 Brown Jul 1999 A
5928133 Halyak Jul 1999 A
5947868 Dugan Sep 1999 A
5989157 Walton Nov 1999 A
6024675 Kashiwaguchi Feb 2000 A
6062216 Corn May 2000 A
6066075 Poulton May 2000 A
6152856 Studor et al. Nov 2000 A
6179713 James et al. Jan 2001 B1
D439981 Kasabach et al. Apr 2001 S
6213872 Harada et al. Apr 2001 B1
6244988 Delman Jun 2001 B1
6251010 Tajiri et al. Jun 2001 B1
6267677 Tajiri et al. Jul 2001 B1
6302789 Harada et al. Oct 2001 B2
D451604 Kasabach et al. Dec 2001 S
6347993 Kondo et al. Feb 2002 B1
6354940 Itou et al. Mar 2002 B1
6375572 Masuyama et al. Apr 2002 B1
D460971 Sica et al. Jul 2002 S
6456749 Kasabach et al. Sep 2002 B1
6482092 Tajiri et al. Nov 2002 B1
6494830 Wessel Dec 2002 B1
6513160 Dureau Jan 2003 B2
6514199 Alessandri Feb 2003 B1
6527711 Stivoric et al. Mar 2003 B1
6579231 Phipps Jun 2003 B1
6585622 Shum et al. Jul 2003 B1
6595858 Tajiri et al. Jul 2003 B1
6595929 Stivoric et al. Jul 2003 B2
6605038 Teller et al. Aug 2003 B1
6628847 Kasabach et al. Sep 2003 B1
6641482 Masuyama et al. Nov 2003 B2
6652383 Sonoda et al. Nov 2003 B1
6705972 Takano et al. Mar 2004 B1
6720983 Massaro et al. Apr 2004 B1
6746371 Brown et al. Jun 2004 B1
6758746 Hunter et al. Jul 2004 B1
6786825 Kawazu Sep 2004 B2
6796927 Toyama Sep 2004 B2
6881176 Oishi et al. Apr 2005 B2
6888779 Mollicone et al. May 2005 B2
6902513 McClure Jun 2005 B1
6966837 Best Nov 2005 B1
7020508 Stivoric et al. Mar 2006 B2
7041049 Raniere May 2006 B1
7057551 Vogt Jun 2006 B1
7068860 Kasabach et al. Jun 2006 B2
7153262 Stivoric et al. Dec 2006 B2
7261690 Teller et al. Aug 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7628730 Watterson et al. Dec 2009 B1
7749056 Ando et al. Jul 2010 B2
7931563 Shaw et al. Apr 2011 B2
7934983 Eisner May 2011 B1
7946959 Shum et al. May 2011 B2
8188868 Case, Jr. May 2012 B2
8287383 Etter et al. Oct 2012 B1
8287436 Shum et al. Oct 2012 B2
8292743 Etter et al. Oct 2012 B1
8313416 Ellis et al. Nov 2012 B2
8444491 Bethke et al. May 2013 B2
8491395 Auterio et al. Jul 2013 B2
8496532 Bethke et al. Jul 2013 B1
8506409 Bethke et al. Aug 2013 B2
8556778 Dugan Oct 2013 B1
8608570 Mahajan et al. Dec 2013 B1
8784273 Dugan Jul 2014 B2
20020022516 Forden Feb 2002 A1
20020080035 Youdenko Jun 2002 A1
20020082065 Fogel et al. Jun 2002 A1
20020082077 Johnson et al. Jun 2002 A1
20020090985 Tochner et al. Jul 2002 A1
20020151992 Hoffberg et al. Oct 2002 A1
20020160883 Dugan Oct 2002 A1
20020163495 Doynov Nov 2002 A1
20030224337 Shum et al. Dec 2003 A1
20040023761 Emery Feb 2004 A1
20040053690 Fogel et al. Mar 2004 A1
20050068169 Copley et al. Mar 2005 A1
20050101845 Nihtila May 2005 A1
20050130802 Kinnunen Jun 2005 A1
20050177051 Almen Aug 2005 A1
20050275541 Sengupta et al. Dec 2005 A1
20060025282 Redmann Feb 2006 A1
20060031102 Teller et al. Feb 2006 A1
20060089538 Cuddihy Apr 2006 A1
20060089543 Kim et al. Apr 2006 A1
20060122474 Teller Jun 2006 A1
20060141431 Lee Jun 2006 A1
20060224051 Teller et al. Oct 2006 A1
20060264730 Stivoric et al. Nov 2006 A1
20060281543 Sutton et al. Dec 2006 A1
20060288781 Daumer Dec 2006 A1
20070004482 Ando et al. Jan 2007 A1
20070038038 Stivoric et al. Feb 2007 A1
20070053513 Hoffberg Mar 2007 A1
20070111858 Dugan May 2007 A1
20070167204 Lyle et al. Jul 2007 A1
20070173705 Teller et al. Jul 2007 A1
20070197274 Dugan Aug 2007 A1
20070208233 Kovacs Sep 2007 A1
20070208544 Kulach Sep 2007 A1
20070260482 Nurmela et al. Nov 2007 A1
20080027337 Dugan et al. Jan 2008 A1
20080094226 O'Shea et al. Apr 2008 A1
20080129518 Carlton-Foss Jun 2008 A1
20080146892 LeBoeuf Jun 2008 A1
20080167535 Stivoric et al. Jul 2008 A1
20080167861 Inoue Jul 2008 A1
20080191864 Wolfson Aug 2008 A1
20080218310 Alten et al. Sep 2008 A1
20080281633 Burdea Nov 2008 A1
20080318679 Tran et al. Dec 2008 A1
20090005140 Rose et al. Jan 2009 A1
20090121894 Wilson et al. May 2009 A1
20090270743 Dugan et al. Oct 2009 A1
20100033303 Dugan et al. Feb 2010 A1
20100160041 Grant et al. Jun 2010 A1
20100240458 Gaiba et al. Sep 2010 A1
20100287011 Muchkaev Nov 2010 A1
20110065504 Dugan et al. Mar 2011 A1
20110082008 Cheung et al. Apr 2011 A1
20110152367 Artico Jun 2011 A1
20110190055 Leyvand et al. Aug 2011 A1
20110260830 Weising Oct 2011 A1
20110275483 Dugan et al. Nov 2011 A1
20120208676 Shum et al. Aug 2012 A1
20120252580 Dugan Oct 2012 A1
20120253487 Dugan Oct 2012 A1
20120253489 Dugan Oct 2012 A1
20120306643 Dugan Dec 2012 A1
20130006736 Bethke et al. Jan 2013 A1
20130252731 Dugan et al. Sep 2013 A1
20140011640 Dugan Jan 2014 A1
Foreign Referenced Citations (18)
Number Date Country
1 292 217 Nov 2005 EP
1 639 939 Mar 2006 EP
1 292 218 Apr 2006 EP
1 702 560 Sep 2006 EP
1 743 571 Jan 2007 EP
08103568 Apr 1996 JP
WO 9605766 Feb 1996 WO
WO 0196986 Dec 2001 WO
WO 0200111 Jan 2002 WO
WO 02078538 Oct 2002 WO
WO 03015005 Feb 2003 WO
WO 2004019172 Mar 2004 WO
WO 2004032715 Apr 2004 WO
WO 2004034221 Apr 2004 WO
WO 2005016124 Feb 2005 WO
WO 2005027720 Mar 2005 WO
WO 2005029242 Mar 2005 WO
WO 2005092177 Oct 2005 WO
Non-Patent Literature Citations (21)
Entry
Busch, Fritz “Diabetes Institute Brings Dakota, New Ulm Together” Jun. 10, 2001. Ogden Newspapers, Inc.
“Bluetooth.” Wikipedia: The Free Encyclopedia. Aug. 10, 2009 <http://en.wikipedia.org/wiki/Bluetooth>.
Ichinoseki-sekine et al., “Improving the Accuracy of Pedometer Used by the Elderly with the FFT Algorithm,” Medicine & Science in Sports & Exercise 2006,1674-1681.
Mann, W. et al., “Smart Phones for the Elders: Boosting the Intelligence of Smart Homes,” Am. Assoc. for Artificial Intell., (AAAI), Jul. 2002.
Office Action of U.S. Appl. No. 12/426,193 mailed Jul. 27, 2012.
Jan. 28, 2013 Reply to Jul. 27, 2012 Office Action of U.S. Appl. No. 12/426,193.
Final Office Action of U.S. Appl. No. 12/426,193 mailed Feb. 11, 2013.
Amendment Submitted with RCE of U.S. Appl. No. 12/426,193, filed Jul. 11, 2013.
Office Action of U.S. Appl. No. 12/538,862 mailed Nov. 17, 2011.
May 17, 2012 Response to Office Action of U.S. Appl. No. 12/538,862.
Final Office Action of U.S. Appl. No. 12/538,862 mailed Jul. 31, 2012.
Amendment Submitted with RCE of U.S. Appl. No. 12/538,862, filed Jul. 1, 2013.
Interview Summary of U.S. Appl. No. 12/538,862, filed Aug. 8, 2013.
Examiner Interview Summary of U.S. Appl. No. 12/538,862 mailed Aug. 27, 2013.
Office Action of U.S. Appl. No. 12/538,862 mailed Apr. 28, 2014.
Office Action of U.S. Appl. No. 12/426,193 mailed Jun. 30, 2014.
Jovanov et al., “A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation,” Journal of NeuroEngineering and Rehabilitation, 2005, 2:6; pp. 1-10.
Aug. 28, 2014 Reply to Apr. 28, 2014 Office Action of U.S. Appl. No. 12/538,862.
Examiner Interview Summary of U.S. Appl. No. 12/426,193 mailed Sep. 15, 2014.
Notice of Allowance & Examiner Interview Summary of U.S. Appl. No. 12/538,862 mailed Oct. 28, 2014.
Notice of Abandonment of U.S. Appl. No. 12/426,193 mailed Jan. 16, 2015.
Related Publications (1)
Number Date Country
20150151198 A1 Jun 2015 US
Provisional Applications (2)
Number Date Country
61087698 Aug 2008 US
61045955 Apr 2008 US
Continuations (1)
Number Date Country
Parent 12538862 Aug 2009 US
Child 14619061 US
Continuation in Parts (1)
Number Date Country
Parent 12426193 Apr 2009 US
Child 12538862 US