The invention is generally related to methods for predicting viscosity of high concentration therapeutic antibodies.
Monoclonal antibodies are a rapidly growing class of biological therapeutics. Monoclonal antibodies have a wide range of indications including inflammatory diseases, cancer, and infectious diseases. The number of commercially available monoclonal antibodies is increasing at a rapid rate, with ˜70 monoclonal antibody products predicted to be on the market by 2020 (Ecker, D.M, et al., mAbs, 7:9-14 (2015)).
Currently, the most commonly utilized route of administration of therapeutic antibodies is intravenous (IV) infusion. However, subcutaneous injection is being increasingly used for patients with chronic diseases who require frequent dosing. Ready-to-use pre-filled syringes or auto-injector pens allow patients to self-administer therapeutic antibodies. Antibody formulations for subcutaneous injection are typically more concentrated than IV infusion since subcutaneous injection is one bolus administration (typically 1-1.5 mL) in contrast to a slow infusion of antibody over time in the case of IV infusion.
A common challenge encountered with the production of highly concentrated therapeutic monoclonal antibodies is high viscosity (Tomar, D.S., et al., mAbs, 8:216-228 (2016)). High viscosity can cause increased injection time and increased pain at the site of the injection. In addition to problems with administration, highly viscous antibodies also pose problems during bioprocessing of the antibody solution. High viscosity can increase processing time, destabilize the drug product, and increase manufacturing costs. Short range electrostatic and/or hydrophobic protein-protein interactions and electroviscous effects can influence concentration-dependent viscosity behavior of antibodies.
Characterizing the conformation and structural dynamics of an antibody can be a major analytical challenge. Many available structural techniques are either highly sophisticated, requiring very specialized skills and large amounts of sample (>μM quantities), or are of low resolution, making detailed structural analysis difficult. As a result, it is desirable to have techniques available that can probe protein structure with low sample requirements, good resolution, and relatively fast turnaround time.
Therefore, it is an object of the invention to provide methods for identifying regions of proteins that contribute to the viscosity of formulations of that protein.
It is another object of the invention to provide methods for modifying viscosity of concentrated protein solutions.
Systems and methods for determining regions of proteins that contribute to the viscosity of formulations of those proteins are provided. Methods for modifying the viscosity of concentrated protein formulations are also provided.
Embodiments provide methods for identifying regions in a protein that contribute to the viscosity of the protein by microdialysing samples of the protein in a microdialysis cartridge against a buffer containing deuterium for at least two different time periods. The microdialysis is subsequently quenched. The quenched samples are then analyzed using an hydrogen/deuterium exchange mass spectrometry system to determine regions of the protein in the sample that have reduced levels of deuterium relative to other regions of the protein. The regions of the protein that have reduced levels of deuterium contribute to the viscosity of the protein.
In certain embodiments, the samples of protein have a concentration of between 10 mg/mL to 200 mg/mL of the protein.
In some embodiments, the samples of protein are microdialysed in a buffer having a pH between 5.0 and 7.5. A preferred buffer for the samples of protein is 10 mM Histidine at pH 6.0. An exemplary deuterium containing buffer includes deuterium in 10 mM Histidine at pH 6.0. Typically, the microdialysis is performed at 2 to 6° C., preferably at 4° C. In some embodiments the microdialysis is performed at 20 to 25° C. Different samples can be dialysed for different lengths of time, for example one sample can be dialysed for 4 hours and another sample can be microdialysed for 24 hours. In some embodiments, the samples are dialysed for 30 min., 4 hours, 24 hours or overnight, i.e., 26 hours.
In certain embodiments, the quenching step is typically performed at −2 to 2° C. for 1 to 5 minutes.
In some embodiments, the method includes the step of digesting the protein into peptides before mass spectrometry analysis.
Other embodiments provide methods of modifying the viscosity of a protein drug, by identifying regions of the protein drug that contribute to the viscosity of the protein drug according to the disclosed methods and modifying the regions of the protein drug that are identified as contributing to the viscosity of the protein drug to modify the viscosity of the protein drug. The regions identified as contributing to the viscosity of the drug can be modified by substituting one or more amino acids in the at least one region to reduce or increase the viscosity as desired.
Other embodiments provide methods for identifying regions in proteins that contribute to self-association of proteins, comprising: microdialysing samples of protein of interest in a microdialysis cartridge against a buffer comprising deuterium for at least two different time periods; subsequently quenching the microdialysis of the samples; and analyzing the quenched samples in an hydrogen/deuterium exchange mass spectrometry system to determine surface charge distributions and hydrophobicity in regions of the protein in the sample that exhibit reduced levels of deuterium relative to other regions of the protein, wherein regions of the protein that exhibit reduced levels of deuterium contribute to self-association of the proteins. The proteins can be monoclonal antibodies, including but not limited to the antibodies described herein. The proteins also can be Fc-fusion proteins, including but not limited to the Fc-fusion proteins described herein.
The protein or protein drug can be an antibody, a fusion protein, a recombinant protein, or a combination thereof. In some embodiments, the protein drug is a concentrated monoclonal antibody.
Conditions, concentrations, timing and steps can be selected by the person skilled in the art based upon the description contained herein.
The use of the terms “a,” “an,” “the,” and similar referents in the context of describing the presently claimed invention (especially in the context of the claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.
Use of the term “about” is intended to describe values either above or below the stated value in a range of approx. +/−10%; in other embodiments the values may range in value either above or below the stated value in a range of approx. +/−5%; in other embodiments the values may range in value either above or below the stated value in a range of approx. +/−2%; in other embodiments the values may range in value either above or below the stated value in a range of approx. +/−1%. The preceding ranges are intended to be made clear by context, and no further limitation is implied. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
As used herein, “protein” refers to a molecule comprising two or more amino acid residues joined to each other by a peptide bond. Protein includes polypeptides and peptides and may also include modifications such as glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, alkylation, hydroxylation and ADP-ribosylation. Proteins can be of scientific or commercial interest, including protein-based drugs, and proteins include, among other things, enzymes, ligands, receptors, antibodies and chimeric or fusion proteins. Proteins are produced by various types of recombinant cells using well-known cell culture methods, and are generally introduced into the cell by transfection of genetically engineering nucleotide vectors (e.g., such as a sequence encoding a chimeric protein, or a codon-optimized sequence, an intronless sequence, etc.), where the vectors may reside as an episome or be intergrated into the genome of the cell.
“Antibody” refers to an immunoglobulin molecule consisting of four polypeptide chains, two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Each heavy chain has a heavy chain variable region (HCVR or VH) and a heavy chain constant region. The heavy chain constant region contains three domains, CH1, CH2 and CH3. Each light chain has a light chain variable region and a light chain constant region. The light chain constant region consists of one domain (CL). The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The term “antibody” includes reference to both glycosylated and non-glycosylated immunoglobulins of any isotype or subclass. The term “antibody” includes antibody molecules prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from a host cell transfected to express the antibody. The term antibody also includes bispecific antibody, which includes a heterotetrameric immunoglobulin that can bind to more than one different epitope. Bispecific antibodies are generally described in US Patent Application Publication No. 2010/0331527.
A “CDR” or complementarity determining region is a region of hypervariability interspersed within regions that are more conserved, termed “framework regions” (FR). The FRs may be identical to the human germline sequences, or may be naturally or artificially modified.
As used herein, “viscosity” refers to the rate of transfer of momentum of liquid. It is a quantity expressing the magnitude of internal friction, as measured by the force per unit area resisting a flow in which parallel layers unit distance apart has unit speed relative to one another. In liquids, viscosity refers to the “thickness” of a liquid.
The term “HDX-MS” refers to hydrogen/deuterium exchange mass spectrometry.
As used herein, “dialysis” is a separation technique that facilitates the removal of small, unwanted compounds from macromolecules in solution by selective and passive diffusion through a semi-permeable membrane. A sample and a buffer solution (called the dialysate, usually 200 to 500 times the volume of the sample) are placed on opposite sides of the membrane. Sample molecules that are larger than the membrane-pores are retained on the sample side of the membrane, but small molecules and buffer salts pass freely through the membrane, reducing the concentration of those molecules in the sample. Once the liquid-to-liquid interface (sample on one side of the membrane and dialysate on the other) is initiated, all molecules will try to diffuse in either direction across the membrane to reach equilibrium. Dialysis (diffusion) will stop when equilibrium is achieved. Dialysis systems are also used for buffer exchange.
The term “microdialysis” refers to the dialysis of samples having a volume of less than one milliliter.
“D2O ” is an abbreviation for deuterated water. It is also known as heavy water or deuterium oxide. D2O contains high amounts of the hydrogen isotope deuterium instead of the common hydrogen isotope that makes up most of the hydrogen in normal water. Deuterium is an isotope of hydrogen that is twice as heavy due to an added neutron.
The development of highly concentrated therapeutic monoclonal antibodies is paramount for subcutaneous delivery of monoclonal antibody therapeutics. However, high viscosity is a concern in the production of concentrated monoclonal antibody therapeutics. There is a need to develop computational and experimental tools to rapidly and efficiently determine the concentration-dependent viscosity behavior of candidate therapeutics early in the development process.
During the course of development, a therapeutic monoclonal antibody can exhibit unusually high viscosity, for example at concentrations >100 mg/mL when compared to other similar monoclonal antibodies. This may be due to the characteristic short range electrostatic and/or hydrophobic protein-protein interactions of the monoclonal antibody under high concentrations. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool to investigate protein conformation, dynamics, and interactions. However, the conventional dilution labeling HDX-MS analysis has a limitation on analyzing unusual behaviors that only occur at high protein concentrations. In order to probe protein-protein interactions governing high viscosity of monoclonal antibodies at a high protein concentration with HDX-MS, a passive, microdialysis based HDX-MS method to achieve HDX labeling without D2O buffer dilution was developed, which allows for the profiling of characteristic molecular interactions at different protein concentrations. The use of a microdialysis plate significantly reduced the consumption of samples and D2O compared to the traditional dialysis devices. This method was applied to investigate protein-protein interactions at a high concentration of monoclonal antibodies which have very high viscosity.
Proteins with high viscosity behavior can be optimized to reduce or eliminate the high viscosity behavior. Methods of optimizing protein drugs or antibodies include but are not limited to optimizing the amino acid sequence to reduce viscosity, altering the pH or salt content of the formulation, or adding an excipient.
In one embodiment, multiple therapeutic protein or antibody formulations can be tested to determine the most promising candidate to move forward in production. High and low concentration samples of each protein or antibody are produced. In one embodiment, a high protein or antibody concentration is >50 mg/mL. The high concentration can be 100 mg/mL, 110 mg/mL, 120 mg/mL, 130 mg/mL, 140 mg/mL, 150 mg/mL, 160 mg/mL, 170 mg/mL, 180 mg/mL, 190 mg/mL, 200 mg/mL, or >200 mg/mL. In one embodiment, a low antibody concentration is <15 mg/mL. The low concentration can be 15 mg/mL, 10 mg/mL, 9 mg/mL, 8 mg/mL, 7 mg/mL, 6 mg/mL, 5 mg/mL, 4mg/mL, 3 mg/mL, 2 mg/mL, 1 mg/mL, 0.5 mg/mL, or <0.5 mg/mL.
More details in the steps of the disclosed methods are provided below.
Hydrogen/deuterium exchange is a phenomenon in which hydrogen atoms at labile positions in proteins spontaneously change places with hydrogen atoms in the surrounding solvent which contains deuterium ions (Houde, D. and Engel, J. R., Methods Mol Biol, 988:269-289 (2013)). HDX takes advantage of the three types of hydrogens in proteins: those in carbon-hydrogen bonds, those in side-chain groups, and those in amide functional groups (also called backbone hydrogens). The exchange rates of hydrogens in carbon-hydrogen bonds are too slow to observe, and those of side-chain hydrogens (e.g., OH, COOH) are so fast that they back-exchange rapidly when the reaction is quenched in H2O -based solution, and the exchange is not registered. Only the backbone hydrogens are useful for reporting protein structure and dynamics because their exchange rates are measurable and reflect hydrogen bonding and solvent accessibility. Amide hydrogens play a key role in the formation of secondary and tertiary structure elements. Measurements of their exchange rates can be interpreted in terms of the conformational dynamics of individual higher-order structural elements as well as overall protein dynamics and stability.
Exchange rates reflect on the conformational mobility, hydrogen bonding strength, and solvent accessibility in protein structure. Information about protein conformation and, most importantly, differences in protein conformation between two or more forms of the same protein can be extracted by monitoring the exchange reaction. The exchange rate is temperature dependent, decreasing by approximately a factor of ten as the temperature is reduced from 25° C. to 0° C. Consequently, under pH 2-3 and at 0° C. (commonly referred to as “quench conditions”) the half-life for amide hydrogen isotopic exchange in an unstructured polypeptide is 30-90 min, depending on the solvent shielding effect caused by the side chains. Hydrogen has a mass of 1.008 Da and deuterium (the second isotope of hydrogen) has a mass of 2.014 Da, hydrogen exchange can be followed by measuring the mass of a protein with a mass spectrometer.
In one embodiment, hydrogen/deuterium exchange rate is used to determine viscosity behavior of protein or antibody therapeutics.
Classical continuous HDX labeling via dilution is not applicable in the analysis of highly concentrated protein solutions. One embodiment herein provides an alternative method of HDX labeling for the use with high concentration protein solutions. HDX labeling in a microdialysis plate facilitates the analysis of highly concentrated protein solutions. In addition, the use of a microdialysis plate reduces the consumption of samples and D2O compared to traditional dialysis devices (Houde, D., et al., J Am Soc Mass Spectrom, 27(4):669-76 (2016)). The microdialysis plate can be a commercially available microdialysis plate, for example Pierce™ 96-well Microdialysis Plate.
In one embodiment, microdialysis HDX exchange is used to analyze highly concentrated protein solutions. The samples are loaded into the microdialysis cartridge of the microdialysis plate. D2O buffer is added to a deep-well plate or other suitable vessel. The microdialysis cartridges containing the protein samples are added to the buffer and allowed to incubate for at least 4 hours. The samples can incubate for 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or more than 24 hours. The dialysis system allows for passive diffusion of the buffer into the cartridge containing the sample so as to not dilute out the sample as is common in traditional continuous HDX labeling wherein large quantities of buffer are required. During the incubation step, deuterium in the D2O buffer enters into the cartridge containing the sample and is exchanged with hydrogens in the backbone amides of the protein samples. After the incubation step, samples are collected from the microdialysis cartridge.
Once the dialyzed samples are removed from the microdialysis cartridge, the HDX reaction can be terminated by quenching the samples. In one embodiment, quenching is achieved by adding quench buffer to the samples. The quenching buffer can contain 6M GlnHCl and 0.6M TCEP in H2O, pH 2.5. In one embodiment, the quenching buffer contains 8 M Urea, 0.6M TCEP in H20, pH 2.5. In another embodiment, the pH of the final quenched solution is 2.5.
In one embodiment, decreasing the reaction temperature can also quench the HDX reaction. The reaction can be carried out at 0° C. The exchange rate decreases by a factor of ten as the temperature is reduced from 25° C. to 0° C. In one embodiment, the quenching reaction is carried out at or below 0° C.
After quenching, the samples can be diluted for downstream mass spec analysis. Samples can be diluted in 0.1% formic acid (FA) in H2O or any other suitable diluent for use in mass spectrometry. The samples are then processed by a mass spectrometer.
Mass spectrometry is used for determining the mass shifts induced by the exchange of hydrogen by deuterium (or vice versa) over time. Hydrogen has a mass of 1.008 Da and deuterium has a mass of 2.014 Da, therefore hydrogen exchange can be followed by measuring the mass of a protein with a mass spectrometer. Proteins or antibodies that have incorporated deuterium will have an increased mass compared to the native protein or antibody that has not been incubated in D2O. Generally, the level of exchanged hydrogen reflects the flexibility, solvent accessibility, and hydrogen bonding interactions in protein structures.
In some embodiments on-line digestion is employed to cleave larger proteins or antibodies into smaller fragments or peptides. Commonly used enzymes for on-line digestion include but are not limited to pepsin, trypsin, trypsin/Lys-C, rLys-C, Lys-C, and Asp-N.
In one embodiment, the digested proteins or antibodies are subjected to mass spectrometry analysis. Methods of performing mass spectrometry are known in the art. See for example (Aeberssold, M., and Mann, M., Nature, 422:198-207 (2003)) Commonly utilized types of mass spectrometry include but are not limited to tandem mass spectrometry (MS/MS), electrospray ionization mass spectrometry, liquid chromatography-mass spectrometry (LC-MS), and Matrix-assisted laser desorption /ionization (MALDI).
One embodiment provides a method of modifying the viscosity of a protein drug, by identifying regions of the protein drug that contribute to the viscosity of the protein drug according to the disclosed methods and modifying the regions of the protein drug that are identified as contributing to the viscosity of the protein drug to modify the viscosity of the protein drug. The regions identified as contributing to the viscosity of the drug can be modified by substituting one or more amino acids in the at least one region to reduce or increase the viscosity as desired.
For example, the light chain, heavy chain, or complementarity determining regions of an antibody can be modified to reduce the viscosity of concentrated formulations of the antibody. An exemplary concentrated formulation has a concentration of antibody that is greater than 50 mg/mL, preferably 100 mg/mL or greater.
Other modifications of the protein or antibody drug include chemical modifications to amino acids in the region of the protein or antibody determined to contribute to the viscosity of the protein or antibody drug.
In one embodiment the protein, antibody, or drug product is or contains one or more proteins of interest suitable for expression in prokaryotic or eukaryotic cells. For example, the protein of interest includes, but is not limited to, an antibody or antigen-binding fragment thereof, a chimeric antibody or antigen-binding fragment thereof, an ScFv or fragment thereof, an Fc-fusion protein or fragment thereof, a growth factor or a fragment thereof, a cytokine or a fragment thereof, or an extracellular domain of a cell surface receptor or a fragment thereof. Proteins of interest may be simple polypeptides consisting of a single subunit, or complex multisubunit proteins comprising two or more subunits. The protein of interest may be a biopharmaceutical product, food additive or preservative, or any protein product subject to purification and quality standards.
In some embodiments, the protein of interest is an antibody, a human antibody, a humanized antibody, a chimeric antibody, a monoclonal antibody, a multispecific antibody, a bispecific antibody, an antigen binding antibody fragment, a single chain antibody, a diabody, triabody or tetrabody, a dual-specific, tetravalent immunoglobulin G-like molecule, termed dual variable domain immunoglobulin (DVD-IG), an IgD antibody, an IgE antibody, an IgM antibody, an IgG antibody, an IgG1 antibody, an IgG2 antibody, an IgG3 antibody, or an IgG4 antibody. In one embodiment, the antibody is an IgG1 antibody. In one embodiment, the antibody is an IgG2 antibody. In one embodiment, the antibody is an IgG4 antibody. In another embodiment, the antibody comprises a chimeric hinge. In still other embodiments, the antibody comprises a chimeric Fc. In one embodiment, the antibody is a chimeric IgG2/IgG4 antibody. In one embodiment, the antibody is a chimeric IgG2/IgG1 antibody. In one embodiment, the antibody is a chimeric IgG2/IgG1/IgG4 antibody.
In some embodiments, the antibody is selected from the group consisting of an anti-Programmed Cell Death 1 antibody (e.g. an anti-PD1 antibody as described in U.S. Pat. Appln. Pub. No. US2015/0203579A1), an anti-Programmed Cell Death Ligand-1 (e.g., an anti-PD-L1 antibody as described in in U.S. Pat. Appln. Pub. No. US2015/0203580A1), an anti-Dll4 antibody, an anti-Angiopoetin-2 antibody (e.g., an anti-ANG2 antibody as described in U.S. Pat. No. 9,402,898), an anti-Angiopoetin-Like 3 antibody (e.g., an anti-AngPtl3 antibody as described in U.S. Pat. No. 9,018,356), an anti-platelet derived growth factor receptor antibody (e.g., an anti-PDGFR antibody as described in U.S. Pat. No. 9,265,827), an anti-Erb3 antibody, an anti-Prolactin Receptor antibody (e.g., anti-PRLR antibody as described in U.S. Pat. No. 9,302,015), an anti-Complement 5 antibody (e.g., an anti-C5 antibody as described in U.S. Pat. Appln. Pub. No US2015/0313194A1), an anti-TNF antibody, an anti-epidermal growth factor receptor antibody (e.g., an anti-EGFR antibody as described in U.S. Pat. No. 9,132,192 or an anti-EGFRvIII antibody as described in U.S. Pat. Appln. Pub. No. US2015/0259423A1), an anti-Proprotein Convertase Subtilisin Kexin-9 antibody (e.g., an anti-PCSK9 antibody as described in U.S. Pat. No. 8,062,640 or U.S. Pat. No. 9,540,449), an Anti-Growth and Differentiation Factor-8 antibody (e.g. an anti-GDF8 antibody, also known as anti-myostatin antibody, as described in U.S. Pat Nos. 8,871,209 or 9,260,515), an anti-Glucagon Receptor (e.g. anti-GCGR antibody as described in U.S. Pat. Appln. Pub. Nos. US2015/0337045A1 or US2016/0075778A1), an anti-VEGF antibody, an anti-IL1R antibody, an interleukin 4 receptor antibody (e.g., an anti-IL4R antibody as described in U.S. Pat. Appln. Pub. No. US2014/0271681A1 or U.S. Pat Nos. 8,735,095 or 8,945,559), an anti-interleukin 6 receptor antibody (e.g., an anti-IL6R antibody as described in U.S. Pat. Nos. 7,582,298, 8,043,617 or 9,173,880), an anti-IL1 antibody, an anti-IL2 antibody, an anti-IL3 antibody, an anti-IL4 antibody, an anti-IL5 antibody, an anti-IL6 antibody, an anti-IL7 antibody, an anti-interleukin 33 (e.g., anti-IL33 antibody as described in U.S. Pat. Nos. 9,453,072 or 9,637,535), an anti-Respiratory syncytial virus antibody (e.g., anti-RSV antibody as described in U.S. Pat. Appln. Pub. No. 9,447,173), an anti-Cluster of differentiation 3 (e.g., an anti-CD3 antibody, as described in U.S. Pat. Nos. 9,447,173 and 9,447,173, and in U.S. Application No. 62/222,605), an anti-Cluster of differentiation 20 (e.g., an anti-CD20 antibody as described in U.S. Pat. Nos. 9,657,102 and US20150266966A1, and in U.S. Pat. No. 7,879,984), an anti-CD19 antibody, an anti-CD28 antibody, an anti-Cluster of Differentiation-48 (e.g. anti-CD48 antibody as described in U.S. Pat. No. 9,228,014), an anti-Fel d1 antibody (e.g. as described in U.S. Pat. No. 9,079,948), an anti-Middle East Respiratory Syndrome virus (e.g. an anti-MERS antibody as described in U.S. Pat. Appln. Pub. No. US2015/0337029A1), an anti-Ebola virus antibody (e.g. as described in U.S. Pat. Appln. Pub. No. U52016/0215040), an anti-Zika virus antibody, an anti-Lymphocyte Activation Gene 3 antibody (e.g. an anti-LAG3 antibody, or an anti-CD223 antibody), an anti-Nerve Growth Factor antibody (e.g. an anti-NGF antibody as described in U.S. Pat. Appln. Pub. No. US2016/0017029 and U.S. Pat. Nos. 8,309,088 and 9,353,176) and an anti-Protein Y antibody. In some embodiments, the bispecific antibody is selected from the group consisting of an anti-CD3 x anti-CD20 bispecific antibody (as described in U.S. Pat. Appln. Pub. Nos. US2014/0088295A1 and US20150266966A1), an anti-CD3 x anti-Mucin 16 bispecific antibody (e.g., an anti-CD3 x anti-Muc16 bispecific antibody), and an anti-CD3 x anti-Prostate-specific membrane antigen bispecific antibody (e.g., an anti-CD3 x anti-PSMA bispecific antibody). In some embodiments, the protein of interest is selected from the group consisting of abciximab, adalimumab, adalimumab-atto, ado-trastuzumab, alemtuzumab, alirocumab, atezolizumab, avelumab, basiliximab, belimumab, benralizumab, bevacizumab, bezlotoxumab, blinatumomab, brentuximab vedotin, brodalumab, canakinumab, capromab pendetide, certolizumab pegol, cemiplimab, cetuximab, denosumab, dinutuximab, dupilumab, durvalumab, eculizumab, elotuzumab, emicizumab-kxwh, emtansinealirocumab, evinacumab, evolocumab, fasinumab, golimumab, guselkumab, ibritumomab tiuxetan, idarucizumab, infliximab, infliximab-abda, infliximab-dyyb, ipilimumab, ixekizumab, mepolizumab, necitumumab, nesvacumab, nivolumab, obiltoxaximab, obinutuzumab, ocrelizumab, ofatumumab, olaratumab, omalizumab, panitumumab, pembrolizumab, pertuzumab, ramucirumab, ranibizumab, raxibacumab, reslizumab, rinucumab, rituximab, sarilumab, secukinumab, siltuximab, tocilizumab, tocilizumab, trastuzumab, trevogrumab, ustekinumab, and vedolizumab.
In some embodiments, the protein of interest is a recombinant protein that contains an Fc moiety and another domain, (e.g., an Fc-fusion protein). In some embodiments, an Fc-fusion protein is a receptor Fc-fusion protein, which contains one or more extracellular domain(s) of a receptor coupled to an Fc moiety. In some embodiments, the Fc moiety comprises a hinge region followed by a CH2 and CH3 domain of an IgG. In some embodiments, the receptor Fc-fusion protein contains two or more distinct receptor chains that bind to either a single ligand or multiple ligands. For example, an Fc-fusion protein is a TRAP protein, such as for example an IL-1 trap (e.g., rilonacept, which contains the IL-1RAcP ligand binding region fused to the Il-1R1 extracellular region fused to Fc of hIgG1; see U.S. Pat. No. 6,927,044), or a VEGF trap (e.g., aflibercept or ziv-aflibercept, which comprises the Ig domain 2 of the VEGF receptor Flt1 fused to the Ig domain 3 of the VEGF receptor Flk1 fused to Fc of hIgG1; see U.S. Pat. Nos. 7,087,411 and 7,279,159). In other embodiments, an Fc-fusion protein is a ScFv-Fc-fusion protein, which contains one or more of one or more antigen-binding domain(s), such as a variable heavy chain fragment and a variable light chain fragment, of an antibody coupled to an Fc moiety.
In one embodiment, the protein drug is a concentrated monoclonal antibody.
mAb1 and mAb2 (human IgG4 mAbs) were manufactured by Regeneron Pharmaceuticals, Inc. (Tarrytown, N.Y.). Deuterium oxide (99.9 atom % D), histidine, histidine hydrochloride monohydrate, and guanidine hydrochloride were purchased from Sigma Aldrich (St. Louis, Mo.). Tris (2-carboxyethyl) phosphine hydrochloride (TCEP-HC1), formic acid (FA, sequencing grade), and 96-well microdialysis plate (10 kDa molecular weight cutoff, MWCO) were purchased from Thermo Fisher Scientific (Waltham, Mass.). High purity water was generated using a Milli-Q system from Millipore Sigma (Bedford, Mass.).
Concentration and Viscosity Measurement of mAb1 and mAb2 Samples
The high concentration mAb1 and mAb2 samples (120 mg/mL) were diluted with 10 mM histidine to a series of lower concentrations: 100 mg/mL, 80 mg/mL, 60 mg/mL, 30 mg/mL, and 15 mg/mL (Table 4). The concentration of each diluted sample was measured by a NanoDrop microvolume spectrophotometer from Thermo Fisher Scientific (Waltham, Mass.) and shown in Table 4. The viscosity of each mAb1 and mAb2 sample was measured by Rheosense m-VROC viscometer (San Ramon, Calif.).
mAb 1 and mAb2 were diluted in 10 mM histidine (pH 6.0) to create high concentration samples (120 mg/mL) and low concentration samples (15 mg/mL). 160 μl of each sample was loaded into a microdialysis cartridge. The cartridge was inserted into a deep-well plate containing D2O buffer and incubated for 4 or 24 hours at 4° C. After incubation, 5 μl of each dialyzed sample was quenched by adding quench buffer to the sample, according to Table 1. Quench buffer contains 6M GlnHCl/0.6 M TCEP in 100% D2O. The quenching reaction was carried out at 0° C. for 3 minutes. 10 μl of each quenched sample was diluted with 0.1% FA in D2O, according to Table 1. 70 μl of each sample was loaded onto an HDX system. Table 1. Sample buffers and dilution volumes.
Immediately after, 10 μl of each quenched sample was quickly mixed with the requisite volume of 0.1% FA in H2O at 0° C. to adjust the protein concentration of each sample to 0.1 μg/μL. Immediately after, each sample was analyzed using a custom HDX-MS system, which consisted of a liquid-cooling HDX autosampler (NovaBioAssays, Woburn, Mass.) for digestion and loading, a UHPLC system (Jasco, Easton, Mass.) for peptide separation, and a Q Exactive Plus Hybrid Quadrupole—Orbitrap Mass Spectrometer (ThermoFisherScientific, Waltham, Mass.) for the peptide mass measurement. In brief, 7 μg of each sample was injected onto an immobilized pepsin/protease XIII column (NovaBioassays, Woburn, Mass.) for online digestion and HPLC separation. The digested peptides were trapped onto a 1.0×50 mm C8 column (NovaBioAssays, Woburn, Mass.) at −9° C. After the column was desalted for 3 min, the trapped peptides were eluted by a 25-min gradient with a UHPLC system (Jasco, Easton, Mass.) at −9° C. Mobile phase A was 0.5% FA/95% water/4.5% acetonitrile, and mobile phase B was 0.1% FA in acetonitrile. The column was initially equilibrated with 100% mobile phase A. Post sample injection and trapping, the gradient began with a 0.5 min hold at 0% mobile phase B followed by an increase to 8% mobile phase B over 2.5 min and an increase to 28% mobile phase B over the next 14 min for peptide separation. The column was then washed by an increase to 95% mobile phase B over 3 min followed by a decrease to 2% mobile phase B over 0.5 min. The gradient ended with a 4.5 min hold at 2% mobile phase B. The separated peptides were analyzed by mass spectrometry in MS and MS/MS modes. The MS parameters were set as follows: resolving power, 70000 (m/z 200) in MS scan and 35000 in MS/MS scan; spray voltage, 3.8 kV; capillary temperature, 325° C.; AGC target, 3e6 in MS scan and 1e5 in MS/MS scan; maximum injection time, 100 ms for MS scan and 50 ms for MS/MS scan; MS/MS loop count, 6; m/z range, 300-1500; and stepped NCE, 15-26-36. The LC-MS/MS data of undeuterated mAb1 and mAb2 samples were searched against a database including mAb1 and mAb2 and their randomized sequence using a Byonic™ search engine (Protein Metrics, Cupertino, Calif.). The identified peptide list was then imported together with the LC-MS data from all deuterated samples into the HDExaminer™ software (Sierra Analytics, Modesto, Calif.) to calculate the deuterium uptakes of individual peptides in each sample. mAb1 and mAb2 homology modelling and protein surface patch analyses were performed using MOE (Version 2019.0102, Chemical Computing Group, Montreal, QC, Canada).
Monoclonal antibody 1 (mAb1) exhibited unusually high viscosity at concentrations >100 mg/mL, when compared to other monoclonal antibodies at the development stage (
A significant decrease in deuterium was observed in the high concentration samples (120 mg/mL) compared to the control samples (15 mg/mL) at the three heavy chain complementary determining regions and light chain CDR2 for mAb1 (
Two monoclonal antibody candidates, monoclonal antibody 1 (mAb1) and monoclonal antibody 2 (mAb2), each specific for the same therapeutic target and shares the same amino acid sequence except for the CDRs, were assessed for their potential development risks during the candidate selection stage. A significant difference in concentration-dependent viscosities was observed in mAb1 and mAb2 (
While in the foregoing specification the invention has been described in relation to certain embodiments thereof, and many details have been put forth for the purpose of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein can be varied considerably without departing from the basic principles of the invention.
The microdialysis plate-based HDX-MS was used to analyze deuterium uptakes in the high concentration (120 mg/mL) formulation versus the low concentration (15 mg/mL) formulation for both mAb1 and mAb2. 458 peptides were identified reproducibly from the HDX-MS analysis, resulting in a sequence coverage of 89.2% for the heavy chain (HC) and 100% for the light chain (LC) of mAb1 (data not shown). To compare the differential deuterium uptakes between the high concentration samples at 120 mg/mL and the low concentration samples at 15 mg/mL for mAb1 and mAb2, residual plots of identified mAb 1 and mAb2 peptides were created, in which the deuterium uptakes of the low concentration samples (15 mg/mL) were subtracted from the respective high concentration samples (120 mg/mL) (
The HDX-MS results were mapped onto a homology model of mAb1 and mAb2 (
By analyzing deuterium uptake profiles of mAb1 and mAb2, it was observed that most of the peptides have slightly lower deuterium uptake (˜5%) in the 120 mg/mL samples compared to the deuterium uptakes in the 15 mg/mL samples for both mAb1 and mAb2 (
The HDX-MS analysis revealed that certain peptides in mAb1 have increased protection against deuterium uptake in the high concentration samples (
Due to the increasing popularity of subcutaneous administration and demands for high concentration formulations, it is important to better understand the concentration-dependent reversible self-association of therapeutic mAb candidates. In this study, a dilution-free microdialysis HDX-MS was developed method to determine the amino acid residues at the self-association interfaces of mAb1. The method can help identify the amino acid residues at protein-protein interfaces before conducting the time-consuming mutagenesis analyses. Compared to the previously reported HDX-MS approaches, our microdialysis plate-based approach not only reduced the sample amount requirements, but also increased the analysis throughput. As a result, the microdialysis plate-based HDX-MS method, in combination with other orthogonal biophysical measurements, could be a suitable and powerful tool to use during the early stages of therapeutic mAb candidate selection and developability assessment to help understand reversible protein self-association and the causes of high viscosity.
The microdialysis plate-based HDX-MS method described herein can achieve HDX labeling without D2O buffer dilution, allowing us to profile characteristic molecular interactions at different protein concentrations. The use of a microdialysis plate significantly reduced the consumption of samples and D2O compared to traditional dialysis devices. The method was applied to an early stage developability assessment of two drug candidates, mAb1 and mAb2. While mAb 1 and mAb2 share the same amino acid sequence except for CDRs, mAb 1 had unusually high viscosity at high concentrations compared to mAb2. In mAb1, a significant decrease in deuterium uptake was observed between high concentration samples (120 mg/mL) and low concentration samples (15 mg/mL) at three heavy chain CDRs and light chain CDR2, while in mAb2, no differential deuterium uptake was observed between the high concentration samples and the low concentration samples. This result indicates that these CDRs in mAb1 were involved in intermolecular interactions, leading to unusually high viscosity in high concentration mAb1 samples.
The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.
This application claims priority to U.S. application Ser. No. 63/156,217, filed Mar. 3, 2021, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63156217 | Mar 2021 | US |