The present invention relates generally to video teleconferencing, and more particularly to systems and methods for providing geographically distributed creative design.
Video teleconference systems (VTCs) are used to connect meeting participants from one or more remote sites. This allows for many participants to review material and collaborate on the material across a geographically distributed area. VTCs are a useful tool for supporting geographically distributed review of engineering designs and artifacts. There are many network based tools, such as GoToMeeting, WebEx and many others, that are useful tools for supporting geographically distributed review of engineering designs and artifacts. However, these tools are ineffective for supporting geographically distributed creation of engineering artifacts and design.
In one aspect of the invention, a system is disclosed for providing creative design. The system comprises a high resolution display, an interactive stylus and a plurality of sensors that track movement of the interactive stylus over the high resolution display. A creative design controller is configured to display detailed text and figures and display sketches of context in response to movement of the interactive stylus over the high resolution display.
In another aspect of the invention, a system for providing geographically distributed creative design is disclosed. The system comprises a plurality of creative design system coupled together over a network. Each of the plurality of creative design systems comprise a high resolution display, an interactive stylus, a plurality of sensors that track movement of the interactive stylus over the high resolution display and a creative design controller configured to display preloaded detailed text and figures and generate instructions to display sketches of context in response to movement of the interactive stylus over the high resolution display.
In yet a further aspect of the present invention, a method is disclosed for providing geographically distributed creative design. The method comprises preloading detailed text and figures to be displayed on a high resolution display of a local creative design system, tracking movement of an interactive stylus over the high resolution display and generating instructions to display sketches of context in response to movement of the interactive stylus over the high resolution display.
The local creative design system 12 includes a high resolution display 14 (e.g., greater than or equal to 8 Megapixels) that is sufficient to provide for the display of detail text and figures viewable within a teleconference room setting. The high resolution display 14, stylus sensors 18, an interactive stylus 16 and a creative design controller 20 cooperate to allow for a user (e.g., a design engineer) to sketch creative designs on the high resolution display 14 similar to how users sketch creative designs on a large white board. The creative designs appear in the form of images on the high resolution display 14 and provide the context necessary for a creative design meeting. The detail text and figures can be preloaded onto the high resolution display 14 prior to a creative design session. Changes in the sketched images due to actions by a user are employed to create message instructions that can be transmitted to other creative design systems 30 to update high resolution displays associated with each of the other creative design systems 30. In this manner, updates to images on each respective high resolution display occur substantially in real-time to provide substantially real-time sketching since the amount of data transferred over the communication medium 28 is a fraction of the amount of data that would be required to completely update each high resolution display.
Movement of the interactive stylus 16 is tracked by the stylus sensors 18 and transmitted to the creative design controller 20. The creative design controller 20 analyzes the images of the movement of the stylus 16 and automatically generates markings on the high resolution display 14 in response to sketching by a user. Since the markings are generated by the controller 20, the markings can have a preprogrammed width that can be as small as 1 pixel wide allowing for complex detailed sketches and as thick as would be reasonable for sketching drawings on a high resolution display. The interactive stylus 16 can include a transmitter located at an end point of the interactive stylus and the stylus sensors 18 can monitor the movement of the transmitter to determine when to display sketched images in response to sketches by a user on the high resolution display 14. For example, based on how close an end tip of the stylus 16 is to the high resolution display 14. In accordance with an aspect of the invention, the interactive stylus 16 can have an end that includes an infrared transmitter and the stylus sensors 18 can be infrared cameras. However, it is to be appreciated that the transmitter end could transmit visible light, radio frequency signals or other signals that can be tracked by different types of stylus sensors.
The local creative design system 12 can include one or more video teleconferencing cameras 24 for capturing images of participants at the local location of the video teleconference meeting where the high resolution display 14 resides and transmitting those images to other remote creative design systems 30 and other remote teleconference systems 32. The local creative design system 12 can include one or more video teleconferencing (VTC) displays 26 for displaying participants from the other remote creative design systems 30 and other remote teleconference systems 32. Additionally, the local creative design system 12 can include an audio system 22 that may include one or more speakers for receiving audio data from the other remote creative design systems 30 and other remote teleconference systems 32 and providing voice sounds associated with the audio data. The audio system 22 can also include one or more microphones for capturing voice sounds of the participants at the local creative design location 12 and providing audio data produced by the voice sounds of the participants to be transmitted to the other remote creative design systems 30 and other remote teleconference systems 32.
The creative design controller 40 also can include a design organizer tool 60. The design organizer tool 60 will render sketched designs by users into an organized sketch.
The central controller 50 also receives audio and video data from other creative design systems and other teleconference systems and provides that data to the audio and video systems of the local creative design system to provide voice sounds and video of participants of the creative design meeting. Furthermore, the central controller 50 transmits audio and video data of participants of the creative design meeting at the local creative design system to other remote creative design systems and other teleconference systems. In an aspect of the invention, the creative design controller includes an eye view adjustor component 64. The eye view adjustor component 64 analyzes images from two or more cameras that are angled toward a user so that an image can be generated and transmitted to displays of other creative design systems and other teleconference systems so that it appears to remote participants that the user is looking straight into the eye of the remote participants when the user is looking toward the high resolution display.
In another aspect of the invention, a forty-degree angled mirror (50% reflective and 50% transmissive) can be placed in front of a video teleconference display with a video teleconference camera being located to capture images of the mirror at a ninety degree angle relative to the position of the user. This provides the appearance of the user is looking straight into the eye of the remote participants when the user turns toward the video teleconference display.
The creative design controller 40 also can include a collaborative polling tool 66. The collaborative polling tool 66 provides an input screen to individual user to allows users to weight parameters and assign scores associated with prospective decision selections. The collaborative polling tool 66 also provides for a group output screen that displays weight parameter averages and averages scores of a group of users for each of the prospective decision selections. This allows users to receive feedback from the group associated with the teleconference meeting and determine areas of agreement and disagreement to allow for further time concentrating on areas of disagreement.
The creative design system 70 can include two video teleconferencing cameras 82 for capturing images of the user at the local location of the video teleconference meeting where the high resolution display 72 resides and transmitting those images to other remote creative design systems and other remote teleconference systems. The two cameras 82 can be angled toward the user so that an image can be generated and transmitted to displays of other creative design systems and other teleconference systems so that it appears to remote participants that the user is looking straight into the eye of the remote participants when the user is looking toward the high resolution display 72.
The creative design system 70 also includes a video teleconferencing (VTC) display 84 for displaying participants from the other remote creative design systems and other remote teleconference systems. Additionally, the creative design system 70 includes an audio system with a pair of speakers 86 for receiving audio data from the other remote creative design systems and other remote teleconference systems and providing voice sounds associated with the audio data. The audio system includes a microphone 88 for capturing voice sounds of the participants at the creative design system location and providing audio data produced by the voice sounds of the participants to be transmitted to other remote creative design systems and other remote teleconference systems.
It is to be appreciated that the Collaborative polling tool can be web-based, such that participants can vote from anywhere.
In view of the foregoing structural and functional features described above, a method will be better appreciated with reference to
The system 500 can includes a system bus 502, a processing unit 504, a system memory 506, memory devices 508 and 510, a communication interface 512 (e.g., a network interface), a communication link 514, a display 516 (e.g., a video screen), and an input device 518 (e.g., a keyboard and/or a mouse). The system bus 502 can be in communication with the processing unit 504 and the system memory 506. The additional memory devices 508 and 510, such as a hard disk drive, server, stand alone database, or other non-volatile memory, can also be in communication with the system bus 502. The system bus 502 operably interconnects the processing unit 504, the memory devices 506-510, the communication interface 512, the display 516, and the input device 518. In some examples, the system bus 502 also operably interconnects an additional port (not shown), such as a universal serial bus (USB) port.
The processing unit 504 can be a computing device well-known to those in the art and can include an application-specific integrated circuit (ASIC). The processing unit 504 executes a set of instructions to implement the operations of examples disclosed herein. The processing unit can include a processing core. The additional memory devices 506, 508 and 510 can store data, programs, instructions, database queries in text or compiled form, and any other information that can be needed to operate a computer. The memories 506, 508 and 510 can be implemented as computer-readable media (integrated or removable) such as a memory card, disk drive, compact disk (CD), or server accessible over a network. In certain examples, the memories 506, 508 and 510 can comprise text, images, video, and/or audio, portions of which can be available in different human. The processing unit 504 executes one or more computer executable instructions originating from the system memory 506 and the memory devices 508 and 510. The term “computer readable medium” as used herein refers to a medium that participates in providing instructions to the processing unit 504 for execution.
What have been described above are examples of the present invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the present invention, but one of ordinary skill in the art will recognize that many further combinations and permutations of the present invention are possible. Accordingly, the present invention is intended to embrace all such alterations, modifications and variations that fall within the scope of the appended claims.