Systems and methods for providing differential motion to wing high lift device

Information

  • Patent Grant
  • 7726610
  • Patent Number
    7,726,610
  • Date Filed
    Monday, January 12, 2009
    15 years ago
  • Date Issued
    Tuesday, June 1, 2010
    14 years ago
Abstract
Systems and methods for providing differential motion to wing high lift devices are disclosed. A system in accordance with one embodiment of the invention includes a wing having a leading edge, a trailing edge, a first deployable lift device with a first spanwise location, and a second deployable lift device with a second spanwise location different than the first. The wing system can further include a drive system having a drive link operatively coupleable to both the first and second deployable lift devices, and a control system operatively coupled to the drive system. The control system can have a first configuration for which the drive link is operatively coupled to the first and second deployable lift devices, and activation of at least a portion of the drive link moves the first and second deployable lift devices together. In a second configuration, the drive link is operatively coupled to at least the first deployable lift device and operatively decoupled from the second deployable lift device, so that actuation of at least a portion of the drive link moves the first deployable lift device relative to the second deployable lift device.
Description
TECHNICAL FIELD

The present invention is directed generally toward systems and methods for providing differential motion to wing high lift devices, for example, to provide differential camber to wings during high speed flight.


BACKGROUND

Modern commercial transport aircraft have wings that are designed to be very efficient at high subsonic Mach numbers. Accordingly, the wings can provide relatively high fuel efficiency during cruise flight segments, which make up the bulk of a typical airliner flight plan, particularly for long range aircraft. These aircraft typically include other devices (e.g., leading edge devices, trailing edge devices, and spoilers) that change the shape of the aircraft wing during takeoff, descent, and/or landing. Accordingly, the shape of the wing can be temporarily changed to increase the lift and/or drag of the wing during non-cruise flight segments.


Continued competitive pressure on airlines and manufacturers has made fuel efficiency an increasingly important aspect of aircraft operations. Increasing fuel prices have exacerbated this pressure. However, existing systems may not improve aircraft fuel efficiency to desired levels, while still maintaining low costs for system development, manufacturing, operations, and maintenance, and while maintaining commonality with existing systems.


SUMMARY

The present invention is directed generally to systems and methods for providing differential motion to wing high lift devices. The differential motion can be used to tailor the spanwise camber distribution of the wing, thereby improving the aerodynamic efficiency of the wing, for example, at high aircraft speeds. An aircraft wing system in accordance with one aspect of the invention includes a wing having a leading edge and a trailing edge, a first deployable lift device having a first spanwise location and a second deployable lift device having a second spanwise location different than the first. Each lift device can be movable relative to the wing from a stowed position to a deployed position. The wing system can further include a drive system having a drive link operatively coupleable to both the first and second lift devices. A control system is operatively coupled to the drive system and has a first configuration for which the drive link is operatively coupled to the first and second lift devices, and activation of at least a portion of the drive link moves the first and second lift devices together. The control system also has a second configuration for which the drive link is operatively coupled to the first lift device and operatively decoupled from the second lift device, and activation of at least a portion of the drive link moves the first lift device relative to the second lift device.


In further embodiments, the control system can have a third configuration for which the drive link is operatively coupled to the second lift device and operatively decoupled from the first lift device. Accordingly, activation of at least a portion of the drive link moves the second lift device relative to the first lift device. In still further embodiments, the drive link can include a mechanical drive shaft or a hydraulic link, and the first lift device can be located inboard or outboard of the second lift device.


A method for operating an aircraft wing system in accordance with another aspect of the invention includes coupling first and second deployable lift devices of a wing with a drive link, wherein the first and second deployable lift devices are located at different spanwise locations of the wing. The method can further include moving the first and second deployable lift devices together by activating the drive link, decoupling the second deployable lift device from the drive link, and moving the first deployable lift device relative to the second deployable lift device by activating the drive link while the second deployable lift device is decoupled from the drive link.


In further embodiments, the method can further comprise limiting a range of motion of the first lift device to have a first value when moving the first and second lift devices together, and limiting the range of motion of the first lift device to have a second value less than the first value when moving the first lift device relative to the second lift device. Moving the first lift device relative to the second can include changing a spanwise camber distribution of the wing.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a partially schematic, isometric illustration of an aircraft that includes high lift devices configured in accordance with an embodiment of the invention.



FIG. 2A is a partially schematic, plan view of an aircraft wing having high lift devices configured in accordance with an embodiment of the invention.



FIG. 2B is a partially schematic, cross-sectional illustration of the wing shown in FIG. 2A.



FIG. 2C is a flow chart illustrating a method for moving high lift devices in accordance with an embodiment of the invention.



FIGS. 3A-3E illustrate an arrangement for providing differential motion of wing trailing edge devices in accordance with an embodiment of the invention.



FIGS. 4A-4E illustrate an arrangement for providing differential motion of wing trailing edge devices in accordance with another embodiment of the invention.



FIG. 5 illustrates a graph depicting predicted increases in aircraft performance resulting from differential trailing edge device motion, in accordance with an embodiment of the invention.





DETAILED DESCRIPTION

The following disclosure describes systems and methods for providing differential motion to wing high lift devices. Certain specific details are set forth in the following description and in FIGS. 1-5 to provide a thorough understanding of various embodiments of the invention. Well-known structures, systems, and methods often associated with wing high lift devices have not been shown or described in detail below to avoid unnecessarily obscuring the description of the various embodiments of the invention. In addition, those of ordinary skill in the relevant art will understand that additional embodiments of the present invention may be practiced without several of the details described below.


Many embodiments of the invention described below may take the form of computer-executable instructions, such as routines executed by a programmable computer. Those skilled in the relevant art will appreciate that the invention can be practiced on other computer system configurations as well. The invention can be embodied in a special-purpose computer or data processor that is specifically programmed, configured or constructed to perform one or more of the computer-executable instructions described below. Accordingly, the term “computer” as generally used herein includes any processor and can include Internet appliances, hand-held devices (including palm-top computers, cellular or mobile phones, multiprocessor systems, processor-based or programmable consumer electronics, minicomputers and the like).


The invention can also be practiced in distributed computing environments, where tasks or modules are performed by remote processing devices that are linked with a communications network. In a distributed computing environment, program modules or subroutines may be located in both local and remote memory storage devices. Aspects of the invention described below may be stored or distributed on computer-readable media, including magnetic or optically readable computer disks (e.g., removable disks) as well as distributed electronically over networks. Data structures and transmissions of data particular to aspects of the invention are also encompassed within the scope of the invention. Information handled in accordance with aspects of the invention can be presented at displays or display media, for example, CRT screens, LCD screens, or other suitable devices.



FIG. 1 is a partially schematic, isometric illustration of an aircraft 100 having a fuselage 101 carried by wings 110. The aircraft 100 can further include an empennage 102 carrying a rudder 103, a vertical stabilizer 104, horizontal stabilizers 106, and elevators 105. A propulsion system 107 can include one or more engines that are attached to the wings 110 (as shown in FIG. 1), the fuselage 101, and/or the empennage 102.


The wings 110 can include leading edge devices 116 and trailing edge devices 111 that control the camber of the wing during one or more flight segments. The leading edge devices 116 and the trailing edge devices 111 can be coupled to a control system 120 that receives operator inputs 121 and automatic inputs 125 for controlling the operation of the leading edge devices 116 and the trailing edge devices 111. The control system 120 can also control the operation of the propulsion system 107, the elevators 105, and the rudders 103. Accordingly, the control system 120 can include a computer having a processor 126 and a memory 127, and can be configured to read instructions from one or more computer-readable media 128.



FIG. 2A is a partially schematic, plan view of one of the wings 110 described above with reference to FIG. 1. The wing 110 can include multiple trailing edge devices 111, for example, an inboard flap 212, an outboard flap 213, an aileron 214, and a flaperon 215. The aileron 214 can be used to provide roll control to the aircraft during high speed flight, and the flaperon 215 can be used to provide both roll control and high lift during low speed flight (e.g., takeoff and landing). Spoilers 222 can provide for aircraft deceleration and/or lift reduction. The inboard flap 212 and the outboard flap 213 can be operated to provide both high lift (during low speed flight) and variable wing camber (during high speed flight), as described in greater detail below.



FIG. 2B is a partially schematic, cross-sectional illustration of a portion of the wing 110 shown in FIG. 2A, including one of the trailing edge devices 111 (e.g., the inboard flap 212 or the outboard flap 213) and the spoiler 222. During deceleration, the spoiler 222 can be deflected upwardly, as indicated in dashed lines in FIG. 2B. During takeoff and landing, the trailing edge device 111 can be deflected downwardly through relatively large angles (depending upon factors that include whether the aircraft is taking off or landing, the length of the airport runway, wind conditions, etc.).


In a particular embodiment of the invention, the same trailing edge devices 111 that provide for high lift during low speed operations can also be deflected by relatively small amounts to tailor the lift distribution across the span of the wing 110. In other words, trailing edge devices 111 having different spanwise locations on the wing 110 can be deflected by different amounts and/or in different directions to adjust the camber of the wing 110 at a plurality of spanwise locations and therefore tailor the lift distribution of the wing 110 to account for conditions that may vary in a spanwise direction. Accordingly, the trailing edge devices 111 can be deflected from a neutral position N to an upwardly deflected position U and/or to a downwardly deflected position D. In particular embodiments, the deflections from the neutral position N can be on the order of a few degrees (e.g., plus or minus two degrees). In other embodiments, these deflections can have other values. In any of these embodiments, the overall arrangement of the trailing edge devices 111 themselves can be the same as, or at least generally similar to, existing arrangements. The capability to operate the trailing edge devices 111 during high speed flight can be provided by additions to and/or replacements of the existing hardware and software used to control the operation of the existing trailing edge devices 111.



FIG. 2C is a flow chart illustrating a process 200 for moving high lift devices in accordance with an embodiment of the invention. In process portion 271, the system is at rest. Accordingly, the high lift devices (e.g., inboard and outboard flaps 213) can be prevented from moving by one or more brakes. In process portion 272, the system receives a high lift command, e.g., a command from a pilot to increase the lift of the wing, generally at relatively low flight speeds, including take-off and landing. In process portion 273, the system moves the inboard and outboard flaps together to configure the wing for high lift.


In process portion 274, the system receives a variable camber command, e.g., an automatic or pilot-initiated command to adjust the camber of the wings in such a manner that the camber at inboard and outboard parts of the wing are different. Accordingly, in process portion 275, the system places the inboard and outboard flaps at different relative positions, typically at higher speed conditions, including cruise conditions. Further details of systems for performing these functions are described below with reference to FIGS. 3A-4E.



FIG. 3A schematically illustrates portions of the wings 110, including first trailing edge devices (e.g., inboard flaps 212) and second trailing edge devices (e.g., outboard flaps 213). A drive system 350 moves the flaps 212, 213 to selected positions, and a control system 320 directs and coordinates the operation of the drive system 350 to provide unitary and differential motion to the inboard flaps 212 and the outboard flaps 213. The differential motion provides the wings 110 with an adjustable, spanwise varying camber. The control system 320 can include a controller 323 that receives operator inputs 324 and automatic inputs 325. In a particular embodiment, the operator inputs 324 can cause the controller 323 to direct the flaps 212, 213 to move in unison, for example, during normal takeoff and landing operations. The automatic inputs 325 can cause the controller 323 to direct differential motion of the inboard flaps 212 and the outboard flaps 213 to tailor the camber of the wings 110, for example, during high speed flight.


The drive system 350 can include a drive link 353 that delivers power to the flaps 212, 213. The drive link 353 can be coupled to both a primary motor 351 and an alternate or backup motor 352. The primary motor 351 can provide power to the flaps 212, 213 during normal operations, and the alternate motor 352 can provide power to the flaps 212, 213 in the event the primary motor 351 is unable to do so. As is also described in greater detail below, the primary motor 351 can provide power to the flaps 212, 213 when the flaps are moved during low speed flight segments, and the alternate motor 352 can provide power to the flaps 212, 213 during high speed flight segments. The drive link 353 can be coupled to a plurality of actuators 354, each of which provides power to the flaps 212, 213. In a particular embodiment, the drive link 353 can include a mechanical drive shaft (e.g., a torque tube) and in other embodiments, the drive link can include other types of links, including hydraulic links and electrical links.


The control system 320 can include one or more control devices that coordinate, direct, and control the manner in which power is provided to the flaps 212, 213, under the direction of the controller 323. In a particular embodiment, the control system 320 can include a central control device 330 that provides power to devices located in both wings 110, and a differential control device 340 located in each of the wings 110. The differential control devices 340, together with the central control device 330, can provide power differentially to the inboard flaps 212 and the outboard flaps 213.


The central control device 330 can include a primary brake 331 that brakes the primary motor 351, and an alternate brake 332 that brakes the alternate motor 352. The differential control devices 340 can each include a differential 341 that receives power from the drive link 353 and distributes the power to the corresponding inboard flap 212, or the outboard flap 213, or both. Accordingly, the differential 341 can include a planetary gear device or other suitable mechanical differential, or an equivalent hydraulic or electrical device, depending on the nature of the drive link 353. When a differential brake 342 is engaged with the differential 341, the differential 341 provides power to both the inboard flap 212 and the outboard flap 213. When an outboard brake 344 is engaged with the differential 341, only the inboard flap 212 moves. When the inboard flap 212 and/or the outboard flap 213 is moved during high speed flight, a range limiter 343 can be engaged with the drive link 353 and/or the differential 341 to prevent unnecessarily high deflections of either of the flaps 212, 213. The range limiter 343 can include a mechanical device, electrical device and/or set of instructions based in a computer-readable medium. The system can also include a stop module (not shown) that limits the angular deflection difference between the inboard flap 212 and the outboard flap 213.


Operation of the control system 320 and the flaps 212, 213 is described below with reference to FIGS. 3B-3E. For purposes of illustration, active devices are generally shown in these Figures outlined in heavy lines. Brakes that are active resist motion of another component of the system, even though in some cases, the brake may resist motion when power is not applied to it, and may release when power is applied to it. Other components (e.g., motors and flaps) are generally moving when active.



FIG. 3B schematically illustrates the wings 110 when the flaps 212, 213 are stationary. The primary brake 331 is engaged to prevent transmission of power by the primary motor 351, and the alternate brake 332 is engaged to prevent transmission of power by the alternate motor 352. The differential brakes 342 are engaged to prevent differential motion of the inboard flaps 212 relative to the outboard flaps 213, and the outboard brakes 344 are engaged to prevent motion of the outboard flaps 213. Accordingly, none of the flaps 212, 213 move when the system is in this configuration.



FIG. 3C illustrates a configuration for which the inboard flaps 212 and the outboard flaps 213 move together through relatively large deflections, for example, during takeoff and/or landing. In this configuration, the primary motor 351 can provide power to the drive link 353, and the alternate brake 332 can disable the alternate motor 352, which is inactive. The differential brakes 342 are engaged with the differentials 341 so that power provided by the drive link 353 is provided to actuators 354 associated with both the inboard flaps 212 and the outboard flaps 213. Accordingly, the differentials 341 in this configuration can act as “pass-through” devices that provide power equally to the inboard flaps 212 and the outboard flaps 213.



FIG. 3D illustrates the wings 110 and the control system 320 in another configuration for which the inboard flaps 212 and the outboard flaps 213 are moved together during high speed flight segments (e.g., cruise). In one aspect of this embodiment, the primary brake 331 has engaged the primary motor 351 and the alternate brake 332 has been released. Accordingly, the alternate motor 352 provides power to the drive link 353. The differential brakes 342 are engaged so that power provided by the drive link 353 is delivered to both the inboard flaps 212 and the outboard flaps 213. The range limiter 343 is also engaged to prevent large deflections of the inboard flaps 212 and the outboard flaps 213. For example, the motion of the flaps 212, 213 can be limited to plus or minus two degrees in one embodiment, and to other values that depend on aircraft flight speed, structural loading considerations and/or other factors in other embodiments. Both the inboard flaps 212 and the outboard flaps 213 can be moved together until the outboard flaps 213 achieve the desired position.


Once the outboard flaps 213 have been moved to their target positions, the inboard flaps 212 can be moved relative to the outboard flaps 213, as shown in FIG. 3E. In this configuration, the primary brake 331 remains engaged with the primary motor 351 so that the alternate motor 352 provides power to the drive link 353. The range limiters 343 also remain engaged to prevent excessive motion of the inboard flap 212. The differential brakes 342 are released and the outboard brakes 344 are applied so that the differentials 341 provide power to the inboard flaps 212 but not the outboard flaps 213. The outboard flaps 213 are effectively decoupled from the drive link 335. Accordingly, the inboard flaps 212 can now be moved to their target positions. As a result, the inboard flaps 212 have a different deflection than the outboard flaps 213. If it is desired to move only the inboard flaps 212, the system can be operated while in the configuration shown in FIG. 3E, without first moving the inboard and outboard flaps together via the configuration shown in FIG. 3D.


One feature of an embodiment of the system described above with reference to FIGS. 3A-3E is that the inboard flaps 212 can be moved relative to the outboard flaps 213 during high speed flight segments. Accordingly, the camber of the wing 110 at a spanwise location aligned with the inboard flaps 212 can be different than the camber of the wing 110 at a spanwise location aligned with the outboard flaps 213. In this manner, the lift and drag characteristics of the wing 110 can be varied in a spanwise direction to account for conditions that can make the “optimal” or nearly optimal camber of the wing 110 at different spanwise locations different. Such conditions can arise, for example, when fuel is used more rapidly from inboard fuel tanks than outboard fuel tanks (or vice versa), which can reduce the need for lift at one section of the wing 110 more rapidly than at another section of the wing 110. In other embodiments, other external factors can create lift requirements that vary in a spanwise manner. Such factors include wind gusts that affect inboard and outboard portions of the wing 110 differently. The degree to which a differential camber is applied to the wing can be directed automatically via the automatic inputs 325


Another feature of an embodiment of the system described above with reference to FIGS. 3A-3E is that the range limiter 343 can prevent large deflections of both the inboard and outboard flaps 212, 213 when the aircraft is at a flight condition for which such motions are not appropriate. In particular, the range limiter 343 can automatically prevent such large deflections during aircraft operations above a given Mach number or indicated air speed. The range limiter 343 can automatically disengage when the aircraft falls below such speeds, to allow for large deflections which are appropriate for aircraft takeoff and landing. Whether or not the range limiter 343 is engaged can be controlled automatically via one of the automatic inputs 325 to the controller 323.


Yet another feature of an embodiment of the system described above with reference to FIGS. 3A-3E is that the alternate motor 352 can provide power to the drive link 353 when the flaps 212, 213 are moved through small deflection angles. In particular embodiments, the alternate motor 352 may not have the same rate capabilities as the primary motor 351 (e.g., it may be slower), and accordingly, its use can be particularly appropriate for moving the flaps 212, 213 by small amounts to optimize or at least improve the performance of the wing 110 during cruise or other relatively long flight segments (e.g., climb-out). A further advantage of this arrangement is that the alternate motor 352 is more likely to be used during a typical flight than it would be in a conventional arrangement, and as a result, the aircraft operator will know during the course of the flight whether or not the alternate motor 352 is available in case the primary motor 351 fails.



FIG. 4A-4E illustrate a controller system 420 configured to direct the motion of the inboard flaps 212 and the outboard flaps 213 in accordance with another embodiment of the invention. Accordingly, the controller system 420 can include a controller 423 coupled to a central control device 430 and two differential control devices 440. A drive system 450 includes a drive link 453 that receives power from a primary motor 451 or an alternate motor 452. A primary brake 431 halts motion of the primary motor 451, and an alternate brake 432 halts motion of the alternate motor 452. Each differential control device 450 can include a differential 441, a differential brake 442 and a range limiter 443, all of which operate in a manner generally similar to that described above with reference to FIG. 3A. Each differential control device 440 can also include a differential motor 455 that is coupled to the differential 441, and an outboard brake 444 that is coupled to an outboard segment of the drive link 453, in manners that differ from the arrangement described above with reference to FIG. 3A. Further details of the controller system 420 and its operation are described below with reference to FIGS. 4B-4E.



FIG. 4B illustrates the system at rest. The primary brake 431 prevents motion of the primary motor 451 and the alternate brake 432 prevents motion of the alternate motor 452. The differential brakes 442 are engaged to prevent differential power to the inboard flaps 212 relative to the outboard flaps 213, and the outboard brakes 444 prevent motion of the outboard flaps 213.



FIG. 4C illustrates the system when it is configured to provide power to the inboard flaps 212 and the outboard flaps 213 during low speed flight conditions. The primary brake 431 is released, allowing the primary motor 451 to provide power to the drive link 453. The differential brake 442 remains engaged so that the differential 441 provides power to both the inboard flaps 212 and the outboard flaps 213. The outboard brakes 444 are released so that the outboard flaps 213 can move.


In FIG. 4D, the system is configured to provide differential motion to the inboard flaps 212. Accordingly, both the primary brakes 431 and the alternate brakes 432 are released, and the outboard brakes 444 are engaged. The differential motors 455 are activated to provide motion to only the inboard flaps 212, via the differentials 441. Accordingly, the outboard flaps 213 are effectively decoupled from the drive link 453. The range limiters 443 are also activated to prevent excessive motion of the inboard flaps 212. Accordingly, the inboard flaps 212 can be moved relative to the outboard flaps 213 by relatively small amounts to a desired setting (e.g., during cruise flight segments).


In FIG. 4E, the system is configured to provide differential motion to the outboard flaps 212, independently of the inboard flaps 212. The outboard brakes 444 are released, while the primary brakes 431 and alternate brakes 432 are engaged to prevent motion of the inboard flap 212. The inboard flaps 212 are now decoupled from the drive link 453. Accordingly, when the differential motors 455 are activated, they each drive one of the outboard flaps 213 while the inboard flaps 212 remain in fixed positions.


In other embodiments, the arrangement described above with reference to FIGS. 4A-4E can be used in accordance with other methods. For example, the primary motor 451 can be operated simultaneously with the differential motors 455 to move the inboard and outboard flaps 212, 213 simultaneously, but in different manners. Accordingly, the inboard and outboard flaps 212, 213 can be moved simultaneously but at different speeds, or in different directions.


One feature of an arrangement described above with reference to FIGS. 4A-4E is that the inboard flaps 212 can be moved relative to the outboard flaps 213 (and vice versa) at high aircraft speeds. Accordingly, when it is desired to move only the outboard flaps 213, the inboard flaps 212 need not be moved at the same time and then independently moved back to their desired positions. Conversely, an advantage of the arrangement described above with reference to FIGS. 3A-3E is that it can make use of an existing alternate motor and does not require a separate differential motor. The particular arrangement installed on a given aircraft can be selected based on design criteria and other factors that may be unique to that aircraft. A common advantage of both arrangements, as discussed above, is that they can be used to tailor the spanwise lift distribution of the wing 110 to improve aircraft aerodynamic efficiency.



FIG. 5 illustrates a graph depicting lift-to-drag ratios as a function of overall wing lift coefficient (CL), predicted for differential motion of trailing edge devices in accordance with any of the embodiments described above. Line 460 illustrates a baseline lift-to-drag curve for an aircraft that is not capable of manipulating wing camber at high speeds (e.g., cruise speeds). Line 461 illustrates predicted lift-to-drag characteristics for an aircraft wing wherein the trailing edge devices of the wing are actuated in a linked manner to change the camber by the same or a similar amount over the span of the wing. Line 462 illustrates predicted lift-to-drag characteristics when the spanwise camber distribution varies over the span of the wing so that the wing can have a different camber at one spanwise location than at another. As is shown in FIG. 5, adjusting the camber of the wing at high speed can provide for increased wing performance, and differentially adjusting the camber of the wing (e.g., in a spanwise varying manner) can even further increase the wing performance.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, aspects of the invention described in the context of particular embodiments can be combined or eliminated in other embodiments. In many of the embodiments described above, high lift devices on one side of the aircraft longitudinal centerline are moved in concert with correspondingly-positioned high lift devices on the other side of the aircraft longitudinal centerline. In other embodiments, devices on opposite sides of the aircraft longitudinal centerline can be moved in different manners. In still further embodiments, the differentially movable high lift devices can be coupled to the wing leading edge, in addition to or in lieu of coupling differentially movable high lift devices to the wing trailing edge. While the wings illustrated in the Figures each include two high lift devices that are actuated to provide a variable camber, the wings can include more such high lift devices in other embodiments. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. An aircraft wing system, comprising: a wing having a leading edge and a trailing edge;a first deployable lift device having a first spanwise location and being movable relative to the wing from a stowed position to at least one first deployed position;a second deployable lift device having a second spanwise location different than the first and being movable relative to the wing from a stowed position to at least one second deployed position;a drive system that includes: a first motor;a first motor brake coupled to the first motor to selectively inhibit the first motor;a second motor;a second motor brake coupled to the second motor to selectively inhibit the second motor; anda drive link that includes a mechanical shaft, wherein the first and second motors are individually coupleable to the mechanical shaft, and wherein the drive link is connected to the first deployable lift device;a differential having a single power input, the single power input being connected to the mechanical shaft, the differential further having an output connected to the second deployable lift device;a differential brake coupled to the differential;a lift device brake coupled to the differential; anda control system connected to the drive system, the differential, the differential brake and the lift device brake, the control system being programmed with instructions that, when executed: connect the first and second deployable lift devices to the first motor via the drive link and engage the differential brake to move the first and second deployable lift devices together; and
  • 2. The system of claim 1 wherein the first motor has a first rate capability and the second motor has a second rate capability less than the first rate capability.
  • 3. The system of claim 1, further comprising a range limiter operatively coupled to the first and second deployable lift devices to provide a first range of motion when the control system moves the first and second deployable lift devices together, and provide a second range of motion less than the first range of motion when the control system moves the first deployable lift device relative to the second deployable lift device.
  • 4. The system of claim 1 wherein the first deployable lift device is inboard of the second deployable lift device.
  • 5. The system of claim 1, further comprising a fuselage coupled to the wing.
  • 6. An aircraft wing system, comprising: a wing having a leading edge and a trailing edge;a first deployable lift device having a first spanwise location and being movable relative to the wing from a stowed position to at least one first deployed position;a second deployable lift device having a second spanwise location different than the first and being movable relative to the wing from a stowed position to at least one second deployed position;a drive system that includes: a first motor;a second motor; anda drive link, wherein the first and second motors are individually coupleable to the drive link, and wherein the drive link is connected to the first deployable lift device;a differential having a single power input, the single power input being connected to the drive link, the differential further having an output connected to the second deployable lift device; anda control system connected to the drive system and the differential, the control system being programmed with instructions that, when executed:
  • 7. The system of claim 6 wherein the first motor has a first rate capability and the second motor has a second rate capability less than the first rate capability.
  • 8. The system of claim 6, further comprising a range limiter operatively coupled to the first and second deployable lift devices to provide a first range of motion when the control system moves the first and second deployable lift devices together, and provide a second range of motion less than the first range of motion when the control system moves the first deployable lift device relative to the second deployable lift device.
  • 9. The system of claim 6 wherein the drive link includes a mechanical shaft connected to the single power input of the differential.
  • 10. A method for operating an aircraft wing, comprising: activating a control system coupled to an aircraft wing system, the aircraft wing system comprising: a wing having a leading edge and a trailing edge;a first deployable lift device having a first spanwise location and being movable relative to the wing from a stowed position to at least one first deployed position;a second deployable lift device having a second spanwise location different than the first and being movable relative to the wing from a stowed position to at least one second deployed position;a drive system that includes: a first motor; a second motor; anda drive link, wherein the first and second motors are individually coupleable to the drive link, and wherein the drive link is connected to the first deployable lift device;a differential having a single power input, the single power input being connected to the drive link, the differential further having an output connected to the second deployable lift device;wherein the control system is connected to the drive system and the differential, and the control system is programmed with instructions that, when executed: rotate the drive link with the first motor;move the first deployable lift device with the first motor via the drive link, the first motor providing power via the drive link to the single power input of said differential;place the differential in a first configuration while applying a first braking action to the differential to drive both the first deployable lift device and the second deployable lift device together;change the configuration of the differential from the first configuration to a second configuration by applying a second braking action to the differential;rotate the drive link with the second motor and direct power from the second motor via the drive link to the single power input of the differential; andmove the first deployable lift device relative to the second deployable lift device via the second motor while the differential has the second configuration; and
  • 11. The method of claim 10 wherein rotating the drive link includes rotating a mechanical shaft.
  • 12. The method of claim 10, wherein rotating the drive link with the first motor includes rotating the drive link with the first motor having a first rate capability and wherein rotating the drive link with the second motor includes rotating the drive link with the second motor having a second rate capability less than the first rate capability.
  • 13. The method of claim 10 wherein moving the first and second deployable lift devices together includes moving the first and second deployable lift devices at a first rate during low speed flight operations, and wherein moving the first deployable lift device relative to the second deployable lift device includes moving the first deployable lift device at a second rate less than the first rate during high speed flight operations.
  • 14. The method of claim 10 wherein moving the first deployable lift device relative to the second deployable lift device include changing a spanwise camber distribution of the wing.
  • 15. The method of claim 10, further comprising limiting a range of motion of the first deployable lift device to have first value when moving the first and second deployable lift devices together, and limiting the range of motion of the first deployable lift device to have a second value less than the first value when moving the first deployable lift device relative to the second deployable lift device.
CROSS-REFERENCE TO RELATED APPLICATION

This is a continuation application of U.S. patent application Ser. No. 10/935,846, filed Sep. 8, 2004, entitled SYSTEMS AND METHODS FOR PROVIDING DIFFERENTIAL MOTION TO WING HIGH LIFT DEVICE, which is herein incorporated by reference in its entirety.

US Referenced Citations (313)
Number Name Date Kind
1724456 Crook Aug 1929 A
1770575 Ksoll Jul 1930 A
2086085 Lachmann et al. Jul 1937 A
2169416 Griswold Aug 1939 A
2282516 Hans et al. May 1942 A
2289704 Grant Jul 1942 A
2319383 Zap May 1943 A
2444293 Holt Jun 1943 A
2347230 Zuck Apr 1944 A
2358985 McAndrew Sep 1944 A
2378528 Arsandaux Jun 1945 A
2383102 Zap Aug 1945 A
2385351 Davidsen Sep 1945 A
2387492 Blaylock et al. Oct 1945 A
2389274 Pearsall et al. Nov 1945 A
2406475 Rogers Aug 1946 A
2422296 Flader et al. Jun 1947 A
2458900 Erny Jan 1949 A
2504684 Harper Apr 1950 A
2518854 Badenoch Aug 1950 A
2555862 Romani Jun 1951 A
2563453 Briend Aug 1951 A
2652812 Fenzl Sep 1953 A
2665084 Feeney et al. Jan 1954 A
2851229 Clark Sep 1958 A
2864239 Taylor Dec 1958 A
2877968 Granan et al. Mar 1959 A
2886008 Geyer et al. May 1959 A
2891740 Campbell Jun 1959 A
2892312 Allen et al. Jun 1959 A
2899152 Weiland Aug 1959 A
2912190 MacDonough Nov 1959 A
2920844 Marshall et al. Jan 1960 A
2938680 Greene et al. May 1960 A
2990144 Hougland Jun 1961 A
2990145 Hougland Jun 1961 A
3013748 Westburg Dec 1961 A
3089666 Quenzler May 1963 A
3102607 Roberts Sep 1963 A
3112089 Dornier Nov 1963 A
3136504 Carr Jun 1964 A
3166271 Zuck Jan 1965 A
3203275 Hoover Aug 1965 A
3263946 Roberts et al. Aug 1966 A
3282535 Steiner Nov 1966 A
3375998 Alvarez-Calderon Apr 1968 A
3423858 Speno Jan 1969 A
3447763 Allcock Jun 1969 A
3463418 Miksch Aug 1969 A
3504870 Cole et al. Apr 1970 A
3528632 Miles et al. Sep 1970 A
3539133 Robertson Nov 1970 A
3556439 Autry et al. Jan 1971 A
3587311 Hays, Jr. Jun 1971 A
3589648 Gorham et al. Jun 1971 A
3642234 Kamber et al. Feb 1972 A
3653611 Trupp et al. Apr 1972 A
3659810 Robertson May 1972 A
3677504 Schwarzler et al. Jul 1972 A
3704743 Edwards et al. Dec 1972 A
3704828 Studer et al. Dec 1972 A
3711039 James Jan 1973 A
3743219 Gorges et al. Jul 1973 A
3767140 Johnson Oct 1973 A
3794276 Maltby et al. Feb 1974 A
3804267 Cook et al. Apr 1974 A
3807447 Masuda et al. Apr 1974 A
3813062 Prather May 1974 A
3827658 Hallworth Aug 1974 A
3831886 Burdges et al. Aug 1974 A
3836099 O'Neill et al. Sep 1974 A
3837601 Cole Sep 1974 A
3862730 Heiney Jan 1975 A
3874617 Johnson Apr 1975 A
3897029 Calderon et al. Jul 1975 A
3904152 Hill Sep 1975 A
3910530 James et al. Oct 1975 A
3913450 MacGregor Oct 1975 A
3917192 Alvarez-Calderon et al. Nov 1975 A
3931374 Moutet et al. Jan 1976 A
3941334 Cole Mar 1976 A
3941341 Brogdon, Jr. Mar 1976 A
3949957 Portier et al. Apr 1976 A
3968946 Cole Jul 1976 A
3985319 Dean et al. Oct 1976 A
3991574 Frazier Nov 1976 A
3992979 Smith et al. Nov 1976 A
3993584 Owen et al. Nov 1976 A
3994451 Cole Nov 1976 A
4011888 Whelchel et al. Mar 1977 A
4015787 Maieli et al. Apr 1977 A
4106730 Spitzer et al. Aug 1978 A
4117996 Sherman Oct 1978 A
4120470 Whitener Oct 1978 A
4131253 Zapel Dec 1978 A
4146200 Borzachillo Mar 1979 A
4171787 Zapel Oct 1979 A
4180222 Thornburg Dec 1979 A
4181275 Moelter et al. Jan 1980 A
4189120 Wang Feb 1980 A
4189121 Harper et al. Feb 1980 A
4189122 Miller Feb 1980 A
4200253 Rowarth et al. Apr 1980 A
4202519 Fletcher May 1980 A
4240255 Benilan et al. Dec 1980 A
4262868 Dean Apr 1981 A
4267990 Staudacher et al. May 1981 A
4275942 Steidl Jun 1981 A
4283029 Rudolph Aug 1981 A
4285482 Lewis Aug 1981 A
4293110 Middleton et al. Oct 1981 A
4312486 McKinney Jan 1982 A
4325123 Graham et al. Apr 1982 A
4351502 Statkus Sep 1982 A
4353517 Rudolph Oct 1982 A
4358077 Coronel Nov 1982 A
4360176 Brown Nov 1982 A
4363098 Buus et al. Dec 1982 A
4365774 Coronel Dec 1982 A
4368937 Palombo et al. Jan 1983 A
4384693 Pauly et al. May 1983 A
4427168 McKinney et al. Jan 1984 A
4441675 Boehringer et al. Apr 1984 A
4444368 Andrews Apr 1984 A
4459084 Clark Jul 1984 A
4461449 Turner Jul 1984 A
4471925 Kunz et al. Sep 1984 A
4471927 Rudolph et al. Sep 1984 A
4472780 Chenoweth et al. Sep 1984 A
4475702 Cole Oct 1984 A
4479620 Rogers et al. Oct 1984 A
4485992 Rao Dec 1984 A
4496121 Berlin Jan 1985 A
4498646 Proksch et al. Feb 1985 A
4528775 Einarsson et al. Jul 1985 A
4533096 Baker et al. Aug 1985 A
4542869 Brine Sep 1985 A
4544117 Schuster Oct 1985 A
4553722 Cole Nov 1985 A
4575099 Nash Mar 1986 A
4576347 Opsahl Mar 1986 A
4637573 Perin et al. Jan 1987 A
4650140 Cole Mar 1987 A
4691879 Greene Sep 1987 A
4700911 Zimmer et al. Oct 1987 A
4702441 Wang Oct 1987 A
4706913 Cole Nov 1987 A
4712752 Victor Dec 1987 A
4717097 Sepstrup Jan 1988 A
4720066 Renken et al. Jan 1988 A
4729528 Borzachillo Mar 1988 A
4747375 Williams May 1988 A
4779822 Burandt et al. Oct 1988 A
4784355 Brine Nov 1988 A
4786013 Pohl et al. Nov 1988 A
4789119 Bellego et al. Dec 1988 A
4796192 Lewis Jan 1989 A
4823836 Bachmann et al. Apr 1989 A
4834319 Ewy et al. May 1989 A
4838503 Williams et al. Jun 1989 A
4854528 Hofrichter et al. Aug 1989 A
4856735 Lotz et al. Aug 1989 A
4867394 Patterson, Jr. Sep 1989 A
4892274 Pohl et al. Jan 1990 A
4899284 Lewis et al. Feb 1990 A
4962902 Fortes Oct 1990 A
4991800 Schwarz Feb 1991 A
5039032 Rudolph Aug 1991 A
5046688 Woods Sep 1991 A
5050081 Abbott et al. Sep 1991 A
5056741 Bliesner et al. Oct 1991 A
5074495 Raymond Dec 1991 A
5082207 Tulinius Jan 1992 A
5082208 Matich Jan 1992 A
5088665 Vijgen et al. Feb 1992 A
5094411 Rao Mar 1992 A
5094412 Narramore Mar 1992 A
5100082 Archung Mar 1992 A
5114100 Rudolph et al. May 1992 A
5129597 Manthey et al. Jul 1992 A
5158252 Sakurai Oct 1992 A
5167383 Nozaki et al. Dec 1992 A
5203619 Welsch et al. Apr 1993 A
5207400 Jennings et al. May 1993 A
5244269 Harriehausen et al. Sep 1993 A
5259293 Brunner et al. Nov 1993 A
5280863 Schmittle Jan 1994 A
5282591 Walters et al. Feb 1994 A
5310387 Savagian May 1994 A
5351914 Nagao et al. Oct 1994 A
5388788 Rudolph Feb 1995 A
5420582 Kubbat et al. May 1995 A
5441218 Mueller et al. Aug 1995 A
5474265 Capbern et al. Dec 1995 A
5493497 Buus Feb 1996 A
5535852 Bishop et al. Jul 1996 A
5542684 Squirrell et al. Aug 1996 A
5544847 Bliesner Aug 1996 A
5600220 Thoraval et al. Feb 1997 A
5609020 Jackson et al. Mar 1997 A
5680124 Bedell et al. Oct 1997 A
5681014 Palmer Oct 1997 A
5686907 Bedell et al. Nov 1997 A
5735485 Ciprian et al. Apr 1998 A
5740991 Gleine et al. Apr 1998 A
5743490 Gillingham et al. Apr 1998 A
5746490 Domenig May 1998 A
5788190 Siers Aug 1998 A
5839698 Moppert Nov 1998 A
5875998 Gleine et al. Mar 1999 A
5915653 Koppelman Jun 1999 A
5927656 Hinkleman Jul 1999 A
5934615 Treichler et al. Aug 1999 A
5978715 Briffe et al. Nov 1999 A
5984230 Orazi Nov 1999 A
6015117 Broadbent et al. Jan 2000 A
6033180 Machida et al. Mar 2000 A
6045204 Frazier et al. Apr 2000 A
6073624 Laurent Jun 2000 A
6076767 Farley et al. Jun 2000 A
6076776 Breitbach et al. Jun 2000 A
6079672 Lam et al. Jun 2000 A
6082679 Crouch et al. Jul 2000 A
6085129 Schardt et al. Jul 2000 A
6109567 Munoz Saiz et al. Aug 2000 A
6145791 Diller et al. Nov 2000 A
6152405 Muller et al. Nov 2000 A
6161801 Kelm et al. Dec 2000 A
6164598 Young et al. Dec 2000 A
6173924 Young et al. Jan 2001 B1
6189837 Matthews Feb 2001 B1
6213433 Gruensfelder et al. Apr 2001 B1
6227498 Arata May 2001 B1
6244542 Young et al. Jun 2001 B1
6293497 Kelley-Wickemeyer et al. Sep 2001 B1
6328265 Dizdarevic Dec 2001 B1
6349798 McKay et al. Feb 2002 B1
6349903 Caton et al. Feb 2002 B2
6364254 May et al. Apr 2002 B1
6375126 Sakurai et al. Apr 2002 B1
6382566 Ferrel et al. May 2002 B1
6431498 Watts et al. Aug 2002 B1
6439512 Hart Aug 2002 B1
6443394 Weisend, Jr. Sep 2002 B1
6450457 Sharp et al. Sep 2002 B1
6464175 Yada et al. Oct 2002 B2
6466141 McKay et al. Oct 2002 B1
6466234 Pyle et al. Oct 2002 B1
6478541 Charles et al. Nov 2002 B1
6481667 Ho Nov 2002 B1
6484969 Sprenger et al. Nov 2002 B2
6499577 Kitamoto et al. Dec 2002 B2
6536714 Gleine et al. Mar 2003 B2
6547183 Farnsworth Apr 2003 B2
6554229 Lam et al. Apr 2003 B1
6561463 Yount et al. May 2003 B1
6568189 Blot-Carretero et al. May 2003 B2
6591169 Jones et al. Jul 2003 B2
6598829 Kamstra Jul 2003 B2
6598834 Nettle et al. Jul 2003 B2
6601801 Prow et al. Aug 2003 B1
6622972 Urnes, Sr. et al. Sep 2003 B2
6622974 Dockter et al. Sep 2003 B1
6625982 Van Den Bossche et al. Sep 2003 B2
6644599 Perez Nov 2003 B2
6651930 Gautier et al. Nov 2003 B1
6698523 Barber Mar 2004 B2
6729583 Milliere et al. May 2004 B2
6745113 Griffin et al. Jun 2004 B2
6755375 Trikha Jun 2004 B2
6796526 Boehringer Sep 2004 B2
6796534 Beyer et al. Sep 2004 B2
6799739 Jones Oct 2004 B1
6802475 Davies et al. Oct 2004 B2
6824099 Jones Nov 2004 B1
6843452 Vassberg et al. Jan 2005 B1
6860452 Bacon et al. Mar 2005 B2
6870490 Sherry et al. Mar 2005 B2
6915190 Galasso Jul 2005 B2
6978971 Dun Dec 2005 B1
6980198 Gyde et al. Dec 2005 B1
6981676 Milliere et al. Jan 2006 B2
7007889 Charron Mar 2006 B2
7007897 Wingett et al. Mar 2006 B2
7028948 Pitt Apr 2006 B2
7048228 Vassberg et al. May 2006 B2
7048234 Recksiek et al. May 2006 B2
7048235 McLean et al. May 2006 B2
7051975 Pohl et al. May 2006 B2
7051982 Johnson May 2006 B1
7059563 Huynh Jun 2006 B2
7147241 Beaujot et al. Dec 2006 B2
7226020 Pohl et al. Jun 2007 B2
7243881 Sakurai et al. Jul 2007 B2
7258308 Beyer Aug 2007 B2
7264206 Wheaton et al. Sep 2007 B2
7270305 Rampton et al. Sep 2007 B2
7322547 Konings Jan 2008 B2
7338018 Huynh et al. Mar 2008 B2
7357358 Lacy et al. Apr 2008 B2
7363119 Griffin, III et al. Apr 2008 B2
7424350 Speer Sep 2008 B2
7455264 Wakayama Nov 2008 B2
7506842 Jones Mar 2009 B2
20040059474 Boorman et al. Mar 2004 A1
20050109826 Fry et al. May 2005 A1
20050242234 Mahmulyin Nov 2005 A1
20060038086 Reckzeh Feb 2006 A1
20060144996 Carl et al. Jul 2006 A1
20060169874 Lien et al. Aug 2006 A1
20070176051 Good et al. Aug 2007 A1
20070252040 Kordel et al. Nov 2007 A1
20080283672 Denzler et al. Nov 2008 A1
Foreign Referenced Citations (21)
Number Date Country
387833 Jan 1924 DE
1129379 May 1962 DE
0100775 Feb 1984 EP
0103038 Mar 1984 EP
0370640 May 1990 EP
0483504 May 1992 EP
0489521 Jun 1992 EP
0781704 Jul 1997 EP
0947421 Oct 1999 EP
1010616 Jun 2000 EP
1338506 Aug 2003 EP
1547917 Jun 2005 EP
705155 Jun 1931 FR
984443 Jul 1951 FR
56121 Sep 1952 FR
57988 Sep 1953 FR
58273 Nov 1953 FR
886136 Jan 1962 GB
1181991 Feb 1970 GB
2144688 Mar 1985 GB
WO-0224530 Mar 2002 WO
Related Publications (1)
Number Date Country
20090206209 A1 Aug 2009 US
Continuations (1)
Number Date Country
Parent 10935846 Sep 2004 US
Child 12352447 US