The invention relates to systems and methods for providing cavities in interior body regions for diagnostic or therapeutic purposes.
Certain diagnostic or therapeutic procedures require provision of a cavity in an interior body region. For example, as disclosed in U.S. Pat. Nos. 4,969,888 and 5,108,404, a balloon may be deployed to form a cavity in cancellous bone tissue, as part of a therapeutic procedure that fixes fractures or other abnormal bone conditions, both osteoporotic and non-osteoporotic in origin. The balloon or other expansible body may compress the cancellous bone to form an interior cavity. The cavity may receive a filling material, such as a bone cement, which provides renewed interior structural support for cortical bone.
This procedure can be used to treat cortical bone, which due to osteoporosis, avascular necrosis, cancer, trauma, or other disease is fractured or is prone to compression fracture or collapse. These conditions, if not successfully treated, can result in deformities, chronic complications, and an overall adverse impact upon the quality of life. However, as a balloon is inflated during such a procedure, it may not expand to a shape and dimension desired by a user of the device, may place too much pressure on a bone tissue weakened by an osteoporotic condition, or may be unable to provide sufficient force to break apart a healed bone fracture.
A demand exists for further systems and methods that are capable of providing cavities in bone and other interior body regions in safe and efficacious ways.
Embodiments of the present invention provide systems and methods for providing cavities in interior body regions. One illustrative embodiment comprises a cannula comprising a cannula distal end, an elongate member comprising an elongate member distal end, a first plate, a second plate, and a spring disposed between the first and second plates. Both the first and second plates may be configured to be slidably disposed within the cannula and coupled to the elongate member distal end. The spring may be configured to be at least partly compressed when the first and second plates are within the cannula, and to decompress, at least in part, as at least one of the first and second plates is extended beyond the cannula distal end. The decompression of the spring may increase a distance between the first and second plates.
This embodiment is mentioned not to limit or define the invention, but to provide an example of an embodiment of the invention to aid understanding thereof. Illustrative embodiments are discussed in the Detailed Description, and further description of the invention is provided there. Advantages offered by the various embodiments of the present invention may be further understood by examining this specification.
These and other features, aspects, and advantages of the present invention are better understood when the following Detailed Description is read with reference to the accompanying drawings, wherein:
Embodiments of the present invention provide systems and methods for providing cavities in interior body regions. The systems and methods embodying the invention can be adapted for use in many suitable interior body regions, wherever the formation or enlargement of a cavity within or adjacent one or more layers of tissue may be required for a therapeutic or diagnostic purpose. The illustrative embodiments show the invention in association with systems and methods used to treat bones. In other embodiments, the present invention may be used in other interior body regions or types of tissues.
Referring now to the Figures, in which like part numbers depict like elements throughout the Figures,
The system 10 comprises a cannula 20 comprising a proximal end (not shown) and a distal end 24. The cannula 20 may be fabricated from a material selected to facilitate advancement and rotation of an elongate member 40 movably disposed within the cannula 20. The cannula 20 can be constructed, for example, using standard flexible, medical grade plastic materials, such as vinyl, nylon, polyethylenes, ionomer, polyurethane, and polyethylene tetraphthalate (PET). At least some portion of the cannula 20 can also comprise more rigid materials to impart greater stiffness and thereby aid in its manipulation and torque transmission capabilities. More rigid materials that can be used for this purpose comprise stainless steel, nickel-titanium alloys (such as Nitinol), and other metal alloys.
The system 10 shown in
The elongate member 40 shown comprises a hinge 42 at its distal end 41. The elongate member 40 may comprise a handle (not shown) at its proximal end (not shown) to aid in gripping and maneuvering the elongate member 40. For example, in one embodiment, such a handle can be made of a foam material secured about the proximal end elongate member 40.
The system 10 further comprises a first coupling arm 44 and a second coupling arm 46. The first and second coupling arms 44, 46 in the embodiment shown in
Both the first and second coupling arms 44, 46 comprise a hinge 48 at their distal ends. Rotatably coupled to the hinge 48 at the distal end of the first coupling arm 44 is a first plate 52. Similarly, rotatably coupled to the hinge 48 at the distal end of the second coupling arm 46 is a second plate 54. In another embodiment of the present invention, one or both of the plates 52, 54 may be coupled directly to the distal end 41 of the elongate member 40. In one such embodiment, the distal end 41 of the elongate member 40 may comprise a first deflectable beam rigidly coupled to the first plate 52, and a second deflectable beam rigidly coupled to the second plate 54. The system 10, as shown in
The first and second plates 52, 54 may be coupled to the coupling arms 44, 46, respectively, or to the distal end 41 of the elongate member 40 through the use of welding, gluing, bonding, melting, a ball joint, a universal joint, or any other suitable fastener (such as a screw, a rivet, a tack, a staple, a nail, etc.). In yet another embodiment, the elongate member 40 and the first and second plates 52, 54 may be fashioned from the same material, and may be injection molded, cast, forged, or machined as a solid element.
In the embodiment shown in
The first plate 52 comprises a first surface 56 facing a first direction. The second plate 54 comprises a second surface 58 facing a second direction. The first and second surfaces 56, 58 are configured to be deployed in a treatment area adjacent body tissue. In the embodiment shown in
The system 10 further comprises a spring 60 disposed between the first and second plates 52, 54. The spring 60 is shown in
The spring 60 in the embodiment shown in
In the embodiment shown in
In the embodiment shown, the first and second directions that the first surface 56 and the second surface 58 face, respectively, are separated by 180 degrees during all times of operation. In another embodiment, the first and second surfaces 56, 58 may face first and second directions, respectively, that are separated by greater or fewer than 180 degrees, or may be separated by 180 degrees only while the spring 60 is at least partly decompressed.
In another embodiment, one or both of the plates 52, 54 may comprise at least one sharp edge configured to contact and shear (curette) tissue in a treatment area. In one such embodiment, while the first and second plates 52, 54 are extended beyond the distal end 24 of the cannula 20, the elongate member 40 may be rotated within the cannula 20, thereby rotating the first and second plates 52, 54 within an interior body cavity. In yet another embodiment, another portion of the system 10, such as the coupling arms 44, 46, or the elongate member 40 may comprise a sharp surface configured to directly contact and shear at least one layer of tissue in a treatment area. In another such embodiment, the proximal end of at least one of the cannula 20 and the elongate member 40 may carry a fitting (not shown) that, in use, may be coupled to an electric motor (not shown). The motor may thus rotate one or both of the elongate member 40 and the cannula 20, curetting tissue with the sharp edge.
In one embodiment of the present invention, at least a portion of at least one of the elongate member 40, the first coupling arm 44, the second coupling arm 46, the first plate 52, the second plate 54, and the spring 60 may comprise one or more radiological markers. For example, in the embodiment shown in
In an embodiment employing a plurality of radiological markers, a first set of markers may be placed at or near a distal end of the plates 52, 54, while another set of markers may be placed at a location on the plates 52, 54 spaced apart from the first set of markers, such as at a point at or near the proximal end of each plate 52, 54. In another embodiment, the distal end 41 of the elongate member 40, or the distal end 24 of the cannula 20 can carry one or more markers. A radiological marker may permit radiologic visualization of at least one of the elements of the system 10 within a targeted treatment area.
A tool according to one embodiment of the present invention, such as the system 10 described with respect to
In yet another embodiment of the present invention, a sheath may circumscribe the first and second plates 52, 54. In such an embodiment, the sheath may be disposed between the first and second surfaces 56, 58 and a tissue in a treatment area. Such a sheath may be fabricated from a substantially non-compliant and rupture-resistant material, such as Mylar or a suitable plastic. In a different embodiment, a sheath may comprise a compliant material, such as latex. A sheath according to such an embodiment may prevent dislodged tissue mass from becoming trapped between the first and second plates 52, 54, or within the spring 60.
In another embodiment comprising a sheath, the sheath may comprise an inflatable balloon sheath. The system 10 may thus be used according to the embodiment described with respect to
An inflatable balloon sheath may be disposed at the distal end 41 of the elongate member 40, and circumscribing the first and second plates 52, 54. In one such embodiment of the present invention, the balloon sheath may be configured to be deployed within cancellous bone tissue within a vertebral body through a percutaneous path established by the cannula 20. Such a balloon sheath may comprise a single aperture that is coupled to the distal end 41 of the elongate member 40. The balloon sheath may be inflated by movement of a liquid or a gas through a hollow elongate member 40 and the aperture into the interior of the balloon sheath. The balloon sheath may be deflated by movement of a liquid or a gas out of the balloon sheath through the aperture and a bore through a hollow elongate member 40.
Referring now to
As shown in
Referring now to
Starting in the intermediate state shown in
In another embodiment, the system 10 may be adjustable. For example, the system 10 may comprise a controller that a user may use to adjust the distance between the first and second plates 52, 54. Using such an embodiment, an operator of the system 10 may use a controller to alter the size and shape of a cavity provided by the system 10.
For example, at least the first and second plates 52, 54 may be in communication with a suitable type of controller, such as a slide controller, a pistol grip controller, a ratcheting controller, or a threaded controller, that can be configured to permit an operator of the system 10 to control at least one of the extent to which the first and second plates 52, 54 extend beyond the distal end 24 of the cannula 20, and the extent to which the distance between the first and second plates 52, 54 is varied. In one such embodiment of the present invention, a controller can also comprise indicia by which an operator can visually estimate the extent to which the distance between the first and second plates 52, 54 has been varied.
In one embodiment comprising a controller, a screw member (not shown) may be coupled to the first and second plates 52, 54 and in communication with a handle (not shown) at the proximal end of the elongate member 40. The screw member may be configured to increase or decrease the distance between the first and second plates 52, 54. By turning the handle, a user of the system 10 may be able to decrease the distance between the first and second plates 52, 54 prior to removing them along with the spring 60 from a treatment area through the cannula 20. In a different embodiment, a screw member may be configured to allow an operator of the system 10 to control compression or decompression of the spring 60, and thereby the distance between the first and second plates 52, 54.
Referring now to
Disposed at a distal end 241 of the elongate member 240 are a first deflectable beam 232 and a second deflectable beam 234. The first plate 252 is coupled to the first deflectable beam 232, and the second plate 254 is coupled to the second deflectable beam 234. The first plate 252 comprises a first surface 256 configured to contact a tissue. Similarly, the second plate 254 comprises a second surface 258 also configured to contact tissue.
In the illustrative embodiment shown in
In the embodiment shown, the single piece of metal 230 comprises a titanium alloy material comprising a shape memory properties. In other embodiments, one or more of the components of the system 210 may be fashioned from a different material or may be comprise a separate piece coupled to the other components of the system 210. Due to the shape memory properties of the single piece of metal 230, the first and second deflectable beams 232, 234 comprise a tendency to spring open to assume a preset, native expanded dimension between the first and second plates 252, 254 as shown in
As described above, the plurality of springs 260 are also configured to decompress as the first and second plates 252, 254 are extended beyond the distal end 224 of the cannula 220. Accordingly, the plurality of springs 260 provide a force that may assist the single piece of metal 230 assume its preset, native expanded dimension between the first and second plates 252, 254 when body tissues in contact with the first and second surfaces 256, 258 provide a resistive force that the shape memory properties of the single piece of metal 230 cannot overcome. As such, a user of the system 210 may be able to provide force to surrounding tissues to provide a cavity of desired shape and dimension within a treatment area.
Upon provision of such a cavity, the first and second plates 252, 254 and the plurality of springs 260 may then be removed from the interior body region through the cannula 220. Once removed, a material, such as a bone cement, may then be used to fill a cavity provided by the system 210. Such an embodiment may be useful in situations where the system 210 is used to restore height to a vertebral body (see
Referring now to
The vertebral body 92 is in the shape of an oval disc. As
Alternatively, access into the interior volume can be accomplished by drilling an access portal through one or both pedicles of the vertebra 90. This is called a transpedicular approach. Access into the interior of the vertebral body may also be accomplished using an extrapedicular approach alongside a pedicle of the vertebra 90, or from the anterior side. It is the physician who ultimately decides which access site is indicated.
A tool according to the present invention may be configured to be deployed within or adjacent at least one layer of tissue by movement within and along a path formed by the axis of the cannula 20. For example, as shown in
It should be appreciated, however, that systems and methods according to the present invention are not limited in application to human vertebrae, and may be used to provide cavities within or curette other parts of a living or non-living organism. For example, the system 10 can be deployed in other embodiments in other bone types and within or adjacent other tissue types, such as in a vertebral disc a knee joint, etc.
Referring now to
The system 10 as described above with respect to
In the embodiment shown in
In use, the elongate member 40 is substantially carried for sliding within the cannula 20. The user of the system 10 may freely slide the elongate member 40 axially within the cannula 20 to deploy the first and second plates 52, 54 and the spring 60 in a targeted treatment site. When deployed at the site, the user can extend the first and second plates 52, 54 beyond the distal end 24 of the cannula 20 adjacent cancellous bone tissue 96 within the vertebral body 92. In some embodiments the user may also able to rotate the elongate member 40 within the cannula 20 and thereby the first and second plates 52, 54 to adjust at least one of their orientation and travel path.
Referring now to
In one embodiment, a suction tube may also be deployed through the cannula 20 to remove cancellous bone fragments dislodged by the system 10. In yet another embodiment, the system may comprise an interior lumen to serve as a suction tube as well as to convey a rinsing liquid into the cavity as it is being formed. The suction tube (or a lumen) may introduce a rinsing fluid (with an anticoagulant, if desired) and may remove cancellous bone dislodged by the system 10. Alternatively, the cannula 20 may comprise a first interior lumen that serves as a suction tube, and a second interior lumen that serves to flush the treatment area.
Once the desired cavity C is formed, the cavity-providing tool, such as system 10, may be withdrawn through the cannula 20. In one embodiment, the cavity C may then be at least partially filled with a material, such as a bone cement. Any other suitable tool can then be deployed through the cannula 20, or through another cannula (such as a contralateral cannula) into the formed cavity C. A second tool can, for example, perform a diagnostic or therapeutic procedure (such as filling the cavity C with a bone cement). In other embodiments other materials (such as a therapeutic material) may be provided into the cavity C by at least one of the first plate 52, the second plate 54, the first coupling arm 44, the second coupling arm 46, the spring 60, and the elongate member 40 while they are deployed in the vertebral body 92.
For example, an allograft material, a synthetic bone substitute, a medication, or a flowable material that may set to a hardened condition may be provided into the cavity C. The procedure may also be used to apply radiation therapy or chemotherapy. Further details of the injection of such materials into the cavity C for therapeutic purposes may be found in U.S. Pat. Nos. 4,969,888 and 5,108,404, and in co-pending U.S. patent application Publication No. 2003/0229372, which are incorporated herein by reference.
Referring now to
The method 400 further comprises compressing a spring disposed between a first plate and a second plate, as shown in box 425. The spring may comprise, for example, the spring 60 described above. The first and second plates may comprise, for example, the first and second plates 52, 54 described above. In one embodiment, the spring may be compressed manually when a user presses together the first and second plates. In another embodiment, a machine may be configured to automatically compress the spring by a predetermined amount.
The method 400 further comprises inserting the compressed spring and the first and second plates into the cannula, as shown in box 435. In one embodiment, the first and second plates may be coupled to the distal end of an elongate member. In such an embodiment, a user may manually insert the compressed spring and the first and second plates into the cannula. In another embodiment the spring may be inserted into the cannula by a machine. In one such embodiment, the first plate, the second plate, and the spring may come prepackaged within the cannula for use in an interior body region. In another embodiment, the spring may be compressed as a result of its insertion into the cannula with the first and second plates. For example, the cannula's proximal end may comprise a larger interior bore dimension than its distal end, allowing the spring and plates to enter the proximal end uncompressed, but compressing the spring as the plates are pushed toward the distal end.
The method 400 further comprises decompressing the spring by inserting the first and second plates into a treatment area located beyond the distal end of the cannula, as shown in box 445. The decompression of the spring increases a distance between the first and second plates, increasing a dimension in the treatment area. In one embodiment, the spring may be decompressed until a distance between the first and second plates comprises a predetermined dimension. For example, in the embodiment described with respect to
While compressed, the spring provides a force that tends to push the first and second plates apart. However, while within the cannula, the force provided by the spring is opposed by the inner wall of the cannula. Once beyond the distal end of the cannula, the force provided by the spring is opposed by tissue adjacent a first surface on the first plate and adjacent a second surface on the second plate. The opposing force provided by the tissue may be lesser than the opposing force provided by the inner wall of the cannula. In one embodiment, the spring may be decompressed until the first and second plates are substantially parallel.
The spring may comprise a spring constant such that the inner wall of the cannula prevents the spring from decompressing, but the spring may expand once beyond the distal end of the cannula in the treatment area. The spring may be selected based, at least in part, on the amount of force required to displace, fracture, or move the adjacent tissue in the treatment area.
The method 400 further comprises inserting a bone cement into the cavity formed, enlarged, or otherwise modified by the spring and plates, as shown in box 455. The bone cement may be inserted through the same cannula through which the spring and plates were inserted, or in another embodiment may be inserted through a separate cannula into the vertebral body. A separate cannula may be oriented in a contralateral manner to the cannula through which the spring and plates were inserted. The bone cement, which remains in the cavity, may provide dimensional stability to the vertebral body after the spring and plates have been removed.
Another surgical tool, such as a scope, may also be inserted into the cavity through the cannula. In a different embodiment, the user may elect not to insert the bone cement into the cavity, or may alternatively or additionally introduce a therapeutic material to the tissue in the treatment area. For example, in one embodiment, at least one of the first plate, the second plate, and the spring may have a therapeutic material applied to it prior to insertion into the treatment area beyond the distal end of the cannula.
The method 400 further comprises recompressing the spring by returning the first and second plates to a point within the distal end of the cannula, as shown in box 465. In one embodiment, the first and second plates may be coupled to an elongated member via first and second coupling arms, respectively. For example, the first and second coupling arms may comprise the first and second coupling arms 44, 46 described above. In such an embodiment, the coupling arms may come into contact with the distal end or interior surface of the cannula as at least one of the first and second plates are withdrawn from a treatment area beyond the distal end of the cannula to a point within the cannula. Contact between the coupling arms and either the distal end or the inner surface of the cannula may provide a force to the first and second plates, compressing the spring disposed therebetween.
In a different embodiment, a user may use a controller in communication with the spring or the plates. Such a controller may be able to adjust the amount the spring is compressed independent of the distance the spring extends or does not extend beyond the distal end of the cannula.
The illustrative method 400 finally comprises removing the recompressed spring and the first and second plates from the treatment area through the cannula, as shown in box 475. In one embodiment, the spring and plates may be removed from the cavity once a user has determined that an appropriate amount of height has been restored to a vertebral body suffering from a vertical compression fracture condition, or that a cavity of sufficient size and shape has been provided within the vertebral body. In a different embodiment, a bone cement or a therapeutic material may be introduced to the cavity in the treatment area after the spring and plates have been removed.
In other embodiments, at least one of the plates or the spring may be implanted within the treatment area, either with or without inserting the bone cement or another substance into the treatment area. For example, in one such embodiment, one or both of the plates may be separable from an elongated member used to insert them into the treatment area through the cannula. A spring according to such an embodiment may be left implanted in either a compressed or an uncompressed state within the treatment area while the elongated member is removed through the cannula.
A spring used by the illustrative method 400 or another embodiment of the present invention may be selected based, at least in part, on its spring constant and overall size. In one embodiment, a spring to be disposed between the first and second plates may be selected comprising a spring configured to provide enough force to increase a dimension in a treatment area, but not so stiff as to prevent a user from recompressing the spring by withdrawing the first and second plates into the cannula.
In one method according to an embodiment of the present invention, at least one of the first and second plates may comprise a sharp surface configured to directly contact and shear tissue in the treatment area. Such a method may comprise contacting the tissue in the treatment area with the sharp surface, thereby curetting tissue.
Referring now to
As shown in
The kit 500 comprises an inner wrap 512 that, in the embodiment shown, is peripherally sealed by heat or the like, to enclose the tray 508 from contact with the outside environment. One end of the inner wrap 512 comprises a conventional peal-away seal 514 (see
The kit 500 shown also comprises an outer wrap 516, which is also peripherally sealed by heat or the like, to enclose the inner wrap 512. One end of the outer wrap 516 comprises a conventional peal-away seal 518 (see
Both inner and outer wraps 512 and 516 (see
The sterile kit 500 also carries a label or insert 506, which comprises the statement “For Single Patient Use Only” (or comparable language) to affirmatively caution against reuse of the contents of the kit 500. The label 506 also may affirmatively instruct against resterilization of the tool 510. The label 506 also may instruct the physician or user to dispose of the tool 510 and the entire contents of the kit 500 upon use in accordance with applicable biological waste procedures. The presence of the tool 510 packaged in the kit 500 verifies to the physician or user that the tool 510 is sterile and has not been subjected to prior use. The physician or user is thereby assured that the tool 510 meets established performance and sterility specifications, and will have the desired configuration when expanded for use.
The kit 500 also may comprise directions for use 524, which instruct the physician regarding the use of the tool 510 for creating a cavity in cancellous bone in the manners previously described. For example, the directions 524 instruct the physician to deploy, manipulate, and adjust the tool 510 inside bone to provide a cavity. The directions 524 can also instruct the physician to fill the cavity with a material, e.g., bone cement, allograft material, synthetic bone substitute, a medication, or a flowable material that sets to a hardened condition before, during, or after the tool 510 has provided the cavity.
The foregoing description of embodiments of the invention has been presented only for the purpose of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Numerous modifications and adaptations thereof will be apparent to those skilled in the art without departing from the spirit and scope of the present invention.