The technology disclosed relates, in general, to image analysis, and in particular to implementations providing normalized parameters of motions of objects in three-dimensional (3D) space.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also correspond to implementations of the claimed technology.
Users may interact with electronic devices, such as a computer or a television, or computing applications, such as computer games, multimedia applications, or office applications, via their gestures. Typically, the user's gestures may be detected using an optical imaging system, and characterized and interpreted by suitable computational resources. For example, a user near a TV may perform a sliding hand gesture, which is detected by the motion-capture system; in response to the detected gesture, the TV may activate and display a control panel on the screen, allowing the user to make selections thereon using subsequent gestures; for example, the user may move her hand in an “up” or “down” direction, which, again, is detected and interpreted to facilitate channel selection.
While utilization of user gestures to interact with electronic devices and/or computing applications has generated substantial consumer excitement and may ultimately supplant conventional control modalities that require physical contact between the user and a control element, many current motion-capture systems suffer from excessive processing time and/or low detection sensitivity. For example, a motion-capture system may detect a user's gestures regardless of the actual distance traversed by the user's movement. If the user's gestures in fact occupy a small fraction of the working volume in which a system can detect gestures, analyzing the entire working volume over a sequence of processed images wastes computational resources. In addition, because the spatial region within which a user's gestures take place can vary; some users may perform a gesture on a small scale, while other users may traverse a much larger spatial region in performing the same gesture. Accordingly, the user's gestural intent typically cannot be inferred merely from the detected distance traversed by, for example, the user's finger. Interpreting gestural intent without either wasting computational resources or ignoring relevant portions of a user's movement represents a substantial challenge.
Consequently, there is a need for a motion-capture system that detects gestures in a determined subset of the working volume whose size and location corresponds to the region where particular users perform gesture-related movements.
Implementations of the technology disclosed relate to motion-capture systems that detect user gestures using detection zones to save computational time and cost and/or to provide normalized position-based parameters, such as position coordinates or movement vectors, to application developers, electronic devices, computing applications, or other persons, entities or systems, thereby reducing and/or simplifying the task of detecting the position of objects making gestures. As used herein, the term “object” broadly connotes a user's finger, hand or other body part, or an item held by the user's in performing a gesture, or in some cases, the user herself. The detection zones may be established explicitly by a user or a computer application, or may instead be determined from the user's pattern of gestural activity. The detection zones may have three-dimensional (3D) boundaries or may be two-dimensional (2D) frames. In one implementation, the detection zones are adapted to a user's habits when performing gestures and are scaled and located to follow the user's motions. The size and location of the detection zone may be adjusted based on the distance and direction between the user and the motion-capture system. In various embodiments, the detected parameters of each user's gestures are (re)scaled based on, for example, the dimensions of the detection zone associated with the user. For example, within the detection zone a parameter indicating the size of the trajectory corresponding to the gesture may vary from zero to one, or between zero and the maximum number of pixels in the detection images, or between any other values set by application designers, users or others. Accordingly, the rescaled parameters may indicate the user's intent of performing various degrees of movements as contrasted with a simple distance measure that may be completely uncorrelated with gestural intent. As a result, the rescaled normalized parameters of each user's movements can be directly output from the motion-capture system for further processing that enables convenient processing and interpretation of different users' interactions with electronic devices and/or computing applications running thereon.
Advantageously, these and other aspects enable machines, computers and/or other types of intelligent devices, and/or other types of automata to obtain information about objects, events, actions, and/or users employing gestures, signals, and/or other motions conveying meaning and/or combinations thereof. These and other advantages and features of the embodiments herein described, will become more apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations.
In the drawings, like reference characters generally refer to like parts throughout the different views. Also, the drawings are not necessarily to scale, with an emphasis instead generally being placed upon illustrating the principles of the technology disclosed. In the following description, various implementations of the technology disclosed are described with reference to the following drawings, in which:
A motion-capture system suitable for implementing the technology disclosed can include a camera for acquiring images of an object; a computer for processing the images to identify and characterize the object; and a computer display for displaying information related to the identified/characterized object. A light source may also be included to illuminate the object.
The cameras 102 may be visible-light cameras, infrared (IR) cameras, ultraviolet cameras, or cameras operating in any other electromagnetic frequency regime. Preferably, the cameras 102 are capable of capturing video images. The particular capabilities of cameras 102 may vary as to frame rate, image resolution (e.g., pixels per image), color or intensity resolution (e.g., number of bits of intensity data per pixel), focal length of lenses, depth of field, etc. In general, for a particular application, any cameras capable of focusing on objects within a spatial volume of interest can be used. For instance, to capture motion of the hand of an otherwise stationary person, the volume of interest might be a cube of one meter in length. To capture motion of a running person, the volume of interest might have dimensions of tens of meters in order to observe several strides.
The cameras may be oriented in any convenient manner. In one embodiment, the optical axes of the cameras 102 are parallel, in other implementations the optical axes are not parallel. As described below, each camera 102 may be used to define a “vantage point” from which the object 106 is seen. If the location and view direction associated with each vantage point are known, the locus of points in space that project onto a particular position in the camera's image plane may be determined. In some embodiments, motion capture is reliable only for objects in an area where the fields of view of cameras 102 overlap; and cameras 102 may be arranged to provide overlapping fields of view throughout the area where motion of interest is expected to occur. In other embodiments, the system 100 may include one or more light sources 104, and the cameras 102 measure the reflection of the light emitted by the light sources on objects 106. The system may include, for example, two cameras 102 and one light source 104; one camera 102 and two light sources 104; or any other appropriate combination of light sources 104 and cameras 102.
Computer 108 may generally be any device or combination of devices capable of processing image data using techniques described herein.
The cameras 102 and/or light sources 104 may connect to the computer 200 via a universal serial bus (USB), FireWire, or other cable, or wirelessly via Bluetooth, Wi-Fi, etc. The computer 200 may include a camera interface 216, implemented in hardware (e.g., as part of a USB port) and/or software (e.g., executed by processor 202), that enables communication with the cameras 102 and/or light sources 104. The camera interface 216 may include one or more data ports and associated image buffers for receiving the image frames from the cameras 102; hardware and/or software signal processors to modify the image data (e.g., to reduce noise or reformat data) prior to providing it as input to a motion-capture or other image-processing program; and/or control signal ports for transmit signals to the cameras 102, e.g., to activate or deactivate the cameras, to control camera settings (frame rate, image quality, sensitivity, etc.), or the like.
The main memory 204 may be used to store instructions to be executed by the processor 202, conceptually illustrated as a group of modules. These modules generally include an operating system (e.g., a Microsoft WINDOWS, Linux, or APPLE OS X operating system) that directs the execution of low-level, basic system functions (such as memory allocation, file management, and the operation of mass storage devices), as well as higher-level software applications such as, e.g., a motion-capture (mocap) program 218 for analyzing the camera images to track the position of an object of interest and/or a motion-response program for computing a series of output images (or another kind of response) based on the tracked motion. Suitable algorithms for motion-capture program are described further below as well as, in more detail, in U.S. patent application Ser. No. 13/414,485, filed on Mar. 7, 2012 and Ser. No. 13/742,953, filed on Jan. 16, 2013, and U.S. Provisional Patent Application No. 61/724,091, filed on Nov. 8, 2012, which are hereby incorporated herein by reference in their entirety. The various modules may be programmed in any suitable programming language, including, without limitation high-level languages such as C, C++, C#, OpenGL, Ada, Basic, Cobra, Fortran, Java, Lisp, Perl, Python, Ruby, or Object Pascal, or low-level assembly languages.
The memory 204 may further store input and/or output data associated with execution of the instructions (including, e.g., input and output image data 220) as well as additional information used by the various software applications; for example, in some embodiments, the memory 204 stores an object library 222 of canonical models of various objects of interest. As described below, an object detected in the camera images may be identified by matching its shape to a model in the object library 222, and the model may then inform further image analysis, motion prediction, etc. In addition, the memory 204 may include a detection module 224, which determines a detection zone in 3D space within which the object typically moves, and a (re)scaling module 226, which may rescale the coordinates of a detected object's movement based on, for example, the dimensions of the detection zone.
In various implementations, the motion captured in a series of camera images is used to compute a corresponding series of output images for display on the computer screen 208. For example, camera images of a moving hand may be translated into a wire-frame or other graphic depiction of the hand by the processor 202. Alternatively, hand gestures may be interpreted as input used to control a separate visual output; by way of illustration, a user may be able to use upward or downward swiping gestures to “scroll” a webpage or other document currently displayed, or open and close her hand to zoom in and out of the page. In any case, the output images are generally stored in the form of pixel data in a frame buffer, which may, but need not be, implemented in main memory 204. A video display controller reads out the frame buffer to generate a data stream and associated control signals to output the images to the display 208. The video display controller may be provided along with the processor 202 and memory 204 on-board the motherboard of the computer 200, and may be integrated with the processor 202 or implemented as a co-processor that manipulates a separate video memory. In some embodiments, the computer 200 is equipped with a separate graphics or video card that aids with generating the feed of output images for the display 208. The video card generally includes a graphical processing unit (“GPU”) and video memory, and is useful, in particular, for complex and computationally expensive image processing and rendering. The graphics card may implement the frame buffer and the functionality of the video display controller (and the on-board video display controller may be disabled). In general, the image-processing and motion-capture functionality of the system may be distributed between the GPU and the main processor 202 in various conventional ways that are well characterized in the art.
The computer 200 is an illustrative example; variations and modifications are possible. Computers may be implemented in a variety of form factors, including server systems, desktop systems, laptop systems, tablets, smart phones or personal digital assistants, and so on. A particular implementation may include other functionality not described herein, e.g., wired and/or wireless network interfaces, media playing and/or recording capability, etc. In some embodiments, one or more cameras may be built into the computer rather than being supplied as separate components. Further, the computer processor may be a general-purpose microprocessor, but depending on implementation can alternatively be, e.g., a microcontroller, peripheral integrated circuit element, a customer-specific integrated circuit (“CSIC”), an application-specific integrated circuit (“ASIC”), a logic circuit, a digital signal processor (“DSP”), a programmable logic device such as a field-programmable gate array (“FPGA”), a programmable logic device (“PLD”), a programmable logic array (“PLA”), smart chip, or other device or arrangement of devices.
Further, while computer 200 is described herein with reference to particular blocks, this is not intended to limit the technology disclosed to a particular physical arrangement of distinct component parts. For example, in some embodiments, the cameras 102 are connected to or integrated with a special-purpose processing unit that, in turn, communicates with a general-purpose computer, e.g., via direct memory access (“DMA”). The processing unit may include one or more image buffers for storing the image data read out from the camera sensors, a GPU or other processor and associated memory implementing at least part of the motion-capture algorithm, and a DMA controller. The processing unit may provide processed images or other data derived from the camera images to the computer for further processing. In some embodiments, the processing unit sends display control signals generated based on the captured motion (e.g., of a user's hand) to the computer, and the computer uses these control signals to adjust the on-screen display of documents and images that are otherwise unrelated to the camera images (e.g., text documents or maps) by, for example, shifting or rotating the images.
Referring to
The user may define the detection zone 306 to be large enough to capture most or all gestures the user intends to perform. However, increasing the size of the detection zone 306 may increase the size of the captured images, i.e., the captured images will have more pixels. Increased captured image size may increase the image processing time and/or computational requirements for processing the gestures. Accordingly, the optimally sized detection zone 306 may be large enough to capture most gestures within a tolerance limit. In some embodiments, if the user's gesture extends beyond the detection zone 306, the motion-capture system alerts the users with a signal so that the user may confine further gestures to be within the detection zone or change the size of the detection zone 306. The detection zone 306 may comprise a 3D volume and have 3D boundaries or alternatively, may be a 2D area located in the spatial region 302 and oriented in any direction (e.g., horizontally, vertically, or anything in between). Additionally, the detection zone 306 may be displayed on any presentation device (e.g., display, projector, etc.) operable with the motion-capture system (e.g., for training purposes) or any surface or device that is associated with the motion-capture system.
In some implementations, the dimensions of the detection zone 306 are set manually by the user, e.g. in response to an on-screen prompt. For example, with reference to
In other implementations, the size and location of the detection zone 306 are adapted to the users' behavior when performing gestures. For example, the user and/or detection module 224 may first define a detection zone having a size of 10 cm×10 cm×10 cm. These dimensions, however, may not be large enough and gestures performed by the user may lie outside of or extend beyond the detection zone 306 and therefore be discarded. In one implementation, the detection module 224 dynamically adjusts the size of the detection zone 306 based on, for example, a gesture discard rate. If the discard rate is above a predetermined maximum threshold, the detection module 224 increases the size of the detection zone 306 automatically or upon receiving a confirmation from the user. In some embodiments, the motion-capture system reduces the size of the detection zone 306 when, for example, the gesture discard rate is below a minimum threshold value (e.g., 5%). The detection module 224 may be implemented as a stand-alone module, as part of a motion capture system, or as part of a specific application (such as a game or controller logic for a television) or in specific hardware; for example, the motion capture system may allow designers of the application/hardware to modify or establish a default size of the detection zone 306 based on suitability for the application/hardware. In addition, the detection zone 306 may change position based on motions of the user. For example, when the user moves her position by 50 cm in a direction 308 wholly or partially perpendicular to the optical axes of the cameras 102, 104 or rotates her arm, hand, or body by an angle 310 relative to the cameras 102, 104, the detection zone may similarly move its position 50 cm in the direction 308 or rotate by an angle 310, respectively, to adequately capture the user's gestures. Further, the size of the detection zone 306 may be adjusted based on the distance between the user and the cameras. For example, when the user moves close to the cameras, the size of the detection zone 306 may be automatically adjusted to compensate for gestures being performed closer to the cameras.
The motion-capture system may then process the images captured within the detection zone 306 to determine parameters, which may include position coordinates or movement vectors, associated with the gestures. In implementations, the motion-capture system 200 includes a (re)scaling module 226 that rescales the determined parameters based on, for example, the dimensions of the detection zone 306. Referring to
The above example describes, for illustrative purposes, generating a normalized parameter for movement in one direction. Implementations of the technology disclosed include providing normalized parameters in two or three dimensions of movement. For example, the (re)scaling module 226 may locate an object within the detection zone 306 and normalize its trajectory through the zone, e.g., that the object has passed through 50% of the zone along the x-dimension, 40% along the y-dimension, and 70% of the z-dimension. The normalized parameters may be given in accordance with any scale or numbering system; for example, they may be given as decimals between 0.0 and 1.0 or between 0 and 100, or in terms of the number of pixels traversed with the motion projected onto a plane. The technology disclosed is not limited to any particular number format.
In some embodiments, the dimensions of the detection zone 306 are associated with the maximum number of pixels of the captured images or other values set by the users and/or other people (such as the designers of the computing applications). In addition, for illustration purposes, the (re)scaling approach of the detected parameters described herein is based on the dimensions of the detection zone. The (re)scaling module 226, however, may rescale the determined motion parameters based on any other parameters that are suitable for generating normalized coordinates for the detected movements of the users or any other objects, thereby enabling various users' interactions with the electronic devices and/or computing applications.
Embodiments may be employed in a variety of application areas, such as for example and without limitation consumer applications including interfaces for computer systems, laptops, tablets, television, game consoles, set top boxes, telephone devices and/or interfaces to other devices; medical applications including controlling devices for performing robotic surgery, medical imaging systems and applications such as CT, ultrasound, x-ray, MRI or the like, laboratory test and diagnostics systems and/or nuclear medicine devices and systems; prosthetics applications including interfaces to devices providing assistance to persons under handicap, disability, recovering from surgery, and/or other infirmity; defense applications including interfaces to aircraft operational controls, navigations systems control, on-board entertainment systems control and/or environmental systems control; automotive applications including interfaces to automobile operational systems control, navigation systems control, on-board entertainment systems control and/or environmental systems control; security applications including, monitoring secure areas for suspicious activity or unauthorized personnel; manufacturing and/or process applications including interfaces to assembly robots, automated test apparatus, work conveyance devices such as conveyors, and/or other factory floor systems and devices, genetic sequencing machines, semiconductor fabrication related machinery, chemical process machinery and/or the like; and/or combinations thereof.
Implementations of the technology disclosed may further be mounted on automobiles or other mobile platforms to provide information to systems therein as to the outside environment (e.g., the positions of other automobiles). Further implementations of the technology disclosed may be used to track the motion of objects in a field of view or used in conjunction with other mobile-tracking systems. Object tracking may be employed, for example, to recognize gestures or to allow the user to interact with a computationally rendered environment; see, e.g., U.S. Patent Application Ser. Nos. 61/752,725 (filed on Jan. 15, 2013) and Ser. No. 13/742,953 (filed on Jan. 16, 2013), the entire disclosures of which are hereby incorporated by reference.
It should also be noted that implementations of the technology disclosed may be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture. The article of manufacture may be any suitable hardware apparatus, such as, for example, a floppy disk, a hard disk, a CD ROM, a CD-RW, a CD-R, a DVD ROM, a DVD-RW, a DVD-R, a flash memory card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the computer-readable programs may be implemented in any programming language. Some examples of languages that may be used include C, C++, or JAVA. The software programs may be further translated into machine language or virtual machine instructions and stored in a program file in that form. The program file may then be stored on or in one or more of the articles of manufacture.
Certain implementations of the technology disclosed were described above. It is, however, expressly noted that the technology disclosed is not limited to those implementations, but rather the intention is that additions and modifications to what was expressly described herein are also included within the scope of the technology disclosed. For example, while the technology has been discussed with reference to examples in which the detection zones generally take the form of parallelepipeds, there is no requirement that the detection zone have any particular shape, nor even be composed of flat sides nor orthogonal boundaries. Further, it may be appreciated that the techniques, devices and systems described herein with reference to examples employing light waves are equally applicable to methods and systems employing other types of radiant energy waves, such as acoustical energy or the like. Moreover, it is to be understood that the features of the various embodiments described herein were not mutually exclusive and can exist in various combinations and permutations, even if such combinations or permutations were not made express herein, without departing from the spirit and scope of the technology disclosed. In fact, variations, modifications, and other implementations of what was described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the technology disclosed.
This application claims the benefit of U.S. patent application No. 61/824,666, titled “SYSTEMS AND METHODS FOR PROVIDING NORMALIZED PARAMETERS OF MOTIONS OF OBJECTS IN THREE-DIMENSIONAL SPACE”, filed 17 May 2013.
Number | Name | Date | Kind |
---|---|---|---|
2665041 | Maffucci | Jan 1954 | A |
4175862 | DiMatteo et al. | Nov 1979 | A |
4879659 | Bowlin et al. | Nov 1989 | A |
5134661 | Reinsch | Jul 1992 | A |
5282067 | Liu | Jan 1994 | A |
5454043 | Freeman | Sep 1995 | A |
5574511 | Yang et al. | Nov 1996 | A |
5581276 | Cipolla et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5742263 | Wang et al. | Apr 1998 | A |
5900863 | Numazaki | May 1999 | A |
5901170 | Peysakhovich et al. | May 1999 | A |
6002808 | Freeman | Dec 1999 | A |
6031161 | Baltenberger | Feb 2000 | A |
6031661 | Tanaami | Feb 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6075892 | Fan et al. | Jun 2000 | A |
6075895 | Qiao et al. | Jun 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6154558 | Hsieh | Nov 2000 | A |
6181343 | Lyons | Jan 2001 | B1 |
6184326 | Razavi et al. | Feb 2001 | B1 |
6184926 | Khosravi et al. | Feb 2001 | B1 |
6195104 | Lyons | Feb 2001 | B1 |
6204852 | Kumar et al. | Mar 2001 | B1 |
6252598 | Segen | Jun 2001 | B1 |
6263091 | Jain et al. | Jul 2001 | B1 |
6493041 | Hanko et al. | Dec 2002 | B1 |
6498628 | Iwamura | Dec 2002 | B2 |
6603867 | Sugino et al. | Aug 2003 | B1 |
6629065 | Gadh et al. | Sep 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6702494 | Dumler et al. | Mar 2004 | B2 |
6798628 | Macbeth | Sep 2004 | B1 |
6804654 | Kobylevsky et al. | Oct 2004 | B2 |
6804656 | Rosenfeld et al. | Oct 2004 | B1 |
6814656 | Rodriguez | Nov 2004 | B2 |
6819796 | Hong et al. | Nov 2004 | B2 |
6901170 | Terada et al. | May 2005 | B1 |
6919880 | Morrison et al. | Jul 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
6993157 | Oue et al. | Jan 2006 | B1 |
7213707 | Hubbs et al. | May 2007 | B2 |
7215828 | Luo | May 2007 | B2 |
7244233 | Krantz et al. | Jul 2007 | B2 |
7257237 | Luck et al. | Aug 2007 | B1 |
7259873 | Sikora et al. | Aug 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7340077 | Gokturk et al. | Mar 2008 | B2 |
7519223 | Dehlin et al. | Apr 2009 | B2 |
7532206 | Morrison et al. | May 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7542586 | Johnson | Jun 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7606417 | Steinberg et al. | Oct 2009 | B2 |
7646372 | Marks et al. | Jan 2010 | B2 |
7656372 | Sato et al. | Feb 2010 | B2 |
7665041 | Wilson et al. | Feb 2010 | B2 |
7692625 | Morrison et al. | Apr 2010 | B2 |
7831932 | Josephsoon et al. | Nov 2010 | B2 |
7840031 | Albertson et al. | Nov 2010 | B2 |
7861188 | Josephsoon et al. | Dec 2010 | B2 |
7886229 | Pachet | Feb 2011 | B2 |
7886236 | Kolmykov-Zotov et al. | Feb 2011 | B2 |
7940885 | Stanton et al. | May 2011 | B2 |
7948493 | Klefenz et al. | May 2011 | B2 |
7971156 | Albertson et al. | Jun 2011 | B2 |
7980885 | Gattwinkel et al. | Jul 2011 | B2 |
8064704 | Kim et al. | Nov 2011 | B2 |
8085339 | Marks | Dec 2011 | B2 |
8086971 | Radivojevic et al. | Dec 2011 | B2 |
8111239 | Pryor et al. | Feb 2012 | B2 |
8112719 | Hsu et al. | Feb 2012 | B2 |
8144233 | Fukuyama | Mar 2012 | B2 |
8185176 | Mangat et al. | May 2012 | B2 |
8213707 | Li et al. | Jul 2012 | B2 |
8230852 | Zhang et al. | Jul 2012 | B2 |
8235529 | Raffle et al. | Aug 2012 | B1 |
8244233 | Chang et al. | Aug 2012 | B2 |
8289162 | Mooring et al. | Oct 2012 | B2 |
8290208 | Kurtz et al. | Oct 2012 | B2 |
8514221 | King et al. | Aug 2013 | B2 |
8631355 | Murillo et al. | Jan 2014 | B2 |
8638989 | Holz | Jan 2014 | B2 |
8659594 | Kim et al. | Feb 2014 | B2 |
8659658 | Vassigh et al. | Feb 2014 | B2 |
8693731 | Holz et al. | Apr 2014 | B2 |
8817087 | Weng et al. | Aug 2014 | B2 |
8842084 | Andersson et al. | Sep 2014 | B2 |
8843857 | Berkes et al. | Sep 2014 | B2 |
8854433 | Rafii | Oct 2014 | B1 |
8872914 | Gobush | Oct 2014 | B2 |
8930852 | Chen et al. | Jan 2015 | B2 |
9056396 | Linnell | Jun 2015 | B1 |
9389779 | Anderson et al. | Jul 2016 | B2 |
9436288 | Holz | Sep 2016 | B2 |
20020008211 | Kask | Jan 2002 | A1 |
20020021287 | Tomasi et al. | Feb 2002 | A1 |
20020105484 | Navab et al. | Aug 2002 | A1 |
20030053658 | Pavlidis | Mar 2003 | A1 |
20030053659 | Pavlidis et al. | Mar 2003 | A1 |
20030081141 | Mazzapica | May 2003 | A1 |
20030123703 | Pavlidis et al. | Jul 2003 | A1 |
20030152289 | Luo | Aug 2003 | A1 |
20030202697 | Simard et al. | Oct 2003 | A1 |
20040046736 | Pryor et al. | Mar 2004 | A1 |
20040125228 | Dougherty | Jul 2004 | A1 |
20040145809 | Brenner | Jul 2004 | A1 |
20040212725 | Raskar | Oct 2004 | A1 |
20050068518 | Baney et al. | Mar 2005 | A1 |
20050131607 | Breed | Jun 2005 | A1 |
20050168578 | Gobush | Aug 2005 | A1 |
20050236558 | Nabeshima et al. | Oct 2005 | A1 |
20060017807 | Lee et al. | Jan 2006 | A1 |
20060072105 | Wagner | Apr 2006 | A1 |
20060210112 | Cohen et al. | Sep 2006 | A1 |
20060290950 | Platt et al. | Dec 2006 | A1 |
20070042346 | Weller | Feb 2007 | A1 |
20070130547 | Boillot | Jun 2007 | A1 |
20070206719 | Suryanarayanan et al. | Sep 2007 | A1 |
20070238956 | Haras et al. | Oct 2007 | A1 |
20080013826 | Hillis et al. | Jan 2008 | A1 |
20080056752 | Denton et al. | Mar 2008 | A1 |
20080064954 | Adams et al. | Mar 2008 | A1 |
20080106746 | Shpunt et al. | May 2008 | A1 |
20080111710 | Boillot | May 2008 | A1 |
20080141181 | Ishigaki et al. | Jun 2008 | A1 |
20080273764 | Scholl | Nov 2008 | A1 |
20080278589 | Thorn | Nov 2008 | A1 |
20080304740 | Sun et al. | Dec 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20090102840 | Li | Apr 2009 | A1 |
20090103780 | Nishihara et al. | Apr 2009 | A1 |
20090122146 | Zalewski et al. | May 2009 | A1 |
20090203993 | Mangat et al. | Aug 2009 | A1 |
20090203994 | Mangat et al. | Aug 2009 | A1 |
20090217211 | Hildreth et al. | Aug 2009 | A1 |
20090257623 | Tang et al. | Oct 2009 | A1 |
20090274339 | Cohen et al. | Nov 2009 | A9 |
20090309710 | Kakinami | Dec 2009 | A1 |
20100020078 | Shpunt | Jan 2010 | A1 |
20100023015 | Park | Jan 2010 | A1 |
20100026963 | Faulstich | Feb 2010 | A1 |
20100027845 | Kim et al. | Feb 2010 | A1 |
20100046842 | Conwell | Feb 2010 | A1 |
20100053164 | Imai et al. | Mar 2010 | A1 |
20100058252 | Ko | Mar 2010 | A1 |
20100095206 | Kim | Apr 2010 | A1 |
20100118123 | Freedman et al. | May 2010 | A1 |
20100125815 | Wang et al. | May 2010 | A1 |
20100156676 | Mooring et al. | Jun 2010 | A1 |
20100158372 | Kim et al. | Jun 2010 | A1 |
20100177049 | Levy et al. | Jul 2010 | A1 |
20100177929 | Kurtz et al. | Jul 2010 | A1 |
20100199221 | Yeung et al. | Aug 2010 | A1 |
20100201880 | Iwamura | Aug 2010 | A1 |
20100219934 | Matsumoto | Sep 2010 | A1 |
20100222102 | Rodriguez | Sep 2010 | A1 |
20100277411 | Yee et al. | Nov 2010 | A1 |
20100278393 | Snook et al. | Nov 2010 | A1 |
20100296698 | Lien et al. | Nov 2010 | A1 |
20100302357 | Hsu et al. | Dec 2010 | A1 |
20100306712 | Snook et al. | Dec 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100309097 | Raviv et al. | Dec 2010 | A1 |
20110007072 | Khan et al. | Jan 2011 | A1 |
20110026765 | Ivanich et al. | Feb 2011 | A1 |
20110043806 | Guetta et al. | Feb 2011 | A1 |
20110057875 | Shigeta et al. | Mar 2011 | A1 |
20110066984 | Li | Mar 2011 | A1 |
20110080470 | Kuno et al. | Apr 2011 | A1 |
20110093820 | Zhang et al. | Apr 2011 | A1 |
20110107216 | Bi | May 2011 | A1 |
20110115486 | Frohlich et al. | May 2011 | A1 |
20110119640 | Berkes et al. | May 2011 | A1 |
20110134112 | Koh et al. | Jun 2011 | A1 |
20110148875 | Kim et al. | Jun 2011 | A1 |
20110169726 | Holmdahl et al. | Jul 2011 | A1 |
20110173204 | Murillo et al. | Jul 2011 | A1 |
20110173235 | Aman | Jul 2011 | A1 |
20110173574 | Clavin et al. | Jul 2011 | A1 |
20110181509 | Rautiainen et al. | Jul 2011 | A1 |
20110193939 | Vassigh et al. | Aug 2011 | A1 |
20110205151 | Newton et al. | Aug 2011 | A1 |
20110213664 | Osterhout et al. | Sep 2011 | A1 |
20110228978 | Chen et al. | Sep 2011 | A1 |
20110234840 | Klefenz et al. | Sep 2011 | A1 |
20110251896 | Impollonia et al. | Oct 2011 | A1 |
20110267259 | Tidemand et al. | Nov 2011 | A1 |
20110286676 | El Dokor | Nov 2011 | A1 |
20110289455 | Reville et al. | Nov 2011 | A1 |
20110289456 | Reville et al. | Nov 2011 | A1 |
20110291925 | Israel et al. | Dec 2011 | A1 |
20110291988 | Bamji et al. | Dec 2011 | A1 |
20110296353 | Ahmed et al. | Dec 2011 | A1 |
20110299737 | Wang et al. | Dec 2011 | A1 |
20110304650 | Campillo et al. | Dec 2011 | A1 |
20110310007 | Margolis et al. | Dec 2011 | A1 |
20110314427 | Sundararajan | Dec 2011 | A1 |
20120038637 | Marks | Feb 2012 | A1 |
20120050157 | Latta et al. | Mar 2012 | A1 |
20120062489 | Andersson et al. | Mar 2012 | A1 |
20120062558 | Lee et al. | Mar 2012 | A1 |
20120065499 | Chono | Mar 2012 | A1 |
20120068914 | Jacobsen et al. | Mar 2012 | A1 |
20120079421 | Arriola | Mar 2012 | A1 |
20120105613 | Weng et al. | May 2012 | A1 |
20120150650 | Zahand | Jun 2012 | A1 |
20120151421 | Clarkson | Jun 2012 | A1 |
20120157203 | Latta et al. | Jun 2012 | A1 |
20120167134 | Hendricks et al. | Jun 2012 | A1 |
20120204133 | Guendelman et al. | Aug 2012 | A1 |
20120223959 | Lengeling | Sep 2012 | A1 |
20120250936 | Holmgren | Oct 2012 | A1 |
20120268410 | King et al. | Oct 2012 | A1 |
20120320080 | Giese et al. | Dec 2012 | A1 |
20130019204 | Kotler et al. | Jan 2013 | A1 |
20130167092 | Yu et al. | Jun 2013 | A1 |
20130191911 | Dellinger et al. | Jul 2013 | A1 |
20130222233 | Park et al. | Aug 2013 | A1 |
20130222640 | Baek et al. | Aug 2013 | A1 |
20130239059 | Chen et al. | Sep 2013 | A1 |
20130257736 | Hou et al. | Oct 2013 | A1 |
20130307935 | Rappel et al. | Nov 2013 | A1 |
20130321265 | Bychkov et al. | Dec 2013 | A1 |
20140055385 | Duheille | Feb 2014 | A1 |
20140063060 | Maciocci et al. | Mar 2014 | A1 |
20140113507 | Vanzetto | Apr 2014 | A1 |
20140118255 | Billerbeck | May 2014 | A1 |
20140125813 | Holz | May 2014 | A1 |
20140134733 | Wu et al. | May 2014 | A1 |
20140139641 | Holz | May 2014 | A1 |
20140157135 | Lee et al. | Jun 2014 | A1 |
20140157209 | Dalal et al. | Jun 2014 | A1 |
20140177913 | Holz | Jun 2014 | A1 |
20140201674 | Holz | Jul 2014 | A1 |
20140201683 | Holz | Jul 2014 | A1 |
20140201684 | Holz | Jul 2014 | A1 |
20140201690 | Holz | Jul 2014 | A1 |
20140222385 | Muenster et al. | Aug 2014 | A1 |
20140223385 | Ton et al. | Aug 2014 | A1 |
20140240215 | Tremblay et al. | Aug 2014 | A1 |
20140247695 | Vangeel | Sep 2014 | A1 |
20140258880 | Holm et al. | Sep 2014 | A1 |
20140304665 | Holz | Oct 2014 | A1 |
20140306903 | Huang et al. | Oct 2014 | A1 |
20140307920 | Holz | Oct 2014 | A1 |
20140340311 | Holz | Nov 2014 | A1 |
20140344731 | Holz | Nov 2014 | A1 |
20140344762 | Grasset et al. | Nov 2014 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150084864 | Geiss et al. | Mar 2015 | A1 |
20150116214 | Grunnet-Jepsen et al. | Apr 2015 | A1 |
20150153832 | Krepec | Jun 2015 | A1 |
20150220150 | Plagemann et al. | Aug 2015 | A1 |
20150220776 | Cronholm | Aug 2015 | A1 |
20150227795 | Starner et al. | Aug 2015 | A1 |
20150293597 | Mishra et al. | Oct 2015 | A1 |
20150363070 | Katz | Dec 2015 | A1 |
20160328022 | Holz | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
105308536 | Feb 2016 | CN |
11 2014 000 441 | Oct 2015 | DE |
1477924 | Nov 2004 | EP |
2369443 | Sep 2011 | EP |
2419433 | Apr 2006 | GB |
2002512069 | Apr 2002 | JP |
20090006825 | Jan 2009 | KR |
2014113507 | Jul 2014 | WO |
Entry |
---|
U.S. Appl. No. 14/281,817—Office Action dated Sep. 28, 2015, 5 pages. |
PCT/US2014/011737—International Preliminary Report on Patentability dated Jul. 21, 2016, 14 pages. |
PCT/US2014/011737—International Search Report and Written Opinion dated May 30, 2014, 20 pages. |
U.S. Appl. No. 14/156,418—Office Action dated Aug. 22, 2016, 11 pages. |
U.S. Appl. No. 14/156,426—Office Action dated Sep. 19, 2016, 32 pages. |
U.S. Appl. No. 14/156,420—Office Action dated Aug. 24, 2016, 8 pages. |
U.S. Appl. No. 14/156,424—Office Action dated Sep. 20, 2016, 32 pages. |
U.S. Appl. No. 14/156,429—Office Action dated Oct. 5, 2016, 45 pages. |
U.S. Appl. No. 14/156,420—Response to Aug. 24 Office Action filed Sep. 7, 2016, 12 pages. |
U.S. Appl. No. 14/156,418—Response to Aug. 22 Office Action filed Nov. 22, 2016, 7 pages. |
U.S. Appl. No. 14/154,730—Office Action dated Nov. 6, 2015, 9 pages. |
U.S. Appl. No. 14/262,691—Office Action dated Dec. 11, 2015, 31 pages. |
U.S. Appl. No. 14/281,817—Notice of Allowance mailed Apr. 22, 2016, 9 pages. |
U.S. Appl. No. 15/213,899—Notice of Allowance dated Sep. 14, 2016, 7 pages. |
U.S. Appl. No. 14/281,817—Notice of Allowance mailed Aug. 2, 2016, 9 pages. |
U.S. Appl. No. 14/281,817—Response to Sep. 28 Office Action filed Dec. 28, 2015, 3 pages. |
U.S. Appl. No. 14/281,825—Office Action dated Feb. 11, 2016, 19 pages. |
U.S. Appl. No. 14/155,722—Office Action dated Nov. 20, 2015, 14 pages. |
U.S. Appl. No. 14/281,825—Office Action dated Aug. 25, 2016, 22 pages. |
U.S. Appl. No. 14/281,825—Response to Feb. 11 Office Action filed May 11, 2016, 12 pages. |
U.S. Appl. No. 14/281,825—Response to Aug. 25 Office Action filed Nov. 15, 2016, 12 pages. |
U.S. Appl. No. 14/339,367—Office Action dated Dec. 3, 2015, 17 pages. |
U.S. Appl. No. 14/339,367—Non-Final Office Action dated Sep. 8, 2016, 21 pages. |
U.S. Appl. No. 14/476,694—Office Action dated Nov. 1, 2016, 28 pages. |
Number | Date | Country | |
---|---|---|---|
20140340524 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61824666 | May 2013 | US |