Not Applicable
Not Applicable
1. Field of the Invention
The present invention relates, in general, to sensor fusion and, more particularly, to sensor fusion in medical devices incorporating multiple monitors of multiple patient parameters.
2. Description of the Related Art
Spurious monitored data may cause systems that rely on them to take potentially hazardous action, to fail to take action in critical situations, or to alarm unnecessarily. For example, a sedation and analgesia system may be monitoring a patient's heart rate with an electrocardiograph (ECG) when the ECG becomes erratic. Based on the single monitor, the sedation and analgesia system may signal an alarm indicating, for example, a dangerously low heart rate, when the erratic ECG data is actually spurious. A high frequency of these false positive alarms may annoy clinicians and may result in less attention being given to truly life-threatening conditions.
Sensor fusion is herein defined as the analysis of monitored data and information from at least one sensor, given a first patient parameter, along with data from at least one other sensor, given a second patient parameter, in order to increase the sensitivity and specificity of parameters defining a patient state. A highly sensitive system ensures that system ensures that when a truly critical event occurs, that event is not missed. In a highly specific system, when an alarm does sound, the alarm is representative of a truly critical situation and is not based on spurious data. Providing a single monitor, such as an ECG, to monitor heart rate may result in a sedation and analgesia system having a low specificity where, for example, a clinician's motion in the surgical field can add disruptive electrical activity that the ECG may interpret as ventricular fibrillation. Without any means of verifying the data presented by the ECG, the monitor would alarm to alert the attending clinician of a potentially life threatening situation even though the data may be spurious.
Monitoring problems may also arise when monitors such as, for example, capnometers, provide inconclusive evidence regarding patient condition. Air brought into the lungs during inhalation typically carries a negligible amount of carbon dioxide due to the nominal concentration of the gas in the atmosphere. As atmospheric air passes into the lungs it will participate in gas transfer across alveolar membranes, where oxygen is taken into the blood and carbon dioxide is excreted for removal from the body. The eliminated carbon dioxide is commonly used by capnometers to ascertain a patient's respiratory rate, to determine whether they are experiencing sufficient gas exchange, and for other ventilatory reasons. When monitored with capnometry, a healthy patient breathing normally will produce a capnogram with a series of waveforms. The peak of each waveform is known as the end-tidal carbon dioxide (EtCO2) level. The peak at the end of each exhalation is generally most representative of the gas exchange occurring at the alveolar level where gases expired at the end of exhalation have been held for the longest portion of time in the deepest portions of the lungs where alveolar gas exchange takes place. Thus, end-tidal carbon dioxide is clinically interpreted as representing the patient's blood level of carbon dioxide, the trend of which reflects the patient's ventilatory state over time.
During inhalation, a nominal capnometry waveform can then generally be seen as a period of negligible carbon dioxide during inhalation (due to the low atmospheric gas concentration) followed by a second period of negligible carbon dioxide during the beginning of exhalation (where gas is expelled from upper regions of the respiratory tract that do not participate in gas exchange). Following inhalation and the beginning of exhalation, the waveform indicating carbon dioxide levels will rise sharply before beginning to plateau and finally peaking at the end of exhalation at the EtCO2. Following exhalation, the carbon dioxide levels will drop sharply to a negligible level as inhalation begins once again.
Though capnometers are commonly used and are useful in ascertaining the above-mentioned patient parameters, it may be difficult to differentiate, using only capnometry, between hyperventilation (often a non-critical issue) and hypoventilation (a highly critical and potentially life-threatening condition.) Hyperventilation is generally characterized by shallow, fast, short breaths, where capnometers will show a dramatic decrease in expired carbon dioxide as the patient's hyperventilatory state serves to deplete the blood stores of carbon dioxide.
Hypoventilation is generally characterized by depressed respiration, where hypoventilation may be caused by, for example, drug overdose and airway obstruction. Although the underlying patient physiology is entirely different in hypoventilation compared to hyperventilation, the condition can look surprisingly similar to a capnometer. Like hyperventilation, hypoventilation caused by partial or complete airway obstruction will often also register as a series of diminished capnography waveforms and a low level of end-tidal carbon dioxide. In the case of hypoventilation, the diminished capnography waveforms are caused by inadequate exhalation of air past the airway obstruction. Since the capnometry waveforms of both hyperventilation and hypoventilation patient states can appear very similar, when monitoring is done solely by capnometry, there is no choice in monitoring algorithms but to alarm in either patient state in order to avoid potentially missing a life-threatening hypoventilation event. However, such a system may also result in frequent false positive alarms based on the benign condition of hyperventilation.
Though patient parameters such as heart rate, capnometry, pulse oximetry, blood pressure, and others are generally monitored separately when determining patient condition, such parameters often have underlying physiological dependencies and correlations that allow for information about one to be gathered by monitoring another. For example, heart rate as monitored by an electrocardiograph (ECG) is physiologically related to pulse oximetry monitoring. The electrical activation of the ventricles illustrates the major waveform (QRS) detected on the ECG, in a one-to-one ratio with the plethysmogram, representing a pulsatile wave of blood motion under the pulse oximeter's monitored site. When the two waveforms are compared, the QRS portion of the ECG generally occurs a few milliseconds before a pulse in the plethysmogram waveform. If a severe disruption of cardiac output occurs, such as that associated with ventricular fibrillation, the plethysmogram will no longer correlate one-to-one with the ECG and will be irregular. Therefore, if an ECG reading indicates that a potentially life-threatening patient event is occurring, the plethysmogram will likely also indicate such a negative event. If the information from these two disparate monitors is processed together, the output can significantly increase the specificity of alarm algorithms. Furthermore, if the ECG becomes erratic due to, for example, clinician motion in the surgical field, the plethysmogram will likely remain regular, whereupon it may be inferred that the irregular ECG is spurious and not the result of a truly life-threatening patient event.
Often, there are patient parameters that are difficult to measure due to their invasiveness into the human body, yet may serve as beneficial indicators of a patient's condition. For example, systemic vascular resistance (SVR), if measured directly, may require the insertion of an uncomfortable monitoring device into the patient's blood vessels. Such an invasive procedure may preclude clinicians from using such a monitoring device, where potentially important information related to a patient's cardiovascular or hemodynamic condition will go unmonitored.
The present invention comprises a system that incorporates the natural relationships of patient parameters, such as heart rate and pulse oximetry, into a medical monitoring system in order to increase monitoring specificity by reducing false positive alarms resulting from spurious data and inconclusive data. The invention also comprises a system that incorporates the natural relationships of patient parameters in order to use the data obtained from those parameters to non-invasively monitor a patient parameter that typically precludes direct monitoring. This system includes a controller programmed to automatically control the monitoring and comparison of the parameters in order to increase system specificity and reduce clinician workload.
The present invention thus comprises a monitoring system that has increased specificity by detecting data artifacts from monitors, such as capnometers, while still retaining sensitivity in detecting the incidence of conditions such as hypoventilation. The system of the present invention incorporates the natural relationship between patient parameters in order to increase the specificity of the system and to decrease the probability of false positive alarm responses. The invention also comprises the monitoring of patient parameters that generally precludes direct monitoring, such as SVR, in a way that is both accurate and comfortable for the patient.
In the representative system of
By providing sensor fusion of the two monitors, where the monitored data of the first patient parameter is analyzed with the data from the second related patient parameter, sedation and analgesia system 22 increases its specificity by diminishing the effects of spurious data and qualifying inconclusive data that would have been possible if either patient parameter was monitored independently of the other. This sensor fusion may further increase system sensitivity, where critical situations missed by a first sensor may be detected by the sensors monitoring related patient parameters. Controller 14 may compare the electronic output from patient interface 17 with data stored in a memory device, where such data may represent sets of one or more safe and undesirable patient physiological condition parameter comparisons such as, for example, a safe and undesirable relationships between an ECG and plethysmogram as monitored by a pulse oximeter. These sets of data are collectively referred to as a safety data set. Based on the comparison, controller 14 may command a conservative application of drug delivery and/or other suitable effectors in accord with such parameters at safe, cost-effective optimized values.
Though ECGs and pulse oximeters monitor different patient parameters, electrical heart activity and blood oxygen saturation level, respectively, interrelations between the two may be used in analyzing patient data to increase the specificity of monitoring systems. When compared to one another, a clear one-to-one relationship is established between QRS waves and plethysmogram pulses. Furthermore, if a patient's heart experiences ventricular fibrillation, where ECG 30 will not display the standard QRS wave, plethysmogram 31 will generally show reduced or absent pulses. Likewise, if plethysmogram 31 detects reduced or absent pulses as a result of ventricular fibrillation, ECG 30 will show reduced or absent QRS waves. If abnormalities are presented by data from both monitors, it is highly likely that the data is indicative of a true patient condition and not the result of spurious data.
Based on the above illustrated connection, if ECG 30 monitoring a patient's heart condition becomes erratic, indicating possible ventricular fibrillation, but plethysmogram 31 indicates a normal level and number of pulses, it is highly likely that the ECG data is the result of, for example, clinician motion in the surgical field and not that of a potentially life-threatening situation. Similarly, if plethysmogram 31 displays an erratic waveform, potentially indicating ventricular fibrillation, but ECG 30 displays a healthy waveform, it is highly likely that the plethysmogram data is the result of, for example, poor placement of the pulse oximeter, and not that of a potentially life-threatening situation.
Still referring to
Step 102 comprises monitoring at least two interrelated patient parameters where monitored data may be processed by controller 14, displayed on user interface 12, or otherwise manipulated to ensure patient safety. For example, an ECG waveform used to monitor electrical heart activity and a plethysmogram may be displayed in real time or near-real time for an attending clinician to verify that both waveforms are healthy and that the two correspond. While monitoring the multiple parameters of the patient, method 100 may proceed to query 103.
Query 103 comprises ascertaining whether any of the monitors being used are transmitting data indicative of a negative patient episode such as, for example, ventricular fibrillation. This ascertainment may be done by comparing data from each of the monitors against a safety data set, where the safety data set may be programmed into, for example, sedation and analgesia system 22, and may be based on normally accepted safe and/or unsafe patient parameter ranges, may be programmed by the clinician, or both. For example, ECG thresholds for R wave 33 (
Still referring to query 103, if data presented by either of the monitors is not outside of the safety data set, method 100 may proceed to step 108. Step 108 comprises providing normal system functionality in the absence of alarms and/or other effectors designed to alert the attending clinician and recover a patient from a potentially harmful situation. If any of the monitors associated with step 101 indicate data outside of the safety data set, method 100 may proceed to query 104.
Query 104 comprises ascertaining whether the monitors of the associated parameters agree with one another, where each monitor transmits data indicative of a potentially harmful patient event. It may be determined that there is cause for alarm if, for example, ECG and pulse oximetry are being used, and the ECG and plethysmogram have a one-to-one relationship and are both registering below the required thresholds. In the case of ventricular defibrillation, both monitors will likely fail to meet such a threshold, indicating that the patient is probably experiencing a potentially life-threatening condition and that the data is not due to artifact. If the monitors agree that the monitored patient parameters indicate a potentially dangerous situation, method 100 may proceed to step 105.
Step 105 comprises initiating any suitable procedure to alert clinicians to the detected data indicating a negative patient event, as well as any automated or semi-automated procedure to place the patient into a safe state. For example, the effectors of step 105 include, but are not limited to, alarming, decreasing drug levels, delivering oxygen, changing drugs to, for example, an opioid antagonist, requesting the monitoring system, such as sedation and analgesia system 22, to gather more data, testing patient responsiveness, and/or delivering positive airway pressure. Such actions will likely have a high degree of specificity following query 104 due to the agreement between multiple monitors monitoring multiple patient parameters that are in agreement as to whether a potentially harmful patient condition exists. While step 105 is occurring, method 100 may continue to loop back to step 101, where patient monitoring may occur throughout the duration of step 105. Following a “no” response to query 103, method 100 may then return to the normal system operability of step 108.
Returning to query 104, the monitors of step 101 may be determined not to agree if, for example, one of such monitors falls below the threshold while the other does not. A lack of agreement may also arise if both monitors achieve the required thresholds, but do not maintain a one-to-one relationship with one another. Due to the relationship between the two monitored parameters, it is unlikely that, for example, the ECG will become erratic while the plethysmogram remains regular, and vice versa. In such events, it is therefore likely that the erratic monitor detecting a potentially critical patient event may have been subjected to motion disturbance, improper placement, or some other means of creating spurious data. To ensure patient safety yet retain high sensitivity during such situations, method 100 may proceed to step 106.
Step 106 comprises, in one embodiment of the present invention, continuing to gather data from the monitors associated with step 101 for a predetermined period of time, where no alarm or other effector action is taken. Often, discrepancies between the monitors will be cleared up as, for example, clinician motion in the surgical field stops. By providing a delay before moving to step 105 of, for example, 10 seconds, monitors that are erratic due to spurious data may regain normal function, thereby avoiding a false positive alarm due to such spurious data. Following step 106, method 100 may then proceed to query 107.
Query 107 comprises, in one embodiment of the present invention, reevaluating whether any of the monitors associated with step 101 indicate a negative patient condition. If, for example, the monitors still don't agree, but at least one remains outside of the safe data set, method 100 may transition to step 105. In one embodiment of the present invention, step 105 comprises a mild or warning alarm for those situations in which monitors don't agree, and a more emphatic or severe alarm for those circumstances in which both monitors register data outside of the safety data set. The present invention further comprises any suitable number of alarms employing any suitable effectors associated with step 105, where various effectors, such as mild or severe alarms, may be triggered based on various patient and monitor conditions. If, with respect to query 107, the data from the monitors no longer falls outside of the safety data set, method 100 may loop back to step 102. Method 100 may be terminated at any time by the attending clinician.
The method of
By comparing separate but related patient parameters, the present invention functions to increase monitoring system specificity by reducing the number of false positive alarms associated with data artifact and inconclusive data. Providing such sensor fusion may reduce the number of false alarm states, where attending clinicians are more likely to trust the system when an alarm does sound. The illustrated concepts are disclosed by way of example only, where any suitable patient parameters having a relationship may be analyzed together to, for example, reduce false positive alarms due to artifact and/or inconclusive data.
Query 203 comprises ascertaining whether the data from either of the monitors associated with step 201 is conclusive in and of itself. For example, a normal capnogram may not require the additional analysis of ventilatory pressure in order to ensure the accuracy or meaning of the capnogram. Further, a healthy capnogram is generally not indicative of inconclusive data. If such data is conclusive, method 200 may proceed to step 208, where step 208 comprises providing normal system functionality in the absence of alarms and/or other effectors designed to alert the attending clinician and/or recover a patient from a potentially harmful situation. From step 208, method 200 may continually loop back to step 202 in order to ensure continued patient safety.
Still referring to query 203, if data is inconclusive, as illustrated in
Query 205 comprises ascertaining whether the inconclusive data was able to be clarified by the incorporation of data from an interrelated patient parameter. For example, such a clarification would exist in the circumstances of
Step 207 comprises initiating any suitable procedure to alert clinicians to the detected data indicating inconclusive data or a negative patient event, as well as any automated or semi-automated procedures desirable in placing the patient into a safe state. For example, the effectors of step 207 include, but are not limited to, alarming, decreasing drug levels, delivering oxygen, changing drugs to, for example, an opioid antagonist, requesting the monitoring system, such as sedation and analgesia system 22, to gather more data, testing patient responsiveness, and/or delivering positive airway pressure. Further, the present invention comprises providing different alarm modes in accordance with step 207, where the effectors of step 207 may vary depending on the cause of the transition to step 207 such as, for example, where a more severe alarm may be initiated for a “yes” response to step 206 than for a “no” response to step 205. During step 207, method 200 may continually loop back to step 202 to determine whether the monitors indicate healthy data and/or whether the patient condition has recovered.
Returning to query 205, if the analysis of data from multiple monitors is able to clarify inconclusive data, method 200 may proceed to query 206. Query 206 comprises ascertaining whether the clarified data is indicative of a negative patient condition based on, for example, a safe data set programmed into controller 14 (
Method 200 may be integrated with method 100 (shown in
Method 300 further comprises step 303, where step 303 comprises using the data monitored from step 301 and step 302 to calculate a third patient parameter. For example, based on the formula for calculating blood flow:
P1 is representative of mean arterial pressure (MAP), P2 is representative of mean vascular pressure (MVP), R is representative of systemic vascular resistance (SVR), and F is representative of flow, where it is desirable to calculate R by non-invasive means. Where, in accordance with step 301, MAP may be inferred from a non-invasive blood pressure cuff and, in accordance with step 302, F may be inferred based on the plethysmogram of a pulse oximeter. In one embodiment of the present invention, P2 may be eliminated from the equation due to the negligible effect of MVP on the equation. Therefore, the following formula may be created for determining R (SVR):
Based on the illustrated equation, the present invention comprises computing the data gathered from a patient monitor, such as a non-invasive blood pressure cuff, indicative of MAP with data gathered from a second patient monitor, such as a plethysmogram derived from a pulse oximeter, in order to calculate the system vascular resistance of the patient. By combining the monitored patient parameters of step 301 and step 302, the present invention comprises calculating a third patient parameter, such as systemic vascular resistance, in accordance with step 303. The third parameter of step 303 may be computed by, for example, controller 14. By fusing the sensors associated with step 301 and step 302, the present invention is able to compute a third patient parameter that is difficult to measure in most medical procedures. Such parameters may have considerable value in evaluating patient condition as will be further discussed herein.
Step 304 comprises using the third parameter calculated in step 303 to monitor the patient, where the third parameter may be used as a patient parameter in accordance with method 100 (
Method 300 comprises computing any suitable parameter in accordance with step 303 based on the monitoring of any suitable parameters associated with steps 301 and 302. Method 300 further comprises any suitable number of patient monitors used to calculate the patient parameter associated with step 303, where such monitors may monitor any suitable number of patient parameters.
While exemplary embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous insubstantial variations, changes, and substitutions will now be apparent to those skilled in the art without departing from the scope of the invention disclosed herein by the Applicants. Accordingly, it is intended that the invention be limited only by the spirit and scope by the claims as they will be allowed.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 60/415,523, “Systems and Methods for Providing Sensor Fusion,” filed Oct. 3, 2002, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2185068 | Sholes et al. | Dec 1939 | A |
2225201 | Anderson | Dec 1940 | A |
2690178 | Bickford | Sep 1954 | A |
2888922 | Bellville | Jun 1959 | A |
1176476 | Jones | Mar 1961 | A |
3143111 | Green | Aug 1964 | A |
3651806 | Hirshberg | Mar 1972 | A |
3762398 | Schefke et al. | Oct 1973 | A |
3898983 | Elam | Aug 1975 | A |
4078562 | Friedman | Mar 1978 | A |
4080966 | McNally et al. | Mar 1978 | A |
4148312 | Bird | Apr 1979 | A |
4275727 | Keeri-Szanto | Jun 1981 | A |
4280494 | Cosgrove, Jr. et al. | Jul 1981 | A |
4308866 | Jelliffe et al. | Jan 1982 | A |
4392849 | Petre et al. | Jul 1983 | A |
4533346 | Cosgrove, Jr. et al. | Aug 1985 | A |
4550726 | McEwen | Nov 1985 | A |
4551133 | Zegers de Beyl et al. | Nov 1985 | A |
4610254 | Morgan et al. | Sep 1986 | A |
4634426 | Kamen | Jan 1987 | A |
4681121 | Kobal | Jul 1987 | A |
4688577 | Bro | Aug 1987 | A |
4718891 | Lipps | Jan 1988 | A |
4731051 | Fischell | Mar 1988 | A |
4756706 | Kerns et al. | Jul 1988 | A |
4871351 | Feingold | Oct 1989 | A |
4942544 | McIntosh et al. | Jul 1990 | A |
5046491 | Derrick | Sep 1991 | A |
5065315 | Garcia | Nov 1991 | A |
5088981 | Howson et al. | Feb 1992 | A |
5094235 | Westenskow et al. | Mar 1992 | A |
5183038 | Hoffman et al. | Feb 1993 | A |
5231981 | Schreiber et al. | Aug 1993 | A |
5258906 | Kroll et al. | Nov 1993 | A |
5262944 | Weisner et al. | Nov 1993 | A |
5286252 | Tuttle et al. | Feb 1994 | A |
5309908 | Friedman et al. | May 1994 | A |
5352195 | McEwen | Oct 1994 | A |
5432698 | Fujita | Jul 1995 | A |
5445621 | Poli et al. | Aug 1995 | A |
5507277 | Rubsamen et al. | Apr 1996 | A |
5522798 | Johnson et al. | Jun 1996 | A |
5555891 | Eisenfeld | Sep 1996 | A |
5558638 | Evers et al. | Sep 1996 | A |
5614887 | Buchbinder | Mar 1997 | A |
5630710 | Tune et al. | May 1997 | A |
5653739 | Maurer et al. | Aug 1997 | A |
5676133 | Hickle et al. | Oct 1997 | A |
5677290 | Fukunaga | Oct 1997 | A |
5713856 | Eggers et al. | Feb 1998 | A |
5724025 | Tavori | Mar 1998 | A |
5730140 | Fitch | Mar 1998 | A |
5733259 | Valcke et al. | Mar 1998 | A |
5795327 | Wilson | Aug 1998 | A |
5873369 | Laniado et al. | Feb 1999 | A |
5882338 | Gray | Mar 1999 | A |
5954050 | Christopher | Sep 1999 | A |
5957885 | Bollish et al. | Sep 1999 | A |
5980501 | Gray | Nov 1999 | A |
6062216 | Corn | May 2000 | A |
6099481 | Daniels et al. | Aug 2000 | A |
6152130 | Abrams et al. | Nov 2000 | A |
6158430 | Pfeiffer et al. | Dec 2000 | A |
6165151 | Weiner | Dec 2000 | A |
6165154 | Gray et al. | Dec 2000 | A |
6182667 | Hanks et al. | Feb 2001 | B1 |
6186977 | Andrews et al. | Feb 2001 | B1 |
6289238 | Besson et al. | Sep 2001 | B1 |
6302844 | Walker et al. | Oct 2001 | B1 |
6305372 | Servidio | Oct 2001 | B1 |
6305373 | Wallace et al. | Oct 2001 | B1 |
6579242 | Bui et al. | Jun 2003 | B2 |
6629933 | Lindner | Oct 2003 | B1 |
20030120164 | Nielsen et al. | Jun 2003 | A1 |
20030125662 | Bui | Jul 2003 | A1 |
20050182355 | Bui | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
04-309362 | Oct 1992 | JP |
9700092 | Jan 1997 | WO |
9707838 | Mar 1997 | WO |
9734648 | Sep 1997 | WO |
9810701 | Mar 1998 | WO |
9962403 | Dec 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040111014 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
60415523 | Oct 2002 | US |