Systems and methods for providing order fulfillment using a conveyor takeaway system

Information

  • Patent Grant
  • 12129125
  • Patent Number
    12,129,125
  • Date Filed
    Friday, March 5, 2021
    3 years ago
  • Date Issued
    Tuesday, October 29, 2024
    24 days ago
Abstract
A storage, retrieval and processing system for processing objects is disclosed that includes a plurality of bins including objects to be distributed by the storage, retrieval and processing system, the plurality of bins being provided on an input conveyance system, a programmable motion device that includes an end effector for grasping and moving any of the objects, a perception system for providing perception data regarding a selected object that is presented to the perception system by the programmable motion device, and a routing conveyance system for receiving the selected object, and for moving the selected object in each of horizontal and vertical directions toward a destination container responsive to the perception data, the destination container being provided among a plurality of destination containers in a row that are provided as a set on a destination conveyance system.
Description
BACKGROUND

The present invention relates to order fulfillment systems, and relates in particular to systems for providing aggregation of objects (e.g., products, packages, bags, items, goods, etc.) for preparation for shipment to destination locations, such as in Automated Storage and Retrieval Systems.


Order fulfillment systems typically involve the processing of a wide variety of objects for distribution to a large number of distribution locations, such as intermediate distribution stations, mail order stations, geographic group locations and address specific locations. Automated storage and retrieval systems (AS/RS) generally include computer controlled systems of automatically storing (placing) and retrieving items from defined storage locations. Traditional AS/RS typically employ totes (or bins), which are the smallest unit of load for the system. In these systems, the totes are brought to people who pick individual items out of the totes. When a person has picked the required number of items out of the tote, the tote is then re-inducted back into the AS/RS.


In these traditional systems, the totes are brought to a person, and the person may either remove an item from the tote or add an item to the tote. The tote is then returned to the storage location. Such systems, for example, may be used in libraries and warehouse storage facilities. The AS/RS involves no processing of the items in the tote, as a person processes the objects when the tote is brought to the person. This separation of jobs allows any automated transport system to do what it is good at—moving totes—and the person to do what the person is better at—picking items out of cluttered totes. It also means the person may stand in one place while the transport system brings the person totes, which increases the rate at which the person can pick goods.


There are limits however, on such conventional systems in terms of the time and resources required to move totes toward and then away from each person, as well as how quickly a person can process totes in this fashion in applications where each person may be required to process a large number of totes. There remains a need therefore, for an AS/RS that stores and retrieves objects more efficiently and cost effectively, yet also assists in the processing of a wide variety of objects.


SUMMARY

In accordance with an aspect, the invention provides a storage, retrieval and processing system for processing objects that includes a plurality of bins including objects to be distributed by the storage, retrieval and processing system, the plurality of bins being provided on an input conveyance system, a programmable motion device that includes an end effector for grasping and moving any of the objects, the programmable motion device being capable of reaching any of the objects within at least one of the plurality of bins in an input area of the conveyance system, a perception system for providing perception data regarding a selected object that is presented to the perception system by the programmable motion device, and a routing conveyance system for receiving the selected object, and for moving the selected object in each of horizontal and vertical directions toward a destination container responsive to the perception data, the destination container being provided among a plurality of destination containers in a row that are provided as a set on a destination conveyance system.


In accordance with another aspect, the invention provides a storage, retrieval and processing system for processing objects that includes a plurality of bins including objects to be distributed by the storage, retrieval and processing system, the plurality of bins being provided on an input conveyance system, a programmable motion device that includes an end effector for grasping and moving any of the objects, the programmable motion device being capable of reaching any of the objects within at least one of the plurality of bins in an input area of the input conveyance system, a routing conveyance system including a conveyor for receiving the selected object, and for moving the selected object from the input area in each of horizontal and vertical directions toward a destination container, and a destination container removal system for removing completed destination containers along a destination conveyance system, the destination conveyance system including a plurality of vertically stacked destination conveyors in communication with at least one helical conveyor for moving completed destination containers toward an output station


In accordance with a further aspect, the invention provides a method of providing storage, retrieval and processing of objects including providing on a conveyance system a plurality of bins including objects to be distributed by the storage, retrieval and processing system, grasping and moving objects within at least one of the plurality of bins in an input area of the conveyance system using a programmable motion device that includes an end effector for grasping and moving any of the objects, providing perception data regarding a selected object that is presented to the perception system by the programmable motion device, routing the selected object in each of horizontal and vertical directions toward a destination container responsive to the perception data, said destination container being provided as one of a plurality of destination containers provided as a row on a destination conveyance system, and removing the row of destination containers as a set.





BRIEF DESCRIPTION OF THE DRAWINGS

The following description may be further understood with reference to the accompanying drawings in which:



FIG. 1 shows an illustrative diagrammatic front isometric view of a storage, retrieval and processing system in accordance with an aspect of the present invention;



FIG. 2 shows an illustrative diagrammatic enlarged view of an intake portion of the system of FIG. 1;



FIG. 3 shows an illustrative diagrammatic underside view of the bin perception unit of FIGS. 1 and 2;



FIG. 4 shows an illustrative diagrammatic view from the bin perception unit of FIG. 3 directed to a bin and its contents;



FIG. 5 shows an illustrative diagrammatic enlarged view of the object perception unit of the system of FIG. 1;



FIG. 6 shows an illustrative diagrammatic front elevated view of the object perception unit of FIGS. 1 and 5;



FIG. 7 shows an illustrative diagrammatic rear elevated view of the object perception unit of FIGS. 1 and 5;



FIGS. 8A-8D show illustrative diagrammatic views of an object being moved in the object routing conveyance system of FIG. 1;



FIGS. 9A-9C show illustrative diagrammatic views of movement of object conveyors in the object routing conveyance system of FIG. 1;



FIGS. 10A-10C show illustrative diagrammatic views of an object being moved to a destination container in the system of FIG. 1;



FIG. 11 shows an illustrative diagrammatic view of a routing conveyance system in accordance with a further aspect of the present invention that includes mutually orthogonally disposed sets of rollers;



FIG. 12 shows an illustrative diagrammatic view of the system of FIG. 1 with a row of completed destination containers being removed;



FIG. 13 shows an illustrative diagrammatic view of the system of FIG. 1 with the row of completed destination containers being further moved along an unloading helical conveyor;



FIG. 14 shows an illustrative diagrammatic view of the system of FIG. 1 with the row of completed destination containers being provided to an output conveyor;



FIG. 15 shows an illustrative diagrammatic view of the system of FIG. 1 with a row of empty destination containers being moved toward a loading helical conveyor;



FIG. 16 shows an illustrative diagrammatic view of the system of FIG. 1 with the empty destination containers being moved upward along the loading helical conveyor;



FIG. 17 shows an illustrative diagrammatic view of the system of FIG. 1 with the empty destination containers being moved off of the loading helical conveyor onto an empty row;



FIG. 18 shows an illustrative diagrammatic view of the system of FIG. 1 with the empty destination containers being moved onto the empty row; and



FIG. 19 shows an illustrative diagrammatic rear isometric view of the system of FIG. 1.





The drawings are shown for illustrative purposes only.


DETAILED DESCRIPTION

In accordance with an aspect, the invention provides an ASRS system 10 in which objects are provided in a plurality of bins 12 at an input area 14 of an input conveyance system 16. Objects are processed at a processing station 18, then routed via a routing conveyance system 20 to any of a plurality of destination containers at a destination area 22. The processing station 18 may include a programmable motion device 24, a bin perception unit 50 and an object perception unit 26.


Generally, objects are provided to the input area 14 in bins 12, are moved by a programmable motion device 24 to an object scanner 26, fall to an object conveyance system 48, and are routed to any of a plurality of destination containers in one or the other of a plurality vertically-coupled stacked rows of containers 44A, 44B. Empty containers are provided to each vertically-coupled stacked rows 44A, 44B, and completed containers are removed from each vertically-coupled stacked rows, by a container movement system adjacent either of output conveyors 34, 36. Each set of stacked rows may be vertically-coupled by an unloading helical conveyor 52, 56, as well as a loading helical conveyor 54, 58. With reference to FIG. 2, the input conveyor 16 may include a plurality of detectors 15 that monitor movement of the conveyors, and may confirm the identity and position of a conveyor at the input area 14 for processing at the processing station 18.


The operations of the system are coordinated with a central control system 100 as shown in FIG. 1 that communicates wirelessly with each of the conveyors and conveyor sensors, the programmable motion device 24, the perception units 50, 26, as well as all elements of the routing conveyance system, container arrays, container movement systems, and output conveyance systems (all components and systems). The perception unit 50 aids in grasping objects from the bins 12 with an end effector of the programmable motion device. Once grasped by the programmable motion device, the object is dropped into the drop perception unit 26, and the system thereby determines from symbol strings the UPC associated with the object, as well as the outbound destination for each object. The central control system 100 is comprised of one or more workstations or central processing units (CPUs). For example, the correspondence between UPCs or mailing labels, and outbound destinations is maintained by a central control system in a database called a manifest. The central control system maintains the manifest by communicating with a warehouse management system (WMS). The manifest provides the outbound destination for each in-bound object.


In particular, the system of an aspect includes a perception system 50 that is mounted above a bin of objects to be processed next to the articulated arm 24, looking down into a bin 12. The system 50, for example and as shown in FIG. 3, may be attached via a mount 41 to a perception unit stand 40, and may include (on the underside thereof), a camera 72, a depth sensor 74 and lights 76. A combination of 2D and 3D (depth) data is acquired. The depth sensor 74 may provide depth information that may be used together with the camera image data to determine depth information regarding the various objects in view. The lights 76 may be used to remove shadows and to facilitate the identification of edges of objects, and may be all on during use, or may be illuminated in accordance with a desired sequence to assist in object identification. The system uses this imagery and a variety of algorithms to generate a set of candidate grasp locations for the objects in the bin as discussed in more detail below.



FIG. 4 shows an image view from the perception unit 50. The image view shows a bin 12 in the input area 14 (a conveyor), and the bin 12 contains objects 78, 80, 82, 84 and 86. In the present embodiment, the objects are homogenous, and are intended for distribution to different break-pack packages. Superimposed on the objects 78, 80, 82, 84, 86 (for illustrative purposes) are anticipated grasp locations 79, 81, 83 and 85 of the objects. Note that while candidate grasp locations 79, 83 and 85 appear to be good grasp locations, grasp locations 79, 85 do not because each associated object is at least partially underneath another object. The system may also not even try to yet identify a grasp location for the object 84 because the object 84 is too obscured by other objects. Candidate grasp locations may be indicated using a 3D model of the robot end effector placed in the location where the actual end effector would go to use as a grasp location. Grasp locations may be considered good, for example, if they are close to the center of mass of the object to provide greater stability during grasp and transport, and/or if they avoid places on an object such as caps, seams, etc. where a good vacuum seal might not be available.


With reference to FIG. 5, the programmable motion device 24 includes an end effector 28 that is coupled via a hose mount 30 to a vacuum hose attached to a vacuum source. With further reference to FIGS. 6 and 7, the perception unit 26 includes a structure 170 having a top opening 172 and a bottom opening 174, and the walls may be covered by an enclosing material 176 (e.g., a colored covering such as orange plastic, to protect humans from potentially dangerously bright lights within the perception unit 36) as shown in FIGS. 5 and 6. The structure 170 includes a plurality of rows of sources (e.g., illumination sources such as LEDs) 178 as well as a plurality of image perception units (e.g., cameras) 180. The sources 178 are provided in rows, and each is directed toward the center of the opening. The perception units 180 are also generally directed toward the opening, although some cameras are directed horizontally, while others are directed upward, and some are directed downward. The system also includes an entry source (e.g., infrared source) 182 as well as an entry detector (e.g., infrared detector) 184 for detecting when an object has entered the perception unit 36. The LEDs and cameras therefore encircle the inside of the structure 170, and the cameras are positioned to view the interior via windows that may include a glass or plastic covering (e.g., 186).


An important aspect of systems of certain embodiments of the present invention, is the ability to identify via barcode or other visual markings of objects, unique indicia associated with the object by employing a perception system into which objects may be dropped. Automated scanning systems would be unable to see barcodes on objects that are presented in a way that their barcodes are not exposed or visible. The perception system may be used in certain embodiments, with a robotic system that may include a robotic arm equipped with sensors and computing, that when combined is assumed herein to exhibit the following capabilities: (a) it is able to pick objects up from a specified class of objects, and separate them from a stream of heterogeneous objects, whether they are jumbled in a bin, or are singulated on a motorized or gravity conveyor system; (b) it is able to move the object to arbitrary places within its workspace; (c) it is able to place objects in an outgoing bin or shelf location in its workspace; and, (d) it is able to generate a map of objects that it is able to pick, represented as a candidate set of grasp points in the workcell, and as a list of polytopes enclosing the object in space.


The allowable objects are determined by the capabilities of the robotic system. Their size, weight and geometry are assumed to be such that the robotic system is able to pick, move and place them. These may be any kind of ordered goods, packages, parcels, or other articles that benefit from automated sorting. Each object is associated with unique indicia such as a unique code (e.g., barcode) or a unique destination (e.g., address) of the object.


The manner in which inbound objects arrive may be for example, in one of two configurations: (a) inbound objects arrive piled in bins of heterogeneous objects; or (b) inbound articles arrive by a moving conveyor. The collection of objects includes some that have exposed bar codes and other objects that do not have exposed bar codes. The robotic system is assumed to be able to pick items from the bin or conveyor. The stream of inbound objects is the sequence of objects as they are unloaded either from the bin or the conveyor. With reference to FIG. 7, after an object has been dropped through the perception unit 26, it is guided by a guide chute 32 onto the routing conveyance system 20.


The manner in which outbound objects are organized is such that objects are placed in a bin, shelf location or container, into which all objects corresponding to a given order are consolidated. These outbound destinations may be arranged in vertical arrays, horizontal arrays, grids, or some other regular or irregular manner, but which arrangement is known to the system. The robotic pick and place system is assumed to be able to place objects into all of the outbound destinations, and the correct outbound destination is determined from unique identifying indicia (identify or destination, such as a bar code or a unique address), which identifies the object or its destination.


It is assumed that the objects are marked in one or more places on their exterior with a visually distinctive mark such as a barcode or radio-frequency identification (RFID) tag so that they may be identified with a scanner. The type of marking depends on the type of scanning system used, but may include 1D or 2D barcode symbologies. Multiple symbologies or labeling approaches may be employed. The types of scanners employed are assumed to be compatible with the marking approach. The marking, either by barcode, RFID tag, or other means, encodes a symbol string, which is typically a string of letters and numbers. The symbol string uniquely associates the object with unique identifying indicia (identity or destination).


The operations of the systems described herein are coordinated by the central control system 100 as shown in FIG. 1. This system determines from symbol strings the unique indicia associated with an object, as well as the outbound destination for the object. The central control system is comprised of one or more workstations or central processing units (CPUs). The correspondence between unique identifying indicia and outbound destinations is maintained by the central control system in a database called a manifest. The central control system maintains the manifest by communicating with a warehouse management system (WMS).


With reference to FIGS. 8A-8D, the routing conveyance system receives objects (e.g., a singulated stream of objects) from the object feed conveyor 48. The routing conveyance system includes one or more routing conveyor units 38A, 38B, each of which includes an object conveyor 37 mounted on a frame 39. Each frame 39 is movably coupled to a vertical rail system 43, the upper and lower ends of each of which are movably coupled to a horizontal rail system 45 (also shown in FIG. 1). In accordance with various aspects, the rail systems may be reversed, providing horizontal rail systems mounted to vertical rail systems.


Each routing conveyor unit 38A, 38B is adapted to receive a selected object on its object conveyor 37, which is mounted on the frame 39 that travels along the track system 43, 45 in both vertical and horizontal directions between the at least two vertically-coupled stacked rows 44A, 44B of destination containers 46 (e.g., bins, totes, boxes, etc.). The selected object (e.g., 41) is received by the object conveyor 37 from the object feed conveyor 48 of the conveyance system, and brings the object toward a selected destination container among the vertically-coupled stacked rows 44A, 44B. After routing the selected object to the selected destination location, the routing conveyor is returned to the object feed conveyor 48 to receive a new object. Routing conveyor units 38A, 38B are programmed to avoid each other, for example, by generally moving at different elevations when passing one another.


In particular, with reference to FIG. 8A, while routing conveyor unit 38B approaches the object feed conveyor 48 from an elevation below the object feed conveyor 48, routing conveyor unit 38B may be destined for or located at a container at relatively high elevation. Once the routing conveyor unit 38B receives the object 41 (as shown in FIG. 8B), the system will begin to move the object toward its destination container (e.g., as assigned by a WMS system). If the destination container is located at a higher elevation, the routing conveyor unit 38B will begin to rise and move away from the object feed conveyor 48, while also moving the routing conveyor unit 38A downward and toward the object feed conveyor 48 (as shown in FIG. 8C). When the routing conveyor unit 38B reaches the selected destination container, the routing conveyor unit 38A approaches the object feed conveyor from below (as shown in FIG. 8D). If the assigned destination container is relatively low in one or the other of the vertically-coupled stacked rows 44A, 44B, the returning routing conveyor unit will travel a relatively high path back to the object feed conveyor. Each routing conveyor unit 38A, 38B is coupled via vertical and horizontal rails to one of the two vertically stacked arrays of rows, but they avoid colliding by having the returning unit follow a vertically opposite path than a path to be taken by the other routing conveyor unit in bringing a new object to a selected destination bin. Each routing conveyor unit 38A, 38B may move an object into a destination bin located in either vertically-coupled stacked rows 44A, 44B (to either side of the routing conveyor unit 38A, 38B).


With reference to FIG. 9A, when a newly loaded routing conveyor unit (e.g., 38B) carrying an object 41 is assigned a selected destination container, the system determines whether the selected destination container is located at an upper elevation or a lower elevation (all locations are assigned to be one or the other). If the destination location is located at an upper elevation, the returning routing conveyor unit 38A moves at a lower elevation back to the object feed conveyor 48 (as shown in FIG. 9B). If, on the other hand, the destination location is located at a lower elevation, the returning routing conveyor unit 38A moves at an upper elevation back to the object feed conveyor 48 (as shown in FIG. 9C).


The system therefore provides objects to either of two adjacent vertically stacked rows of destination containers, wherein at least two routing conveyor units are used to move objects from a loading location (at conveyor 48) to any destination container in either of the vertically coupled stacked rows 44. The routing conveyor units are moved such that one returns to the loading location while the other is delivering an object, and the returning unit moves vertically opposite the delivering unit. For example, if the delivering unit is moving to a location in the upper half of either of the vertically coupled stacked rows 44, then the returning unit is moved in the lower half of the area between the vertically coupled stacked rows. Conversely if the delivering unit is moving to a location in the lower half of either of the vertically coupled stacked rows 44, then the returning unit is moved in the upper half of the area between the vertically coupled stacked rows. In this way, the routing conveyor units 38A, 38B avoid colliding. Each of the objects is therefore moved vertically and horizontally by a routing conveyor unit, and then moved in a third direction by the container conveyor wherein the third direction is generally orthogonal to the first and second directions. The container may later be removed from the open storage location also along the third direction when completed as discussed in more detail below.



FIG. 10A shows the routing conveyor unit 38B at a destination position with a selected object 41 on its object conveyor 37. If the selected destination container is within the vertically-coupled stacked row 44B, the conveyor 37 moves to urge the object into the destination container therein (as shown in FIG. 10B), and if the selected destination container is within the vertically-coupled stacked rows 44A, the conveyor 37 moves to urge the object into the destination container therein (as shown in FIG. 10C). Each routing conveyor unit 38A, 38B may thereby provide an object thereon to any destination container within either vertically-coupled stacked rows 44A, 44B. Destination containers 46 in the vertically-coupled stacked rows 44A, 44B of destination containers are thereby populated with objects from the input bins 12 via the processing station 18 and the routing conveyance system at a destination area 22.


In accordance with a further aspect of the invention, the routing conveyance system includes one or more routing conveyor unit(s) 51 including mutually orthogonally disposed sets of rollers that engage a grid track system 53, permitting the routing conveyor unit(s) 51 to access destination containers 59 as shown in FIG. 11. Additionally, the unit(s) 51 may further include an additional set of mutually orthogonally disposed sets of rollers 57 for engaging a grid track system on the opposing side, such that each unit 51 may be supported by inside walls of both sets of vertically-coupled stacked rows 44A, 44B of destination containers. Each of the horizontal rollers may be engaged separately from and alternate to the vertical rollers to permit the unit 51 to move about the routing conveyance system 20. Again, where more than one unit 51 is employed, the system may similarly provide avoidance routines to prevent the units from colliding. The movement of objects into destination containers at a first side of the destination containers, and having the completed destination containers removed as completed rows from an opposite second side, permits the object conveyance system to continue to operate while destination containers are being replenished. Further, the system may dynamically assign destination containers in a row such that each destination container in a row may have a similar expected frequency of container completeness factor or receive objects having a similar frequency of object arrival factor. For example, destination containers that are expected to be completed relatively quickly (those with a high expected frequency of container completeness factor or are assigned to receive objects having a high frequency of object arrival factor) may be assigned to spots on a common row, while those with a low expected frequency of container completeness factor or are assigned receive objects having a low frequency of object arrival factor, may be assigned spots on a different row. In this way, the efficiencies of removing one row of completed destination containers at a time may be well utilized. In accordance with further aspects, each row may include destination containers having other aspects in common, such as having all destination containers of a row be assigned to a common shipping destination.


When each destination container in a row of destination containers is full or otherwise finished being processed, the system may discharge the row as follows. With reference to FIG. 12, the system opens end gates 90 on the selected row, and aligns (opens half-way) end gates 92 in the rows below the selected row. The aligned gates 92 are designed to facilitate the destination containers moving down the un-load helical conveyor 52. FIG. 13 shows a back view of the gates 90, 92, and shows the completed containers from the row being moved downward along the helical conveyor 52. With further reference to FIG. 14, when the completed containers are all provided to the output conveyor 120, 122 (as determined, for example, by sensors 124), the gates 90 are closed to as to prepare the empty row to receive a new set of destination containers.


With reference to FIG. 15, a new set of empty destination containers is provided by first opening gates 110, and monitoring (e.g., by sensors 112) movement of empty containers along a container in-feed conveyor 34, 36 (e.g., 34 as shown) toward a load helical conveyor (e.g., 54 as shown). In-feed gate 130 is opened on the row to be loaded with the empty containers, and the remaining in-feed gates 132 remain closed as shown in FIG. 16. The empty containers are loaded onto the row (as shown in FIGS. 17 and 18), and registered as being complete with information from the sensors 140 as the containers come to rest against the closed end-stop gates 90. The rollers on the conveyor sections 34, 54 may be actively powered and coated with a friction providing surface such as urethane, polyurethane, vinyl, rubber, etc., and each conveyor 34, 54 may include a plurality of sensors for monitoring the location of each container on the conveyors 34, 54. Once loaded, the in-feed gate 130 associated with the row is closed. FIG. 19 shows a rear view of the system of FIG. 1 showing the un-load helical conveyor 56 and the load helical conveyor 58.


Those skilled in the art will appreciate that numerous variations and modifications may be made to the above disclosed embodiments without departing from the spirit and scope of the present invention.

Claims
  • 1. A storage, retrieval and processing system for processing objects, said storage, retrieval and processing system comprising: a plurality of bins including objects being provided on an input conveyance system;a programmable motion device that includes an end effector for grasping and moving any of the objects, said programmable motion device reaching any of the objects within at least one of the plurality of bins in an input area of the input conveyance system;a perception system for providing perception data regarding a selected object that is presented to the perception system by the programmable motion device; anda routing conveyance system for receiving the selected object from the programmable motion device and moving the selected object in each of horizontal and vertical directions toward a destination container responsive to the perception data,wherein the routing conveyance system comprises a plurality of routing conveyor units that move in each of horizontal and vertical directions between at least two vertically-coupled stacked rows of destination containers,each routing conveyor unit comprising an object conveyor mounted to a frame that is movably coupled to one of the at least two vertically-coupled stacked rows of destination containers, andthe routing conveyor units avoiding collision when moving between the at least two vertically coupled stacked rows of destination containers by moving along vertically opposite paths.
  • 2. The storage, retrieval and processing system as claimed in claim 1, wherein the at least two vertically-coupled stacked rows are coupled to at least one unloading helical conveyor.
  • 3. The storage, retrieval and processing system as claimed in claim 1, wherein each routing conveyor is movably coupled to one of the at least two vertically-coupled stacked rows of destination containers using a bi-directional movement system.
  • 4. The storage, retrieval and processing system as claimed in claim 3, wherein the bi-directional movement system includes horizontal rails and vertical rails, wherein the vertical rails move relative to the horizontal rails or the horizontal rails move relative to the vertical rails.
  • 5. The storage, retrieval and processing system as claimed in claim 4, wherein the bi-directional movement system includes mutually orthogonally disposed sets or rollers.
  • 6. The storage, retrieval and processing system as claimed in claim 1, wherein the storage, retrieval and processing system further includes a destination container removal system for removing completed destination containers.
  • 7. The storage, retrieval and processing system as claimed in claim 6, wherein the destination container removal system includes a container conveyance system for moving completed destination containers along a first row of a plurality of destination containers.
  • 8. The storage, retrieval and processing system as claimed in claim 7, wherein the container conveyance system further includes a row replenishment system for replenishing a row of destination containers with a row of empty containers.
  • 9. The storage, retrieval and processing system as claimed in claim 8, wherein the row replenishment system includes a source helical conveyor.
  • 10. A storage, retrieval and processing system for processing objects, said storage, retrieval and processing system comprising: a plurality of bins including objects being provided on an input conveyance system;a programmable motion device that includes an end effector for grasping and moving any of the objects, said programmable motion device reaching any of the objects within at least one of the plurality of bins in an input area of the input conveyance system;a routing conveyance system for receiving the selected object from the programmable motion device and moving a selected object from the input area in each of horizontal and vertical directions toward a destination container, wherein the routing conveyance system comprises a plurality of routing conveyor units that move in each of horizontal and vertical directions between two vertically-coupled stacked rows of destination containers; anda destination container removal system comprising at least one unloading helical conveyor for removing completed destination containers from the two vertically-coupled stacked rows of destination containers,wherein a first routing conveyor unit is movably coupled to one of the two vertically-coupled stacked rows of destination containers and a second routing conveyor unit is movably coupled to another of the two vertically-coupled stacked rows of destination containers, andthe first routing conveyor unit and the second routing conveyor unit move at different elevations when passing one another to avoid collision when moving between the two vertically coupled stacked rows of destination containers.
  • 11. The storage, retrieval and processing system as claimed in claim 10, wherein each routing conveyor is movably coupled to one of the at least two vertically-coupled stacked rows of destination containers using a bi-directional movement system.
  • 12. The storage, retrieval and processing system as claimed in claim 11, wherein the bi-directional movement system includes horizontal rails and vertical rails, wherein the vertical rails move relative to the horizontal rails or the horizontal rails move relative to the vertical rails.
  • 13. The storage, retrieval and processing system as claimed in claim 11, wherein the bi-directional movement system includes mutually orthogonally disposed sets of rollers.
  • 14. The storage, retrieval and processing system of claim 10, wherein the storage, retrieval and processing system further includes a row replenishment system for replenishing a row of destination containers with a row of empty containers.
  • 15. The storage, retrieval and processing system as claimed in claim 14, wherein the row replenishment system includes a source helical conveyor.
  • 16. A method of providing storage, retrieval and processing of objects, said method comprising: providing on a conveyance system a plurality of bins including objects;grasping and moving objects within at least one of the plurality of bins at an input area of the conveyance system using a programmable motion device that includes an end effector for grasping and moving any of the objects;providing perception data regarding a selected object that is presented to the perception system by the programmable motion device;routing the selected object in each of horizontal and vertical directions toward a destination container responsive to the perception data using a routing conveyance system, wherein the routing conveyance system comprises a plurality of routing conveyor units that move in each of horizontal and vertical directions between at least two vertically-coupled stacked rows of destination containers; andremoving a row of destination containers as a set from any of the at least two vertically-coupled stacked rows of destination containers,wherein each routing conveyor unit comprises an object conveyor mounted to a frame that is movably coupled to one of the at least two vertically-coupled stacked rows of destination containers,the routing conveyor units avoiding collision when moving between the at least two vertically coupled stacked rows of destination containers by moving along vertically opposite paths.
  • 17. The method as claimed in claim 16, wherein removing the row of destination containers as a set comprises removing a row of completed destination containers from any of the at least two vertically-coupled stacked rows of destination containers onto an unloading helical conveyor.
  • 18. The method of claim 16, wherein providing perception data includes dropping the selected object through a drop scanner.
  • 19. The method of claim 16, wherein the method further includes replenishing a row of destination containers with a row of empty containers.
  • 20. The method of claim 18, wherein replenishing the row of destination containers with a row of empty containers includes using a source helical conveyor.
PRIORITY

The present application claims priority to U.S. Provisional Patent Application No. 62/986,443 filed Mar. 6, 2020, the disclosure of which is hereby incorporated by reference in its entirety.

US Referenced Citations (135)
Number Name Date Kind
4542808 Lloyd, Jr. et al. Sep 1985 A
4622875 Emery et al. Nov 1986 A
4678390 Bonneton et al. Jul 1987 A
4722653 Williams et al. Feb 1988 A
4815582 Canziani Mar 1989 A
4846335 Hartlepp Jul 1989 A
4895242 Michel Jan 1990 A
5190162 Harlepp Mar 1993 A
5271703 Lindqvist et al. Dec 1993 A
5595263 Pignataro Jan 1997 A
5647473 Miller et al. Jul 1997 A
5794789 Payson et al. Aug 1998 A
5875434 Matsuoka et al. Feb 1999 A
6006946 Williams et al. Dec 1999 A
6076023 Sato Jun 2000 A
6189702 Bonnet Feb 2001 B1
6208908 Boyd et al. Mar 2001 B1
6246023 Kugle Jun 2001 B1
6377867 Bradley et al. Apr 2002 B1
6505093 Thatcher et al. Jan 2003 B1
6513641 Affaticati et al. Feb 2003 B1
6688459 Bonham et al. Feb 2004 B1
6705528 Good et al. Mar 2004 B2
6762382 Danelski Jul 2004 B1
7861844 Hayduchok et al. Jan 2011 B2
8718814 Clark et al. May 2014 B1
8776694 Rosenwinkel et al. Jul 2014 B2
8798784 Clark et al. Aug 2014 B1
8851272 Hill Oct 2014 B1
9020632 Naylor Apr 2015 B2
9272845 Honkanen et al. Mar 2016 B2
9364865 Kim Jun 2016 B2
9481518 Neiser Nov 2016 B2
9694977 Aprea et al. Jul 2017 B2
9937532 Wagner et al. Apr 2018 B2
9975148 Zhu et al. May 2018 B2
10007827 Wagner et al. Jun 2018 B2
10029865 McCalib, Jr. et al. Jul 2018 B1
10086998 Tilekar et al. Oct 2018 B1
10438034 Wagner et al. Oct 2019 B2
10518974 Lee et al. Dec 2019 B2
10577180 Mehta et al. Mar 2020 B1
10596696 Wagner et al. Mar 2020 B2
10632610 Wagner et al. Apr 2020 B2
10649445 Wagner et al. May 2020 B2
10730077 Wagner et al. Aug 2020 B2
10843333 Wagner et al. Nov 2020 B2
10894674 Wagner et al. Jan 2021 B2
10906740 Wagner et al. Feb 2021 B2
11020770 Tilekar et al. Jun 2021 B1
11338999 Hu May 2022 B2
11472633 Wagner et al. Oct 2022 B2
20020091801 Lewin et al. Jul 2002 A1
20020179400 Dersham Dec 2002 A1
20020179502 Cerutti et al. Dec 2002 A1
20050002762 Gambarelli et al. Jan 2005 A1
20060045672 Maynard et al. Mar 2006 A1
20080181753 Bastian et al. Jul 2008 A1
20090129902 Schafer May 2009 A1
20100036675 Schäfer Feb 2010 A1
20100096243 Balk Apr 2010 A1
20100300842 Bastian, II Dec 2010 A1
20100316469 Lert et al. Dec 2010 A1
20110056806 Johnson Mar 2011 A1
20110144798 Freudelsperger Jun 2011 A1
20110262253 Krizmanic et al. Oct 2011 A1
20120128454 Hayduchok et al. May 2012 A1
20120177465 Koholka Jul 2012 A1
20120328397 Yamashita Dec 2012 A1
20130051696 Garrett et al. Feb 2013 A1
20140031972 DeWitt et al. Jan 2014 A1
20140056672 Mathys et al. Feb 2014 A1
20140086714 Malik Mar 2014 A1
20140142746 Vegh et al. May 2014 A1
20140212257 Yamashita Jul 2014 A1
20140244026 Neiser Aug 2014 A1
20140277692 Buzan et al. Sep 2014 A1
20140277693 Naylor Sep 2014 A1
20140288696 Lert Sep 2014 A1
20150098775 Razumov Apr 2015 A1
20150294260 Napoli Oct 2015 A1
20160107848 Baker Apr 2016 A1
20160122135 Bastian, II May 2016 A1
20160221757 DeWitt et al. Aug 2016 A1
20160355337 Lert et al. Dec 2016 A1
20170015502 Engel et al. Jan 2017 A1
20170043953 Battles et al. Feb 2017 A1
20170057756 Dugat et al. Mar 2017 A1
20170136632 Wagner et al. May 2017 A1
20170267452 Goren et al. Sep 2017 A1
20170330135 Taylor et al. Nov 2017 A1
20170349385 Maroni et al. Dec 2017 A1
20180037410 DeWitt Feb 2018 A1
20180057264 Wicks et al. Mar 2018 A1
20180075402 Stadie et al. Mar 2018 A1
20180085788 Engel Mar 2018 A1
20180105363 Lisso Apr 2018 A1
20180208397 Schack et al. Jul 2018 A1
20180251302 Valinsky et al. Sep 2018 A1
20180265311 Wagner et al. Sep 2018 A1
20180273296 Wagner et al. Sep 2018 A1
20180273298 Wagner et al. Sep 2018 A1
20180282066 Wagner et al. Oct 2018 A1
20180290830 Valinsky et al. Oct 2018 A1
20180327198 Wagner Nov 2018 A1
20180354719 Hoffman Dec 2018 A1
20190218033 Muttathil et al. Jul 2019 A1
20190329979 Wicks et al. Oct 2019 A1
20200005005 Wagner et al. Jan 2020 A1
20200016746 Yap et al. Jan 2020 A1
20200039745 Khodl et al. Feb 2020 A1
20200152259 DeWitt et al. May 2020 A1
20200265380 Dubois et al. Aug 2020 A1
20200302390 Elazary et al. Sep 2020 A1
20200407178 Battles et al. Dec 2020 A1
20210039140 Geyer et al. Feb 2021 A1
20210039881 Zhu et al. Feb 2021 A1
20210039887 Zhu et al. Feb 2021 A1
20210047117 Stevens et al. Feb 2021 A1
20210047118 Stevens et al. Feb 2021 A1
20210276796 Long Sep 2021 A1
20210276798 Velagapudi et al. Sep 2021 A1
20210276799 Velagapudi et al. Sep 2021 A1
20220234825 Krishnamoorthy et al. Jul 2022 A1
20220284393 Al et al. Sep 2022 A1
20220356017 Romano et al. Nov 2022 A1
20230077893 Gebhardt et al. Mar 2023 A1
20230112778 O'Hern et al. Apr 2023 A1
20230119061 Halamka et al. Apr 2023 A1
20230137545 Austrheim May 2023 A1
20230150770 Sebastian May 2023 A1
20230219767 Demir et al. Jul 2023 A1
20230249914 Fosnight et al. Aug 2023 A1
20230271785 Gravelle et al. Aug 2023 A1
20230331475 Yamashita Oct 2023 A1
Foreign Referenced Citations (58)
Number Date Country
3043018 May 2018 CA
3057334 Sep 2018 CA
102001506 Apr 2011 CN
102264602 Nov 2011 CN
103332426 Oct 2013 CN
104169196 Nov 2014 CN
104859990 Aug 2015 CN
104925440 Sep 2015 CN
205257168 May 2016 CN
105858042 Aug 2016 CN
205820147 Dec 2016 CN
104495181 Feb 2017 CN
206456846 Sep 2017 CN
107635896 Jan 2018 CN
107720072 Feb 2018 CN
108146948 Jun 2018 CN
108700869 Oct 2018 CN
109081027 Dec 2018 CN
110062740 Jul 2019 CN
110325462 Oct 2019 CN
209506761 Oct 2019 CN
110431097 Nov 2019 CN
110461734 Nov 2019 CN
110462657 Nov 2019 CN
209720654 Dec 2019 CN
110662707 Jan 2020 CN
110691742 Jan 2020 CN
110740954 Jan 2020 CN
110803439 Feb 2020 CN
115210152 Oct 2022 CN
115243987 Oct 2022 CN
115243988 Oct 2022 CN
117255718 Dec 2023 CN
102004014378 Oct 2005 DE
102008046325 Mar 2010 DE
1151942 Nov 2001 EP
2818433 Dec 2014 EP
3354598 Aug 2018 EP
3572355 Nov 2019 EP
4114766 Jan 2023 EP
4114767 Jan 2023 EP
4114768 Jan 2023 EP
4114769 Jan 2023 EP
4334045 Mar 2024 EP
201300298 Jan 2013 TW
2007009136 Jan 2007 WO
2009089159 Jul 2009 WO
2010040809 Apr 2010 WO
2011012611 Feb 2011 WO
2014080041 Nov 2011 WO
2012106744 Aug 2012 WO
2016105201 Jun 2016 WO
2017123678 Jul 2017 WO
2018175466 Sep 2018 WO
2021026359 Feb 2021 WO
2021178819 Sep 2021 WO
2022236038 Nov 2022 WO
2023064465 Apr 2023 WO
Non-Patent Literature Citations (37)
Entry
International Search Report and Written Opinion of the International Searching Authority, the European Patent Office, issued in related International Application No. PCT/US2022/046561 dated Feb. 13, 2023, 13 pages.
Annex to Form PCT/ISA/206, Communication Relating to the Results of the Partial International Search issued by the European Patent Office, as the International Searching Authority, in related International Application No. PCT/US2022/028047 dated Sep. 22, 2022, 2 pages.
Communication pursuant to Rules 161(1) and 162 EPC issued by the European Patent Office in related European Patent Application No. 21714592.9 dated Oct. 13, 2022, 3 pages.
Communication pursuant to Rules 161(1) and 162 EPC issued by the European Patent Office in related European Patent Application No. 21714588.7 dated Oct. 13, 2022, 3 pages.
Communication pursuant to Rules 161(1) and 162 EPC issued by the European Patent Office in related European Patent Application No. 21714590.3 dated Oct. 13, 2022, 3 pages.
Communication pursuant to Rules 161(1) and 162 EPC issued by the European Patent Office in related European Patent Application No. 21715372.5 dated Oct. 13, 2022, 3 pages.
International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, and the International Search Report and Written Opinion of the International Searching Authority (the European Patent Office) issued in related International Application No. PCT/US2022/028047 dated Nov. 14, 2022, 20 pages.
Notice of First Office Action, along with its English translation, issued by the China National Intellectual Property Office in related Chinese Patent Application No. 202180018333.5 dated Mar. 31, 2023, 32 pages.
Notice of First Office Action, along with its English translation, issued by the China National Intellectual Property Office in related Chinese Patent Application No. 202180018436.1 dated Mar. 31, 2023, 17 pages.
Notice on the First Office Action, along with its English translation, issued by the China National Intellectual Property Administration, in related Chinese Patent Application No. 202180018364.0 dated Mar. 30, 2023, 23 pages.
Notice on the First Office Action, along with its English translation, issued by the China National 4 Intellectual Property Administration, in related Chinese Patent Application No. 202180018310.4 dated Mar. 30, 2023, 21 pages.
Annex to Form PCT/ISA/206, Communication Relating to the Results of the Partial International Search and Provisional Opinion Accompanying the Partial Search Result issued by the International Searching Authority, the European Patent Office, in related International Application No. PCT/US2021/021140 dated Jul. 6, 2021, 2 pages.
International Preliminary Report on Patentability issued by the International Bureau of WIPO in related International Application No. PCT/US2021/021118 dated Sep. 6, 2022, 9 pages.
International Preliminary Report on Patentability issued by the International Bureau of WIPO in related International Application No. PCT/US2021/021133 dated Sep. 6, 2022, 7 pages.
International Preliminary Report on Patentability issued by the International Bureau of WIPO in related International Application No. PCT/US2021/021140 dated Sep. 15, 2022, 10 pages.
International Preliminary Report on Patentability issued by the International Bureau of WIPO in related International Application No. PCT/US2021/021128 dated Sep. 6, 2022, 8 pages.
International Search Report and Written Opinion issued by the International Searching Authority (the European Patent Office) in related International Application No. PCT/US2021/021140 dated Sep. 3, 2021, 16 pages.
International Search Report and Written Opinion of the International Searching Authority issued by the European Patent Office in related International Application No. PCT/US2021/021133 dated Jun. 21, 2021, 11 pages.
International Search Report and Written Opinion of the International Searching Authority, the European Patent Office, issued in related International Application No. PCT/US2021/021118 dated Jul. 16, 2021, 12 pages.
International Search Report and Written Opinion issued by the International Searching Authority (the European Patent Office) in related International Application No. PCT/US2021/021128 dated Jun. 21, 2021, 12 pages.
Notice on the Second Office Action, along with its English translation, issued by the China National Intellectual Property Administration in related Chinese Patent Application No. 202180018310.4 dated Oct. 11, 2023, 24 pages.
Notice on the Second Office Action, along with its English translation, issued by the China National Intellectual Property Administration in related Chinese Patent Application No. 202180018333.5 dated Oct. 12, 2023, 35 pages.
Notice on the Second Office Action, along with its English translation, issued by the China National Intellectual Property Administration in related Chinese Patent Application No. 202180018364.0 dated Oct. 11, 2023, 19 pages.
International Preliminary Report on Patentability issued by the International Bureau of WIPO in related International application No. PCT/US2022/028047 dated Oct. 24, 2023, 14 pages.
Examiner's Report issued by the Innovation, Science and Economic Development Canada (Canadian Intellectual Property Office) in related Canadian Patent Application No. 3,174,544 dated Nov. 6, 2023, 4 pages.
Examiner's Report issued by the Innovation, Science and Economic Development Canada (Canadian Intellectual Property Office) in related Canadian Patent Application No. 3,174,546 dated Nov. 7, 2023, 4 pages.
Examiner's Report issued by the Innovation, Science and Economic Development Canada (Canadian Intellectual Property Office) in related Canadian Patent Application No. 3,174,543 dated Nov. 6, 2023, 4 pages.
Examiner's Report issued by the Innovation, Science and Economic Development Canada (Canadian Intellectual Property Office) in related Canadian Patent Application No. 3,174,552 dated Nov. 29, 2023, 6 pages.
Communication pursuant to Rules 161(1) and 162 EPC issued by the European Patent Office in related European Patent Application No. 22727547.6 dated Dec. 14, 2023, 3 pages.
International Preliminary Report on Patentability issued by the International Bureau of WIPO in related international application No. PCT/US2022/046561 on Apr. 16, 2024, 7 pages.
Non-Final Office Action issued by the United States Patent and Trademark Office in related U.S. Appl. No. 17/193,380 on Mar. 27, 2024, 40 pages.
Non-Final Office Action issued by the United States Patent and Trademark Office in related U.S. Appl. No. 17/193,384 on Apr. 5, 2024, 38 pages.
Non-Final Office Action issued by the United States Patent and Trademark Office in related U.S. Appl. No. 17/193,377 on Mar. 21, 2024, 44 pages.
Notice of Third Office Action, along with its English translation, issued by the China National Intellectual Property Administration in related Chinese Patent Application No. 202180018364.0 on Apr. 17, 2024, 24 pages.
Notice of Third Office Action, along with its English translation, issued by the China National Intellectual Property Administration in related Chinese Patent Application No. 202180018310.4 on Apr. 17, 22 pages.
Notice of Third Office Action, along with its English translation, issued by the China National Intellectual Property Administration in related Chinese Patent Application No. 202180018333.5 on Apr. 17, 31 pages.
Communication pursuant to Rules 161(1) and 162 EPC issued by the European Patent Office in related European Patent Application No. 22809552.7 on May 22, 2024, 3 pages.
Related Publications (1)
Number Date Country
20210276797 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
62986443 Mar 2020 US