The present invention is directed to integrated circuits. More particularly, the invention provides systems and methods for providing power to high-intensity-discharge lamps. Merely by way of example, the invention has been applied for igniting and driving high-intensity-discharge lamps. But it would be recognized that the invention has a much broader range of applicability.
High-Intensity-Discharge (HID) lamps often have high brightness, and provide excellent color rendering. In addition, HID lamps usually enhance visual comfort, and reduce eye fatigue. Because HID lamps do not use incandescent filaments, HID lamps often have a longer lifetime than incandescent lamps.
The boost PFC stage 104 outputs a signal 150 to the Buck stage 106. The full-bridge stage 108 receives a signal 152 from the Buck stage 106 for driving the HID lamp 102. The system 100 often has many disadvantages, such as complex circuits, high cost, large short-circuit power consumption, and inadequate protection.
Hence, it is highly desirable to improve techniques for driving (e.g., igniting and/or regulating) an HID lamp.
The present invention is directed to integrated circuits. More particularly, the invention provides systems and methods for providing power to high-intensity-discharge lamps. Merely by way of example, the invention has been applied for igniting and driving high-intensity-discharge lamps. But it would be recognized that the invention has a much broader range of applicability.
According to one embodiment, a system for igniting one or more high-intensity-discharge lamps includes an ignition controller configured to generate one or more signal pulses for a pulse signal during a first predetermined time period and to cause one or more voltage pulses to be applied to the one or more high-intensity-discharge lamps, the pulse signal changing between a first logic level and a second logic level during the first predetermined time period, each of the one or more signal pulses corresponding to a pulse period, the pulse period being no larger than the first predetermined time period. The ignition controller is further configured to, if the one or more high-intensity-discharge lamps are not successfully ignited after the first predetermined time period, stop generating any signal pulse for the pulse signal for a second predetermined time period, the second predetermined time period being equal to or larger than the pulse period.
According to another embodiment, a system for igniting one or more high-intensity-discharge lamps includes an ignition controller and a logic controller. The ignition controller is configured to generate one or more signal pulses for a pulse signal during a first predetermined time period and to cause one or more voltage pulses to be applied to the one or more high-intensity-discharge lamps, the pulse signal changing between a first logic level and a second logic level during the first predetermined time period, each of the one or more signal pulses corresponding to a pulse period, the pulse period being no larger than the first predetermined time period. The logic controller is configured to generate one or more direction pulses for a direction signal during the first predetermined time period to change a direction for a current associated with the one or more high-intensity-discharge lamps, the direction signal changing between a third logic level and a fourth logic level during the first predetermined time period. The direction signal changes from the third logic level to the fourth logic level at the same time as the pulse signal changes from the second logic level to the first logic level. The direction signal changes from the fourth logic level to the third logic level at the same time as the pulse signal changes from the second logic level to the first logic level.
According to yet another embodiment, a system for driving one or more high-intensity-discharge lamps includes a regulation component and a controller component. The regulation component is configured to receive an input signal indicating a power associated with the one or more high-intensity-discharge lamps and generate a first signal based on at least information associated with the input signal. The controller component is configured to receive the first signal and a second signal indicating a voltage associated with the one or more high-intensity-discharge lamps. The regulation component is further configured to generate an output signal based on at least information associated with the first signal and the second signal in order to adjust a current associated with the one or more high-intensity-discharge lamps.
According to yet another embodiment, a system for driving one or more high-intensity-discharge lamps includes a logic component and a controller component. The logic component is configured to output a direction signal to change a direction for a current associated with the one or more high-intensity-discharge lamps and to output a modulation signal associated with a plurality of on-time periods. The controller component is configured to receive at least the direction signal and generate an output signal to the logic component based on at least information associated with the direction signal. Further, if the direction signal changes from a first logic level to a second logic level at a first time, the logic component is further configured to change the modulation signal based on at least information associated with the output signal to adjust one or more on-time periods after the first time, the one or more on-time periods after the first time increasing in duration over time.
In one embodiment, a method for igniting one or more high-intensity-discharge lamps includes generating one or more signal pulses for a pulse signal during a first predetermined time period, the pulse signal changing between a first logic level and a second logic level during the first predetermined time period, each of the one or more signal pulses corresponding to a pulse period, the pulse period being no larger than the first predetermined time period. The method further includes processing information associated with the one or more signal pulses for the pulse signal, causing one or more voltage pulses to be applied to the one or more high-intensity-discharge lamps, and if the one or more high-intensity-discharge lamps are not successfully ignited after the first predetermined time period, stopping generating any signal pulse for the pulse signal for a second predetermined time period, the second predetermined time period being equal to or larger than the pulse period.
In another embodiment, a method for igniting an ignition one or more high-intensity-discharge lamps includes generating one or more signal pulses for a pulse signal during a first predetermined time period, the pulse signal changing between a first logic level and a second logic level during the first predetermined time period, each of the one or more signal pulses corresponding to a pulse period, the pulse period being no larger than the first predetermined time period. The method further includes causing one or more voltage pulses to be applied to the one or more high-intensity-discharge lamps, and generating one or more direction pulses for a direction signal during the first predetermined time period to change a direction for a current associated with the one or more high-intensity-discharge lamps, the direction signal changing between a third logic level and a fourth logic level during the first predetermined time period. Additionally, the method includes changing the pulse signal from the second logic level to the first logic level at the same time as the direction signal changes from the third logic level to the fourth logic level, and changing the pulse signal from the second logic level to the first logic level at the same time as the direction signal changes from the fourth logic level to the third logic level.
In yet another embodiment, a method for driving one or more high-intensity-discharge lamps includes receiving an input signal indicating a power associated with the one or more high-intensity-discharge lamps, processing information associated with the input signal, and generating a first signal based on at least information associated with the input signal. The method further includes receiving the first signal and a second signal indicating a voltage associated with the one or more high-intensity-discharge lamps, processing information associated with the first signal and the second signal, and generating an output signal based on at least information associated with the first signal and the second signal in order to adjust a current associated with the one or more high-intensity-discharge lamps.
In yet another embodiment, a method for driving one or more high-intensity-discharge lamps includes generating a direction signal to change a direction for a current associated with the one or more high-intensity-discharge lamps, generating a modulation signal associated with a plurality of on-time periods, and receiving at least the direction signal. In addition, the method includes processing information associated with the direction signal, generating an output signal based on at least information associated with the direction signal, and if the direction signal changes from a first logic level to a second logic level at a first time, changing the modulation signal based on at least information associated with the output signal to adjust one or more on-time periods after the first time, the one or more on-time periods after the first time increasing in duration over time.
Depending upon embodiment, one or more of these benefits may be achieved. These benefits and various additional objects, features and advantages of the present invention can be fully appreciated with reference to the detailed description and accompanying drawings that follow.
The present invention is directed to integrated circuits. More particularly, the invention provides systems and methods for providing power to high-intensity-discharge lamps. Merely by way of example, the invention has been applied for igniting and driving high-intensity-discharge lamps. But it would be recognized that the invention has a much broader range of applicability.
The system 200 includes a regulation driver 201, a boost PFC stage 206, a lamp-power-regulation component 216, an on-time control component 218, a switch 210, an inductor 212, a transformer 208, an inductive component 266, two transistors 250 and 252, a current sensing resistor 213, a logic control component 228, a soft-on-time-max control component 236, an ignition control component 222, a current detection component 226, an oscillator 234, a signal generator 230, a lamp-on detection component 224, a comparator 292, and capacitors 214, 270, 272, 274, 276, 278 and 280. The regulation driver 201 includes a controller 204, resistors 262, 264, a current-reversal control component 238, and a gate driver 241.
The waveform 302 represents an ignition pulse signal 220 generated by the ignition control component 222 as a function of time. The waveform 304 represents an ignition voltage 244 of the HID lamp 202 as a function of time. The waveform 306 represents a lamp-on signal 282 generated by the lamp-on detection component 224 as a function of time. In addition, the waveform 308 represents a current-reversal signal 246 generated by the current-reversal control component 238 as a function of time.
According to one embodiment, as shown in
According to another embodiment, as shown in
According to yet another embodiment, once successfully ignited, the lamp 202 becomes nearly short-circuited, and the lamp voltage 244 changes to a low magnitude (e.g., nearly 0 V). For example, the lamp-on detection component 224 receives a signal 268 that indicates the lamp voltage 244, and changes the lamp-on signal 282 from a logic low level to a logic high level (e.g., at t1 as shown by the waveform 306). In another example, in response, the ignition control component 222 changes the ignition pulse signal 220 to the logic low level and keeps the ignition pulse signal 220 at the logic low level (e.g., no ignition pulses being generated as shown by the waveform 302). Then, the ignition process is completed according to certain embodiments.
Because of the physical properties of the HID lamp 202, the current 298 that flows through the lamp 202 needs to change directions at a certain frequency (e.g., 100-400 Hz) in some embodiments. For example, the logic control component 228 receives a detection signal 293 from the current-detection component 226, a comparison signal 294 from the comparator 292, a control signal 297 from the on-time control component 218, an on-time-max signal 237 from the soft-on-time-max control component 236, and a signal 296 from the signal generator 230. In another example, the logic control component 228 outputs a signal 286 to the current-reversal control component 238 which generates a current-reversal signal 246. In yet another example, the logic control component 228 outputs a signal 284 to the gate driver 241 which generates a gate drive signal 248. In yet another example, the controller 204 receives the current-reversal signal 246 and the gate drive signal 248 and generates signals for driving the transistors 250 and 252. In yet another example, the transistors 250 and 252 operate alternately in response to signals 288 and 290 respectively. In yet another example, when the transistor 250 operates (e.g., being turned on or off), the transistor 252 is turned off and the current 298 flows in one direction (e.g., from the transformer 208 to the lamp 202). In yet another example, when the transistor 252 operates (e.g., being turned on or off), the transistor 250 is turned off and the current 298 changes its direction (e.g., flows from the lamp 202 to the transformer 208). In yet another example, the gate drive signal 248 affects an on-time period (e.g., Ton) and an off-time period (e.g., Toff) of the transistor 250 or the transistor 252. In yet another example, during the on-time period (e.g., Ton) of the transistor 250, the transistor 250 is on, and during the off-time period (e.g., Toff) of the transistor 250, the transistor 250 is off. In yet another example, during the on-time period (e.g., Ton) of the transistor 252, the transistor 252 is on, and during the off-time period (e.g., Toff) of the transistor 252, the transistor 252 is off.
In one embodiment, during the ignition time period (e.g., TIG), the current-reversal signal 246 changes between a logic high level and a logic low level (e.g., as shown by the waveform 308). For example, when the current-reversal signal 246 changes from the logic high level to the logic low level or from the logic low level to the logic high level, the controller 204 changes the signals 288 and 290 to drive the transistor 250 or the transistor 252. The ignition pulse signal 220 is synchronized with the current-reversal signal 246 to improve the success rate of the ignition in some embodiments. For example, an ignition pulse is generated for the ignition pulse signal 220 at the same time as the current-reversal signal 246 changes from the logic high level to the logic low level or from the logic low level to the logic high level (e.g., as shown by the waveforms 302 and 308). In another example, each pulse in the ignition pulse signal 220 corresponds to a change of logic levels of the current-reversal signal 246. In yet another example, during the cooling time period (e.g., TSP), the current-reversal signal 246 changes between the logic high level and the logic low level. In yet another example, during the cooling time period (e.g., TSP), the current-reversal signal 246 does not change between the logic high level and the logic low level. In yet another example, after the lamp 202 is successfully ignited (e.g., at t1), the current-reversal signal 246 continues to change between the logic high level and the logic low level (e.g., as shown by the waveform 308) in order to change the direction of the current 298.
As shown in
After the lamp 202 is successfully ignited, the current 298 that flows through the lamp 202 needs to change directions at a particular frequency (e.g., 100-400 Hz) in some embodiments. For example, the on-time control component 218 outputs the control signal 297 which is received by the logic control component 228. In another example, the logic control component 228 outputs a signal 496 to the regulation driver 201 which in response generates the signals 288 and 290 to drive the transistors 250 and 252, respectively. In yet another example, the signal 496 includes one or both of the signals 284 and 286. In yet another example, the transistors 250 and 252 operate alternately in response to the signals 288 and 290 respectively. In yet another example, the transistor 250 and the transistor 252 each have an on-time period (e.g., Ton) and an off-time period (e.g., Toff). In yet another example, during the on-time period of the transistor 250 or the transistor 252, the current 298 increases in magnitude.
Because the boost PFC stage 206 provides power for the HID lamp 202, the lamp power is kept at a certain level if the output power of the boost PFC stage 206 is regulated to be constant, according to certain embodiments. For example, the boost PFC stage 206 provides the output voltage 287 which is nearly constant, and hence the output current of the boost PFC stage 206 may indicate the output power of the boost PFC stage 206 and the input power of the lamp 202. In another example, the lamp-power-regulation component 216 receives a signal 211 (e.g., VPLA) that indicates the output current of the boost PFC stage 206 (e.g., a DC-bus current). For example, the signal 211 (e.g., VPLA) is determined according to the following equation:
VPLA=ILA×RS (Equation 1)
where RS represents the resistance of the current sensing resistor 213 and ILA represents a current 215 that flows through the current sensing resistor 213. In another example, an average value of the signal 211 is determined based on an average value of the current 215.
VPLA
where ILA
In one embodiment, the lamp power is determined according to the following equation:
Power—L=VPFC
where Power_L represents the lamp power of the lamp 202, VPFC
Power—L≈VPFC
In yet another example, the lamp power is determined according to the following equation:
In yet another example, the output voltage 287 of the boost PFC stage 206 is kept nearly constant. In yet another example, if the average value of the current 215 is regulated to be approximately a predetermined value, the average value of the signal 211 is kept at approximately a particular value. Thus, the lamp power is regulated to be almost constant at a predetermined level according to certain embodiments.
In another embodiment, after the lamp 202 is successfully ignited, the amplifier 403 receives a voltage signal 431 at an inverting terminal, and the chip-ground voltage 219 at a non-inverting terminal. For example, the voltage signal 431 is generated based on at least information associated with the signal 211 (e.g., VPLA), the chip ground voltage 219, and a reference signal 415. In another example, a difference between the signal 431 and the chip-ground voltage 219 is integrated using at least the amplifier 403 (e.g., as part of an error amplifier). In yet another example, the amplifier 403 outputs a signal 433 to the on-time control component 218.
In yet another embodiment, if the switch 427 is open (e.g., off), the capacitor 425 is charged in response to the signal 433. For example, the amplifier 417 receives a signal 435 at a non-inverting terminal and a reference signal 419 at an inverting terminal, and outputs the control signal 297 which affects the on-time period (e.g., Ton) of the transistor 250 or the transistor 252 in order to regulate the lamp current 298. In another example, the reference signal 419 is the same as or different from the reference signal 415 that is received by the lamp-power-regulation component 216. In yet another example, the signal 435 is related to a combination of a voltage generated from charging the capacitor 425 and the signal 268 (e.g., VL) which is associated with the inductive component 266. In yet another example, the signal 268 (e.g., VL) is related to a current flowing through the secondary winding 265 of the inductive component 266. In yet another example, the signal 268 (e.g., VL) is determined based on the following equation:
where VL represents the signal 268, n represents a turns ratio between the primary winding 267 and the secondary winding 265 of the inductive component 266, Vlamp represents the lamp voltage 244, and VPFC
In yet another embodiment, shortly after the lamp 202 is successfully ignited, the lamp voltage 244 has a very low magnitude (e.g., nearly zero), and the lamp power has not reached a threshold. For example, the duration of the on-time period (e.g., Ton) of the transistor 250 or the transistor 252 would be increased to a maximum value (e.g., Ton
where VL represents the signal 268, L represents an inductance associated with the inductive component 266, Ton represents the duration of the on-time period of the transistor 250 or the transistor 252, and Ipeak represents a peak value of the lamp current 298.
According to Equation 7, because the inductance associated with the inductive component 266 is fixed, the lamp current 298 is regulated by adjusting the signal 268, in some embodiments. For example, shortly after the lamp 202 is successfully ignited and the lamp power has not reached the threshold, the signal 433 has a low magnitude (e.g., close to the chip-ground voltage 219). In another example, the signal 435 is determined by the signal 268 (e.g., VL), and the control signal 297 is thus determined by the signal 268 (e.g., VL). Therefore, the signal 268 (e.g., VL) is used to regulate the lamp current 298 when the lamp power has not reached the threshold shortly after the lamp 202 is successfully ignited, according to certain embodiments.
In yet another embodiment, if the signal 435 is larger than the reference signal 419 in magnitude, then it indicates the lamp power has reached the threshold. Thus, the switch 427 is closed (e.g., on) and the duration of the on-time period of the transistor 250 or the transistor 252 is reduced according to certain embodiments. On the other hand, for example, if the signal 435 is smaller than the reference signal 419 in magnitude, then it indicates the lamp power has not reached the threshold. Thus, the switch 427 is open (e.g., off), and the duration of the on-time period (e.g., Ton) of the transistor 250 or the transistor 252 is increased according to some embodiments.
Referring back to
To ameliorate such a current overshoot and/or voltage spikes, a soft current reversal control is implemented in some embodiments. For example, shortly after the lamp 202 is successfully ignited, the current-reversal signal 246 is at the logic low level during a time period TA (e.g., between time t0 and time t2) as shown by the waveform 502. In another example, the transistor 252 is turned on and off in response to the signal 290 during the time period TA (e.g., as shown by the waveform 504). In yet another example, the duration of the on-time period of the transistor 252 in different switching cycles increases over time (e.g., Ton2 is longer than Ton1 as shown by the waveform 504) to increase the lamp current 298 in magnitude. In yet another example, during the time period TA, the transistor 250 is kept off.
In one embodiment, when the current-reversal signal 246 changes from the logic low level to the logic high level (e.g., at t2), the lamp current 298 changes direction and the lamp voltage 244 changes polarity. For example, during a time period TB (e.g., between the time t2 and time t3), the transistor 250 is turned on and off in response to the signal 288, and the transistor 252 is kept off. In another example, the duration of the on-time period of the transistor 250 is not limited during a first switching cycle after the current-reversal signal 246 changes from the logic low level to the logic high level (e.g., at t2) in order to achieve quick current reversal. That is, the on-time period Ton3 is increased up to the maximum value (e.g., Ton
According to one embodiment, in order to ameliorate the current overshoot and/or voltage spikes that occur shortly after the lamp 202 is successfully ignited, the maximum on-time period values for several switching cycles following the first switching cycle are reduced. For example, during each of several switching cycles following the switching cycle, the on-time period of the transistor 250 in the switching cycle reaches a maximum value for that particular switching cycle. However, because of the decrease of the maximum values, the on-time periods of the transistor 250 in the switching cycles following the first switching cycle (e.g., Ton4 and Ton5) are no longer than the on-time period of the first switching cycle (e.g., Ton3) according to certain embodiments. For example, the on-time periods of the transistor 250 in the switching cycles following the first switching cycle gradually increase over time (e.g., Ton5 is longer than Ton4 as shown by the waveform 506).
In yet another embodiment, when the current-reversal signal 246 is at the logic low level, the current 298 flows in one direction (e.g., flows from the lamp 202 to the transformer 208), and the transistor 252 operates (e.g., being turned on or off) while the transistor 250 is off. For example, when the current-reversal signal 246 is at the logic high level, the current 298 flows in another direction (e.g., from the transformer 208 to the lamp 202), and the transistor 250 operates (e.g., being turned on or off) while the transistor 252 is off. In another example, a delay (e.g., Td) is added between the time at which the transistor 252 is turned off in response to the signal 290 (e.g., at t1 as shown by the waveform 504) and the time at which the current-reversal signal 246 changes from the logic low level to the logic high level (e.g., at t2 as shown by the waveform 502). In yet another example, the delay (e.g., Td) is used to prevent a current flowing through both the transistors 250 and 252 when the current-reversal signal 246 changes from the logic low level to the logic high level.
As discussed above and further emphasized here,
The soft-on-time-max control component 236 adjusts the maximum value of the on-time period of the transistor 250 or the transistor 252 during a time period from the successful ignition of the lamp 202 to when the lamp power becomes stable according to certain embodiments. For example, the timer component 604 receives the signal 284 which determines switching periods of the transistors 250 and 252, and outputs a signal 610 to the on-time-max controller 606 which outputs the on-time-max signal 237 to the logic control component 228. In another example, the one-shot component 602 receives the signal 286 which is related to the current-reversal signal 246 and if the current 298 changes directions, outputs a pulse signal 608 to the timer component 604 which changes the signal 610. In yet another example, the on-time-max controller 606 in response changes the on-time-max signal 237 in order to adjust the maximum value of the on-time period of the transistor 250 or the transistor 252. The timer component 604 receives the signal 248 instead of the signal 284 in one embodiment. The one-shot component 602 receives the signal 246 instead of the signal 286 in another embodiment.
According to another embodiment, a system for igniting one or more high-intensity-discharge lamps includes an ignition controller configured to generate one or more signal pulses for a pulse signal during a first predetermined time period and to cause one or more voltage pulses to be applied to the one or more high-intensity-discharge lamps, the pulse signal changing between a first logic level and a second logic level during the first predetermined time period, each of the one or more signal pulses corresponding to a pulse period, the pulse period being no larger than the first predetermined time period. The ignition controller is further configured to, if the one or more high-intensity-discharge lamps are not successfully ignited after the first predetermined time period, stop generating any signal pulse for the pulse signal for a second predetermined time period, the second predetermined time period being equal to or larger than the pulse period. For example, the system is implemented according to at least
According to yet another embodiment, a system for igniting one or more high-intensity-discharge lamps includes an ignition controller and a logic controller. The ignition controller is configured to generate one or more signal pulses for a pulse signal during a first predetermined time period and to cause one or more voltage pulses to be applied to the one or more high-intensity-discharge lamps, the pulse signal changing between a first logic level and a second logic level during the first predetermined time period, each of the one or more signal pulses corresponding to a pulse period, the pulse period being no larger than the first predetermined time period. The logic controller is configured to generate one or more direction pulses for a direction signal during the first predetermined time period to change a direction for a current associated with the one or more high-intensity-discharge lamps, the direction signal changing between a third logic level and a fourth logic level during the first predetermined time period. The direction signal changes from the third logic level to the fourth logic level at the same time as the pulse signal changes from the second logic level to the first logic level. The direction signal changes from the fourth logic level to the third logic level at the same time as the pulse signal changes from the second logic level to the first logic level. For example, the system is implemented according to at least
According to yet another embodiment, a system for driving one or more high-intensity-discharge lamps includes a regulation component and a controller component. The regulation component is configured to receive an input signal indicating a power associated with the one or more high-intensity-discharge lamps and generate a first signal based on at least information associated with the input signal. The controller component is configured to receive the first signal and a second signal indicating a voltage associated with the one or more high-intensity-discharge lamps. The regulation component is further configured to generate an output signal based on at least information associated with the first signal and the second signal in order to adjust a current associated with the one or more high-intensity-discharge lamps. For example, the system is implemented according to at least
According to yet another embodiment, a system for driving one or more high-intensity-discharge lamps includes a logic component and a controller component. The logic component is configured to output a direction signal to change a direction for a current associated with the one or more high-intensity-discharge lamps and to output a modulation signal associated with a plurality of on-time periods. The controller component is configured to receive at least the direction signal and generate an output signal to the logic component based on at least information associated with the direction signal. Further, if the direction signal changes from a first logic level to a second logic level at a first time, the logic component is further configured to change the modulation signal based on at least information associated with the output signal to adjust one or more on-time periods after the first time, the one or more on-time periods after the first time increasing in duration over time. For example, the system is implemented according to at least
In one embodiment, a method for igniting one or more high-intensity-discharge lamps includes generating one or more signal pulses for a pulse signal during a first predetermined time period, the pulse signal changing between a first logic level and a second logic level during the first predetermined time period, each of the one or more signal pulses corresponding to a pulse period, the pulse period being no larger than the first predetermined time period. The method further includes processing information associated with the one or more signal pulses for the pulse signal, causing one or more voltage pulses to be applied to the one or more high-intensity-discharge lamps, and if the one or more high-intensity-discharge lamps are not successfully ignited after the first predetermined time period, stopping generating any signal pulse for the pulse signal for a second predetermined time period, the second predetermined time period being equal to or larger than the pulse period. For example, the method is implemented according to at least
In another embodiment, a method for igniting an ignition one or more high-intensity-discharge lamps includes generating one or more signal pulses for a pulse signal during a first predetermined time period, the pulse signal changing between a first logic level and a second logic level during the first predetermined time period, each of the one or more signal pulses corresponding to a pulse period, the pulse period being no larger than the first predetermined time period. The method further includes causing one or more voltage pulses to be applied to the one or more high-intensity-discharge lamps, and generating one or more direction pulses for a direction signal during the first predetermined time period to change a direction for a current associated with the one or more high-intensity-discharge lamps, the direction signal changing between a third logic level and a fourth logic level during the first predetermined time period. Additionally, the method includes changing the pulse signal from the second logic level to the first logic level at the same time as the direction signal changes from the third logic level to the fourth logic level, and changing the pulse signal from the second logic level to the first logic level at the same time as the direction signal changes from the fourth logic level to the third logic level. For example, the method is implemented according to at least
In yet another embodiment, a method for driving one or more high-intensity-discharge lamps includes receiving an input signal indicating a power associated with the one or more high-intensity-discharge lamps, processing information associated with the input signal, and generating a first signal based on at least information associated with the input signal. The method further includes receiving the first signal and a second signal indicating a voltage associated with the one or more high-intensity-discharge lamps, processing information associated with the first signal and the second signal, and generating an output signal based on at least information associated with the first signal and the second signal in order to adjust a current associated with the one or more high-intensity-discharge lamps. For example, the method is implemented according to at least
In yet another embodiment, a method for driving one or more high-intensity-discharge lamps includes generating a direction signal to change a direction for a current associated with the one or more high-intensity-discharge lamps, generating a modulation signal associated with a plurality of on-time periods, and receiving at least the direction signal. In addition, the method includes processing information associated with the direction signal, generating an output signal based on at least information associated with the direction signal, and if the direction signal changes from a first logic level to a second logic level at a first time, changing the modulation signal based on at least information associated with the output signal to adjust one or more on-time periods after the first time, the one or more on-time periods after the first time increasing in duration over time. For example, the system is implemented according to at least
For example, some or all components of various embodiments of the present invention each are, individually and/or in combination with at least another component, implemented using one or more software components, one or more hardware components, and/or one or more combinations of software and hardware components. In another example, some or all components of various embodiments of the present invention each are, individually and/or in combination with at least another component, implemented in one or more circuits, such as one or more analog circuits and/or one or more digital circuits. In yet another example, various embodiments and/or examples of the present invention can be combined.
Although specific embodiments of the present invention have been described, it will be understood by those of skill in the art that there are other embodiments that are equivalent to the described embodiments. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiments, but only by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2012 1 0166683 | May 2012 | CN | national |
This application is a divisional of U.S. patent application Ser. No. 13/527,481, filed Jun. 19, 2012, which claims priority to Chinese Patent Application No. 201210166683.9, filed May 17, 2012, both applications being incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5828177 | Toda et al. | Oct 1998 | A |
6008590 | Giannopoulos et al. | Dec 1999 | A |
6362575 | Chang et al. | Mar 2002 | B1 |
6958580 | Kamoi et al. | Oct 2005 | B2 |
20040212318 | Hamamoto et al. | Oct 2004 | A1 |
20040251852 | Kambara et al. | Dec 2004 | A1 |
20070080651 | Hu et al. | Apr 2007 | A1 |
20070138975 | Suganuma et al. | Jun 2007 | A1 |
20100156312 | Yufuku et al. | Jun 2010 | A1 |
20100253234 | Hu et al. | Oct 2010 | A1 |
20110187288 | Horikawa et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
1695404 | Nov 2005 | CN |
1954646 | Apr 2007 | CN |
101742791 | Jun 2010 | CN |
Entry |
---|
Chinese Patent Office, Office Action mailed Jan. 6, 2015, in Application No. 201210166683.9. |
United States Patent and Trademark Office, Office Action mailed Apr. 17, 2014 in U.S. Appl. No. 13/527,481. |
United States Patent and Trademark Office, Office Action mailed Dec. 2, 2014 in U.S. Appl. No. 13/527,481. |
United States Patent and Trademark Office, Notice of Allowance mailed Apr. 14, 2015 in U.S. Appl. No. 13/527,481. |
Number | Date | Country | |
---|---|---|---|
20140203731 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13527481 | Jun 2012 | US |
Child | 14220040 | US |