The following relates generally to the ventilation therapy arts, in particular enabling any ventilator, including continuous positive airway pressure (CPAP) devices and bilevel positive airway pressure (BIPAP) devices, to provide supplemental oxygen therapy and related arts.
In view of infectious respiratory diseases, such as coronavirus (and specifically the COVID-19 pandemic), an effort is being made to greatly expand access to mechanical ventilation in medical facilities. In addition to increasing production of various ventilators, efforts abound to adapt many different types of ventilators to treat patients. A key requirement of such ventilators is the need to provide controlled supplemental oxygen between 50% and 100% fraction of inspired oxygen (FiO2) or fractional oxygen. This is currently not doable with most ventilators that can be produced in very high quantities, such as sleep apnea treatment ventilators or CPAP machines.
For example, the Philips/Respironics Trilogy EVO ventilator can include an oxygen blending module (OBM) option, but world-wide supply chain limitations make it difficult to meet demand for such ventilators with OBMs, which is projected to be in the 20,000 to 36,000 per month range. As an alternative to ventilators such as the Trilogy EVO with OBM, there is a need to create a controlled FiO2 between 21% and 100% for use as in ventilators that lack OBMs.
The following discloses certain improvements to overcome these problems and others.
In one aspect, a gas delivery apparatus configured for use with a mechanical ventilator having an atmospheric inlet for drawing in atmospheric gas includes a connecting device configured to connect to an oxygen supply and an air supply and to deliver mixed air and oxygen gas to the atmospheric inlet of the mechanical ventilator. The connecting device further includes a user control for adjusting a fraction of oxygen in the mixed air and oxygen gas. The connecting device comprises a reservoir configured to hold a volume of the mixed air and oxygen gas.
In another aspect, a mechanical ventilation method includes: mixing, with a mixer, air from an air supply and oxygen gas from an oxygen supply to generate mixed air and oxygen gas; flowing the mixed air and oxygen gas to an atmospheric inlet of a mechanical ventilator; and adjusting a flow rate of the mixer to control a fraction of oxygen in the mixed air and oxygen gas.
One advantage resides in providing a mechanical ventilator with an adjustable FiO2 setting.
Another advantage resides in providing a substantially constant, clinician controlled FiO2.
Another advantage resides in providing an adapter for existing mechanical ventilators with OBMs.
Another advantage resides in providing a ventilator with a reservoir of mixed air and oxygen.
Another advantage resides in provider a ventilator with a reservoir of mixed air in fluid communication with an inlet of a ventilator.
Another advantage resides in providing a gas delivery apparatus that enables any pressure-support ventilator that does not have a designated oxygen mixing method or apparatus to deliver oxygenated air, preferably with a user control for adjusting the fraction of oxygen.
Another advantage resides in providing a gas delivery apparatus and corresponding method for retrofitting an existing ventilator to deliver oxygenated air.
A given embodiment may provide none, one, two, more, or all of the foregoing advantages, and/or may provide other advantages as will become apparent to one of ordinary skill in the art upon reading and understanding the present disclosure.
The disclosure may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the disclosure.
As used herein, the singular form of “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. As used herein, statements that two or more parts or components are “coupled,” “connected,” or “engaged” shall mean that the parts are joined, operate, or coact together either directly or indirectly, i.e., through one or more intermediate parts or components, so long as a link occurs. Directional phrases used herein, such as, for example and without limitation, top, bottom, left, right, upper, lower, front, back, and derivatives thereof, relate to the orientation of the elements shown in the drawings and are not limiting upon the scope of the claimed invention unless expressly recited therein. The word “comprising” or “including” does not exclude the presence of elements or steps other than those described herein and/or listed in a claim. In a device comprised of several means, several of these means may be embodied by one and the same item of hardware.
Embodiments disclosed herein enable clinicians to provide controlled FiO2 into any pressure support ventilator. The main elements of one non-limiting illustrative gas delivery apparatus or method include: (1) connection conduits/hoses for air and oxygen, such as from the hospital wall supply; (2) an oxygen blender/blending method of some sort; (3) a flow control method for either mixed gas or each gas separately; (4) an optional algorithm communicated to the user or clinician to allow them to set the correct flows; (5) a connector to a patient circuit; (6) a patient circuit such as a 22 mm, 6′ standard patient circuit; (7) a ‘Y’ connection that connects 2 patient circuits, a connection to the ventilator and optionally a Positive End Expiratory Pressure (PEEP) valve; (8) a special connector that engages the pneumatic inlet to the ventilator that can connect to the ‘Y’ connection; (9) a serial section of two tubes, such as 22 mm, 6′ tubes, connected to the ‘Y’ connection; and (10) optionally a PEEP valve as a safety measure to limit the pressure change at the ventilator inlet.
The approach described herein involves benefits of, inter alia, (1) leveraging existing capabilities and materials available in hospitals (i.e. wall O2 and Air; O2-Blenders); (2) minimizing the use of new parts, using readily available respiratory parts (i.e., 22 mm tubing, connectors, etc.); and being applicable to other platforms such as CPAP or BiPAP machines like the Philips/Respironics DreamStation (available from Koninklijke Philips NV, Eindhoven, the Netherlands).
Some non-limiting embodiments disclosed herein provide methods of making and using the systems described above. For example, the main elements of the disclosure described above may be connected with standard parts and fittings such that the user or clinician would be able to assemble the system according to a diagram and/or appropriate instructions.
These and other objects, features, and characteristics of the present disclosure, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and any appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention.
The disclosed gas delivery apparatuses and methods effectively replace the atmospheric gas drawn into the inlet of the vent with gas of the clinician specified FiO2. By using this approach, the ventilator will operate normally since the goal is to provide the gas mixture at atmospheric pressure. In this fashion, any mode or function of the ventilator will continue to operate as normal.
The system includes a means of providing a controlled FiO2 from hospital wall gas supplies, such as the use of rotameters, blenders, high flow nasal therapy (HFNT) devices, etc. that can supply up to 60 L/min. The system also includes a means to inform the clinician of the gas flow setting, which is equal to mean leak flow over a breath.
The system also includes a means of porting that gas to the inlet of the ventilator, such as a connection from the wall gas supply to a 6′, 22 mm patient circuit attached to a “Y.” The “Y” may be attached to a special fitting that connects to the specific ventilator (e.g., a Philips/Respironics Trilogy EVO ventilator, Trilogy ventilator, or DreamStation BiPAP—each having an appropriate interface fitting).
The system also includes a reservoir that is freely open to the atmosphere on one end that holds up to 1.5 L (although other capacities are contemplated) and is connected to the other branch of the “Y”. This reservoir can be comprised of, for example, 12′ of 22 mm tubing, or a single 6′ of tubing, coupled to a 1 L bladder open on the opposite end from the connection to the tubing. The system may also include preferential use of a 22 mm circuit between the vent and the patient, which may include humidification, and which would accommodate all other normal aspects of a single or dual-limb limb patient interface.
In some embodiments, the system delivers high flows to the patient circuit due to the use of a fixed-orifice exhalation valve in a single-limb circuit, which leaks flow proportional to circuit pressure. Depending on ventilator settings, this typically requires flows that are a factor of, for example, 3-10 times patient minute volume (for example, a typical adult has a patient minute volume of 5-10 L/min).
A basic description of each part of an exemplary embodiment will now be provided.
Wall Gas—Supplies of air and oxygen of fifty psi each are provided at each bed in the hospital. They can be accessed with standard fittings. These pressures can have a wide tolerance is U.S. medical facilities, particularly in situ when high volumes of gas are being used during a pandemic. Also, supply pressures may vary widely at medical facilities around the world.
Gas FiO2 Delivery—There are a number of methods for gas blending. One method uses a Traditional Gas Blender and Rotameter/Flowmeter—The only restriction on this approach is the availability of blenders in hospitals may be limited and the flow meter must be able to do up to 70 L/min, which is higher than what is normally used in such devices. Setting the FiO2 requires merely dialing in the desired setpoint on the blender face. Another method uses a HFNT Device, which are high flow devices that can deliver constant flow rates at specified FiO2 values. They can be connected as the source to the inlet of the supply tube. Another method uses a Dual-Rotameter. This approach requires separate rotameters on the air and oxygen supplies that then allows the gas to be blended downstream. Setting the FiO2 by the user suitably employs an empirical or calculated table to allow setting of the two flows to allow the total to achieve a specified FiO2 at a given bulk flow.
Connector—This is a fitting that connects the blending outlet to the 6′, 22 mm patient circuit. Its form would be dependent on the method chosen for blending.
6′, 22 mm Tube and “Y” Assembly—Blended gas would enter, via the Connector, a standard 6′ circuit attached to a “Y”. At this point, the gas should substantially be near atmospheric pressure, which is desired at the inlet to the vent. The “Y” would then connect to the Special Fitting. A second limb of the 6′, 22 mm tubing would then be attached to the other leg of the “Y”. This leg allows gas to accumulate upstream from the vent when vent flow is less than blender flow (during exhalation), allowing a reservoir from which to draw gas back in for use when the vent flow exceeds the blender flow (occurs during inspiration).
Reservoir—Extra volume at the end of the second tube. Its volume should be 1 L, allowing a total accumulation volume of 1.7 L (a 6′, 22 mm tube has a volume of about 0.7 L), which is required to cover most ventilation cases. It is imperative that the reservoir be vented to atmosphere so as not to allow pressure to build up in front of the vent. It is also preferable that this volume be shaped in the form of a tube in order to limit the FiO2 gas from mixing either with atmospheric air, or with the mixture that previously resided in this reservoir.
Special Fitting—This is a fitting that would allow the “Y” of the dual-limb circuit to be connected to the inlet of the ventilator with a seal so that no atmospheric air can leak into the vent. Such a fitting could be adapted for each ventilator that uses this blended oxygen approach. This technology could be applied to any ventilator or sleep therapy device for which a Special Fitting can be adapted.
Setting the Flow Rate—The system uses a model to predict the required flow rate based on an estimation of the ventilator minute volume. The ventilator minute volume is defined as
{dot over (V)}ventilator=VT
where {dot over (V)}ventilator is the minute volume of the ventilator (L/min), VT
The blended gas flow rate could be equal to the ventilator minute volume times a factor like 1.2. The actual factor value is suitably derived empirically, but preliminary data indicate that this approach is effective. The system may also be configured to communicate this value to the clinician. The ventilator may calculate and display this value, which can be accomplished via a software change, or it could be provided in accompanying literature. Because the value may be estimated just from delivered pressure, however, it can also be calculated or tabulated for the clinician very easily.
With reference to
The gas delivery apparatus 10 connects with this inlet 3 via a special fitting 40 to instead supply mixed air and oxygen gas at (about) atmospheric pressure. As shown in
In the gas delivery apparatus, the oxygen supply 12 and the air supply 14 are connected with a connecting device 10 that connects the oxygen and air supplies with the mechanical ventilator 2 (e.g., via the special fitting 40 of the gas delivery apparatus in the illustrative examples). The connecting device 10 is configured to deliver mixed air and oxygen gas to the atmospheric inlet 3 of the mechanical ventilator 2 (by way of the special fitting 40 in the illustrative examples). To do so, the connecting device 10 includes a mixer 18 configured to mix oxygen gas from the oxygen supply 12 and air from the air supply 14 to generate a mixture of mixed air and oxygen gas. As shown in
The connecting device 10 further includes a user control 20 allowing a medical professional to adjust a fraction of oxygen in the mixed air and oxygen gas. As shown in
The connecting device 10 further includes a flow path of the mixed air and oxygen gas from an outlet connector 21 of the mixer 18 to the atmospheric inlet 3 of the mechanical ventilator 2. In
The connecting device 10 includes the reservoir 22 which is configured to hold a volume of the mixed air and oxygen gas. The reservoir 22 is connected with the flow path 23, 24 of the mixed air and oxygen gas to the atmospheric inlet 3 of the mechanical ventilator 2 by way of connection with the port P2 of the branch connector 24. The reservoir 22 is also open to atmosphere at a port PA. The illustrative reservoir 22 of
In the embodiment of
The port PA may be an opening to atmosphere of the bladder 26 (
Providing the reservoir 22 configured to hold a volume of the mixed air and oxygen gas has substantial benefits. It allows the flow rate of the supplied air and oxygen gas to be reduced, because at times when “extra” gas is needed, such as during inhalation, mixed air and oxygen gas can be drawn in from the reservoir 22; whereas, when “too much” gas is being supplied by the mixer 18 (such as during exhalation), the excess air and oxygen gas flow replenishes the reservoir 22. The benefit of minimizing wall gas usage is that, under COVID-19 pandemic conditions (or other pandemic conditions), oxygen usage is known to be compromised in some medical facilities because of high oxygen usage through the medical facility. Furthermore, by having the reservoir 22 connected with the flow path 23, 24 of the mixed air and oxygen gas to the atmospheric inlet 3 of the mechanical ventilator 2, and further having the reservoir is open to atmosphere, the pressure inside the reservoir is naturally maintained at about atmospheric pressure. Any excess flow of mixed air and oxygen gas to the reservoir is vented to atmosphere via the port PA. Any excess draw of mixed air and oxygen gas from the reservoir 22 can be accommodated by drawing air into the reservoir via the port PA. However, this latter situation may be slightly disadvantageous as it can dilute the oxygen concentration of the volume of the mixed air and oxygen contained in the reservoir 22. Nonetheless, such dilution will be negligibly small if the reservoir has sufficient capacity, as described later herein.
The operation is diagrammatically indicated in
The reservoir 22 is configured to hold a volume of the mixed air and oxygen gas that is greater than a volume of the flow path 23, 24 of the mixed air and oxygen gas to the atmospheric inlet 3 of the mechanical ventilator 2. For example, in some non-limiting embodiments suitable for use with the Philips/Respironics Trilogy EVO mechanical ventilator, the volume of the mixed air and oxygen gas held by the reservoir 22 is 0.5 L (or less), while the volume of the mixed air and oxygen gas in the flow path 23, 24 can be, for example, 0.7 L. By allowing the reservoir 22 to vent to the atmosphere via port PA and holding a volume of mixed air and oxygen gas that is greater than the volume in the flow path 23, 24, the reservoir 22 can control the flow of the mixed air and oxygen gas to the mechanical ventilator 2. As such, in some non-limiting embodiments, the gas delivery apparatus 10 is not configured to receive any control signal from the mechanical ventilator 2. This is because no such control signal is needed to control operation of the gas delivery apparatus 10, as the reservoir 22 open to air provides passive regulation of the flow to the atmospheric inlet 3.
The gas delivery apparatus 10 also includes the aforementioned special fitting 40 configured to connect the connecting device 10 (and more particularly port P3 of the branch connector 24) with the atmospheric inlet 3 of the mechanical ventilator 2. As previously mentioned, typically the mechanical ventilator 2 is designed to draw atmospheric air in via the atmospheric inlet 3. As such, there is usually no need to connect a gas supply to the atmospheric inlet 3. However, the atmospheric inlet 3 may include threading or other connection hardware for attaching a dust filter or the like, and this may be leveraged to simplify the construction of the special fitting 40.
With reference to
The gas delivery apparatus 10 is, in some non-limiting embodiments, configured for use with a plurality of different mechanical ventilators 2 having different respective atmospheric inlets 3 for drawing in atmospheric gas. To do so, a ventilator retrofit package includes a plurality (or set) of specialized fittings corresponding to various different atmospheric inlets of different mechanical ventilators 2. Each specialized fitting 40 has the same inlet 42 but has its outlet 44 configured to make sealed connection with the atmospheric inlet 3 of the corresponding mechanical ventilator 2. This allows the same connecting device 10 to be used to deliver controlled oxygen to any make or model of mechanical ventilator for which a suitable specialized fitting is included in the set of specialized fittings of the retrofit package. In a medical crisis situation such as an outbreak of a highly contagious respiratory disease in which many patients may need to be ventilated with supplemental oxygen, this provides substantial flexibility to medical personnel in leveraging existing mechanical ventilators to deliver controlled oxygen, even with mechanical ventilators such as CPAP or BiPAP devices that are not conventionally capable of providing oxygen therapy.
As best shown in
The fitting 40 can be machined and/or molded to meet commercialization demands. The fitting 40 in this example provides a standard 22 mm ISO connection to interface with this proposed O2 blending solution while interfacing to the mechanical ventilator 2 with a NATO standard thread. The fitting 40 may, for example, be machined aluminum, cleaned for 02 use and clear anodized. Alternatively, the fitting 40 may be injection-molded and produced from a myriad of different thermoplastics.
With reference to
At an operation 106, the flow of the mixed air and oxygen gas is buffered using the reservoir 32. In one example, the buffering operation 106 can include venting the opening PA of the reservoir 22 to atmosphere. In another example, the buffering operation 106 includes providing the tube 28-8 with a first end E1 in fluid connection with the flowing mixed air and oxygen gas and a second end E2 that is open to atmosphere.
At an operation 108, a flow rate of the mixer 18 is adjusted to control a fraction of oxygen (e.g., FiO2) in the mixed air and oxygen gas using the user control 20. For example, the flow rate of the mixer 18 can be adjusted to be set to an average leak of the mechanical ventilator 2 according to {dot over (V)}ventilator=VT
The disclosed gas delivery apparatus including the connecting device 10 and special fitting 40 can be deployed with substantially any type of mechanical ventilator. It may be used with either a single-limbed patient circuit or a dual-limbed patient circuit.
In another variant embodiment, rather than connecting the reservoir 22 to a branch connector 24, the specialized fitting could include an auxiliary port at which the reservoir 22 connects. This auxiliary port would be in addition to the inlet 42 and outlet 44 of the illustrative fitting 40, and would effectively turn the specialized fitting itself into a branched connector.
The disclosure has been described with reference to the preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This patent application claims the priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Nos. 63/040,573 and 63/006,325, filed on Jun. 18, 2020 and Apr. 7, 2020, the contents of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4072148 | Munson | Feb 1978 | A |
4602653 | Ruiz-Vela | Jul 1986 | A |
5237987 | Anderson | Aug 1993 | A |
5701883 | Hete | Dec 1997 | A |
5954050 | Christopher | Sep 1999 | A |
6412483 | Bailey | Jul 2002 | B1 |
7849854 | Cegielski | Dec 2010 | B2 |
20030106554 | de Silva | Jun 2003 | A1 |
20060191536 | Kroupa | Aug 2006 | A1 |
20160045696 | Rao | Feb 2016 | A1 |
20160095997 | Aguirre | Apr 2016 | A1 |
20160158477 | Dhuper | Jun 2016 | A1 |
20190083724 | Boulanger | Mar 2019 | A1 |
20190307981 | Ahmad | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
102120054 | Jul 2011 | CN |
2985050 | Feb 2016 | EP |
3019992 | Oct 2015 | FR |
2020055933 | Mar 2020 | WO |
Entry |
---|
International Search Report for PCT/EP2021/058830 filed Apr. 6, 2021. |
Number | Date | Country | |
---|---|---|---|
20210308410 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
63040573 | Jun 2020 | US | |
63006325 | Apr 2020 | US |