The present disclosure relates to data communication, and more specifically, to opportunistic security for communication channels.
The conventional method of providing secure communication over a channel uses cryptography. Cryptography relies on the existence of codes that are “hard to break”: that is, one-way functions that are believed to be computationally infeasible to invert. Therefore, cryptography is vulnerable to an increase in computing power a, the development of more efficient attacks. Furthermore, the assumptions about the hardness of certain one-way functions have not been proven mathematically, so cryptography is vulnerable if these assumptions are incorrect.
Another weakness of cryptography is the lack of no precise metrics or absolute comparisons between various cryptographic algorithms, showing the trade off between reliability and security as a function of the block length of plaintext and ciphertext messages. Instead, a particular cryptographic algorithm is considered “secure” if it survives a defined set of attacks, or “insecure” if it does not.
Cryptography as applied to some media (e.g., wireless networks) also requires a trusted third party as well as complex protocols and system architectures. Therefore, a need exists for these and other problems to be addressed.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure.
Systems and methods of providing opportunistic security for physical communication channels are disclosed. One disclosed method is for opportunistic secure communication on a main channel between a sender device and a receiver device when an eavesdropper device is listening on an eavesdropper channel. This example method includes transmitting, in a first time period in which signal quality on the main channel is better than signal quality on the eavesdropper channel, symbols that are randomly selected from a set of symbols. The method also includes transmitting, in a second time period in which signal quality on the main channel is not better than signal quality on the eavesdropper channel, coding information associated with the randomly selected symbols. The method also includes reconciling the randomly selected symbols using the coding information.
One disclosed system is for opportunistic secure communication on a main channel between a sender device and a receiver device when an eavesdropper device is listening on an eavesdropper channel. This example system includes means for transmitting, in a first time period in which signal quality on the main channel is better than signal quality on the eavesdropper channel, symbols that are randomly selected from a set of symbols. The system also includes means for transmitting, in a second time period in which signal quality on the main channel is not better than signal quality on the eavesdropper channel, coding information associated with the randomly selected symbols. The system also includes means for reconciling the randomly selected symbols using the coding information.
Another disclosed method is for opportunistic secure communication on a main channel between a sender device and a receiver device when an eavesdropper device is listening on an eavesdropper channel. This example method includes transmitting, in a first time period, symbols that are randomly selected from a set of symbols. The method also includes transmitting, in a second time period, coding information associated with the randomly selected symbols. The method also includes reconciling the randomly selected symbols using the coding information. The first and second time periods are distinguished by relative signal quality on the main channel and on the eavesdropper channel.
Another system is for opportunistic secure communication on a main channel between a sender device and a receiver device when an eavesdropper device is listening on an eavesdropper channel. This system includes a physical layer component and a higher-than-physical-layer component. The physical layer is configured to distill a key from symbols and coding information that are presented on the main channel during two different time periods. The higher-than-physical-layer component is configured to encrypt using the distilled key. The two different time periods are distinguished by relative signal quality on the main channel and on the eavesdropper channel.
Another system is for opportunistic secure communication on a main channel between a sender device and a receiver device when an eavesdropper device is listening on an eavesdropper channel. This system includes a physical layer component and a higher-than-physical-layer component. The physical layer is configured to generate a first key in a first generation period and to generate a second key during a second generation period. The higher-than-physical-layer component is configured to encrypt in a first encryption period with the first key and to encrypt in a second encryption period with the second key. The physical layer component is further configured to generate each of the first and the second keys from symbols and coding information that are presented on the main channel during two different sub-periods contained within the respective generation periods. The two different time periods are distinguished by relative signal quality on the main channel and on the eavesdropper channel.
Symmetric encryption uses a key to transform a message into a form that is unreadable to anyone that does not have the key. Since the key itself is a shared secret, this form of encryption relies on a method of providing the sender's key to the receiver in a secure manner. The systems and methods disclosed herein exploit naturally-occurring properties of the communication channel itself, at the physical layer, which allow the sender and the receiver to generate the same key, rather than having the sender transmit the key to the receiver, as occurs in conventional cryptographic solutions. In some embodiments, the distilled key is used by a higher protocol layer to encrypt messages, using, for example, standard secret key encryption algorithms. In other embodiments, the key distilled at both sides is used as a one-time pad to provide perfect secrecy.
Once discovered by each side, key 180 is then communicated from physical layer component 120 in each device 110 to the corresponding higher layer component 130 in the same device 110. After using key 180 to encrypt a message, higher layer component 130 in sender device 110S transmits the encrypted message 190 to receiver device 110R. Higher layer component 130 in receiver device 110R uses key 180 to decrypt message 190.
A few examples of higher protocol layer 130 are wired equivalent privacy (WEP) at the media access control (MAC) layer, internet protocol security (IPSec) at the network layer, and secure sockets layer (SSL) at the application layer. However, a person of ordinary skill in the art should understand that the key discovery techniques disclosed herein can be used by any protocol layer 130 above the physical layer. Such a person will also understand that although
The physical layer of the channel between sender device 110S and receiver device 110R will now be described in more detail in connection with the block diagram of
At the physical layer, both channels can be modeled as including noise inputs which affect signal quality: main channel 210 is affected by noise input 240 and eavesdropper channel 230 is affected by noise input 250. One or both of devices 110 has information about the signal quality on eavesdropper channel 230, and in embodiments where only one device 110 has this signal quality information, the information can be communicated to the other device. The techniques disclosed herein also allow for the possibility that eavesdropper 220 has information about the signal quality on main channel 210, but the techniques insure that such information is not sufficient to allow eavesdropper 220 to obtain key 180.
Both devices 110 include physical layer opportunistic security logic 260. Logic 260 in 110S cooperates with logic 260 in device 110R to provide security at the physical layer in an opportunistic manner, by exploiting characteristics of noisy channels 210, 230 in combination with information about relative signal quality of channels 210 and 230. These techniques for exploiting channel characteristics will be described in further detail after relative signal quality is discussed connection with
Physical layer opportunistic security logic 260 exploits these varying differences in relative signal quality by communicating two different types of information from sender device 110S to receiver device 110R in these two different time periods. During periods 310 in which message channel signal quality 320 is better than wiretap channel signal quality 330—i.e., during secret periods—random symbols 140 are sent over main channel 210. In the example embodiments described herein, logic 260 in sender device 110S transmits these random symbols 140. In other embodiments, a fourth party (e.g., a broadcast satellite) transmits random symbols 140.
During periods 340 in which message channel signal quality 320 is worse than wiretap channel signal quality 330—i.e., during non-secret periods—coding information 160 is sent over main channel 210. Thus, there is a correspondence between the time periods in
During good-quality-on-message-channel periods 310, receiver device 110R accumulates random symbols 140 but does not use the bits represented by the symbols. After coding information 160 has been communicated during bad-quality-on-message-channel periods 340, sender 110S and receiver 110R combine this additional coding information 160 with the accumulated random symbols 140 to produce key 180 (see
According to the principles of information-theoretic security, eavesdropper 220 cannot determine key 180 under these conditions. Information-theoretic security principles show that system 200 has positive secrecy capacity during good-quality-on-message-channel periods, or reliable periods, 310. As will be described in further detail below, sender device 110S and receiver device 110R share common randomness through the random symbols 140 transmitted by sender device 110S during reliable periods 310. This transmission results in a set of symbols which is correlated between sender and receiver. Information-theoretic security principles also show that system 200 has zero secrecy capacity during bad-quality-on-message-channel periods, or unreliable periods, 340. Coding information 160 is transmitted during unreliable periods 340, and receiver device 110R uses this coding information 160 to recover the bits represented by already-transmitted random symbols 140. The code is designed to match the secrecy capacity of a particular system: the strength of the code guarantees that legitimate receiver device 110R can recover a sequence of bits identical to those of the transmitter.
Since system 200 has (by definition) zero secrecy capacity during unreliable periods 340, it is possible for eavesdropper 220 to obtain some of the information that is transmitted during these unreliable periods 340. In fact, information theoretic security principles can quantify the maximum amount of information learned by eavesdropper 220, regardless of particular decoding methods which eavesdropper 220 might use. However, an additional step (privacy amplification) taken by sender 110S and receiver 110R after the reconstruction guarantees that eavesdropper 220 can obtain no information from the amplified reconstructed bit sequence. Since the amplified and reconstructed bit sequence can be used as a key 180 by both sides, it follows that the techniques disclosed herein allow key 180 to be generated by both sides in a manner that precludes eavesdropper 220 from obtaining key 180, and thus the techniques provide secure communication.
After the random symbol transmission 410, sender 110S and receiver 110R share a set of correlated continuous-valued symbols. Since continuous values are used, extracting a sequence of common bits from these continuous sequences is not straightforward, and standard coding techniques cannot be applied directly. Therefore, the systems and methods disclosed herein use multilevel coding. Multilevel coding quantizes the continuous symbols and then assigns a binary label to each of the quantized values. Although basic principles of multilevel coding have been proposed for use in general communication, here the use of multilevel codes is extended to the reconciliation of correlated sequences. In some embodiments, the number of symbols, the amplitudes of the symbols, and the probability distribution of the symbols are all optimized so that information is transmitted at a rate close to channel capacity, while still satisfying the power constraint of main channel 210.
Both sender 110S and receiver 110R map (420) the received symbols (X and Y respectively) to a bit sequence. However, since some amount of noise may be present on main channel 210, the bit sequence Q(Y) produced by receiver 110R may differ from the bit sequence Q(X) produced by sender 110S. That is, bit sequence Q(Y) may contain errors.
When logic 260 detects that message channel signal quality 320 is worse than wiretap channel signal quality 330 (i.e., during unreliable periods 340), sender 110S generates (430) error-correcting (coding) information 160 from the bit sequence Q(X), and transmits (440) coding information 160 over main channel 210. During these unreliable periods 340, receiver 110R decodes (450) coding information 160 and uses this information to recover or reconcile the original bit sequence Q(X). In some embodiments, coding information 160 takes the form of a low-density parity-check code (LDPC). In other embodiments, coding information 160 takes the form of a turbo code.
After reconciliation, sender 110S communicates (460) a random function over main channel 210, and each side applies (470) that random function to reconciled bit sequence Q(X). This application is also known as privacy amplification, and the result is secure key 180. In some embodiments, this random function is a universal hash function, with the property of producing an output sequence that is in general much smaller than the input sequence.
Notably, the reconciliation and privacy amplification steps, using coding information 160 already transmitted during a may be conducted over several disjoint unreliable periods 340. Furthermore, in some embodiments coding information 160 is transmitted in some reliable periods 310 as well as unreliable periods 340, to ensure some minimum amount of time is available for processing random symbols are processed.
The reconciliation phase continues as illustrated in
The final phase for key generation is illustrated in
Logic 260 within receiver device 110R recovers syndromes s. Random symbols Y (previously received during unreliable periods 340) are processed by a demapper 630 to produce a bit sequence which, in combination with syndromes s, is decoded by a multistage decoder 640. Thus, decoder 640 uses syndromes s as side information.
In some embodiments, the frequency of key generation is based on characteristics of main channel 210, eavesdropper channel 230, or both (e.g., the ratio of reliable periods 310 to unreliable periods 340, the ratio of average main channel signal quality to average eavesdropper channel signal quality, or the absolute signal quality of either channel). In some embodiments, physical layer component 120 (see
Device 110 can be implemented in software, hardware, or a combination thereof. In some embodiments, the device, system, and/or method is implemented in software that is stored in a memory and that is executed by a suitable microprocessor, network processor, or microcontroller situated in a computing device. In other embodiments, the device, system and/or method is implemented in hardware, including, but not limited to, a programmable logic device (PLD), programmable gate array (PGA), field programmable gate array (FPGA), an application-specific integrated circuit (ASIC), a system on chip (SoC), and a system on packet (SoP).
Device 110 can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device. Such instruction execution systems include any computer-based system, processor-containing system, or other system that can fetch and execute the instructions from the instruction execution system. In the context of this disclosure, a “computer-readable medium” can be any means that can contain, store, communicate, propagate, or transport the program for use by, or in connection with, the instruction execution system. The computer readable medium can be, for example but not limited to, a system or propagation medium that is based on electronic, magnetic, optical, electromagnetic, infrared, or semiconductor technology.
Specific examples of a computer-readable medium using electronic technology would include (but are not limited to) the following: an electrical connection (electronic) having one or more wires; a random access memory (RAM); a read-only memory (ROM); an erasable programmable read-only memory (EPROM or Flash memory). A specific example using magnetic technology includes (but is not limited to) a portable computer diskette. Specific examples using optical technology include (but are not limited to) an optical fiber and a portable compact disk read-only memory (CD-ROM).
Any process descriptions or blocks in flowcharts should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. As would be understood by those of ordinary skill in the art of the software development, alternate implementations are also included within the scope of the disclosure. In these alternate implementations, functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved.
The foregoing description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Obvious modifications or variations are possible in light of the above teachings. The implementations discussed, however, were chosen and described to illustrate the principles of the disclosure and its practical application to thereby enable one of ordinary skill in the art to utilize the disclosure in various implementations and with various modifications as are suited to the particular use contemplated. All such modifications and variation are within the scope of the disclosure as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly and legally entitled.
This application is the National Stage of International Application No. PCT/US2007/078734 filed Sep. 18, 2007, which claims the benefit of U.S. Provisional Application No. 60/845,415 filed Sep. 18, 2006, which are hereby incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/078734 | 9/18/2007 | WO | 00 | 1/29/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/036633 | 3/27/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6931128 | Roberts | Aug 2005 | B2 |
7035380 | Bingel et al. | Apr 2006 | B1 |
7929409 | Chitrapu et al. | Apr 2011 | B2 |
20030016770 | Trans et al. | Jan 2003 | A1 |
20060075241 | Deguillaume et al. | Apr 2006 | A1 |
20080320362 | Taubin et al. | Dec 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100128877 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
60845415 | Sep 2006 | US |