The present disclosure relates generally to methods and systems for managing machines, and more particularly to systems and methods for queue management of machines based on battery-related characteristics.
Battery electric vehicles operating at a mine site, such as hauling vehicles, can have a limited battery capacity, and batteries may need to be managed to maintain a certain charge over the route. Often, the tasks associated with such machines may require sitting in a queue waiting for other trucks to be loaded, unloaded, or charged, and energy use while waiting may deplete charge that does not allow the machine to complete an assigned task or to drop battery charge below an optimal charge.
U.S. Pat. No. 11,001,161 (“the '161 patent”) describes an electric vehicle charging scheduler. More specifically, the '161 patent describes that when a vehicle is detected to become less than a predefined distance from a charger a proposed charging schedule is calculated, and the vehicle joins a queue for the charger with the proposed charging schedule. According to the '161 patent the proposed charging schedule is calculated based on a current state-of-charge (SOC) and a desired SOC. However, the '161 patent may not describe taking into account post-charging tasks or future task planning.
According to an aspect of the present disclosure, a method is described or can be implemented. The method can comprise: determining, using an electronic processor, an estimated amount of energy depletion of an energy source of a mobile machine at a worksite in order for the mobile machine to travel from a current location of the worksite and arrive at a predetermined location of the worksite at an end of a queue of a plurality of the mobile machines including said mobile machine and one or more additional mobile machines, said determining the estimated amount of energy depletion of the energy source being based on a current energy amount of the energy source at the current location, a predetermined route for said mobile machine to travel from the current location to the predetermined location at the end of the queue, a position of said mobile machine in the queue relative to the one or more additional mobile machines, and an estimated time for said mobile machine to travel from the current location of the worksite to the predetermined location of the worksite; comparing, using the electronic processor, an estimated future amount of energy of the energy source upon arrival of said mobile machine at the predetermined location, which is determined based on the estimated amount of energy depletion of the energy source, to a required amount of energy of the energy source to complete a predetermined task after said mobile machine arrives at the predetermined location of the worksite; and moving up in the queue, using the electronic processor, said mobile machine under a condition where the estimated future amount of energy of the energy source is less than the required amount of energy of the energy source to complete the predetermined task, such that the estimated future amount of energy of the energy source is at or above the required amount of energy of the energy source to complete the predetermined task.
According to another aspect of the present disclosure, a non-transitory computer-readable storage medium having stored thereon instructions that, when executed by one or more processors, causes the one or more processors to perform a method is described, can be provided, or may be implemented. The method can comprise: determining estimated charge loss of a battery of one of a plurality of battery electric machines for said one battery electric machine move from a current location of the worksite to arrive at a predetermined location of the worksite at an end of a queue of the battery electric machines comprised of the one battery electric machine and additional battery electric machines, the calculation of the estimated charge loss for the one battery electric machine to arrive at the predetermined location of the worksite being based on the current state of charge (SOC) of the battery of the one battery electric machine and estimated time for the one battery electric machine to move to the predetermined location via the queue, and outputting control signaling to position the one battery electric machine in the queue such that an estimated future state of charge, which is calculated based on the estimated charge loss of the battery, is at or above a required state of charge (SOC) to complete a predetermined task after the one battery electric machine arrives at the predetermined location of the worksite.
According to yet another aspect of the present disclosure a system for managing a plurality of battery electric vehicles (BEVs) at a worksite is disclosed or implemented. The system can comprise: circuitry to receive battery data sensed by respective battery sensors onboard the battery electric vehicles, the battery data including a current state of charge (SOC) of a battery of each of the battery electric vehicles; and processing circuity configured to calculate estimated charge loss of the battery of one of the battery electric vehicles for said one battery electric vehicle to arrive at a predetermined location of the worksite at an end of a queue of the battery electric vehicles comprised of said one battery electric vehicle and one or more additional battery electric vehicles of the plurality of battery electric vehicles, the calculation of the estimated charge loss for said one battery electric vehicle to arrive at a predetermined location of the worksite being based on the current state of charge (SOC) of the battery of said one battery electric vehicle, a planned route for said one battery electric vehicle to travel to the predetermined location at the end of the queue, and estimated time for said one battery electric vehicle to travel to the predetermined location via the queue, and provide said one battery electric vehicle in the queue such that an estimated future state of charge, which is calculated based on the estimated charge loss of the battery, is at or above a required state of charge (SOC) to complete a predetermined task after said one battery electric vehicle arrives at the predetermined location of the worksite.
The present disclosure relates generally to methods and systems for managing machines, and more particularly to systems and methods for queue management of machines based on battery-related characteristics.
According to one or more embodiments, some or all of the machines 12 can be battery electric machines. Here, battery electric machines can mean or be defined as all-electric machines (e.g., battery electric vehicles (BEVs)) that use a battery or batteries exclusively to power the machine during travel or partially electric machines (e.g., hybrid electric vehicles (PHEVs or HEVs)) that use a battery or batteries at least part of the time to power the machine during travel. And some or all of the machines 12 can be fuel cell machines (e.g., fuel cell vehicles), according to one or more embodiments of the disclosed subject matter.
The machines 12 can be non-autonomous or autonomous or a mix of both non-autonomous and autonomous. Autonomous can mean fully autonomous or semi-autonomous. As used herein, a “fully autonomous” machine can be configured to traverse a travel path and/or perform various tasks or operations (e.g., lifting, dumping, paving, compacting paving material, etc.) without operator control or input. As used herein, a “semi-autonomous” machine can be configured to traverse a travel path and/or perform various tasks or operations upon receiving input and/or approval from an operator.
Worksite 10 may include multiple locations designated for particular purposes. For example, a first location 14 may be designated as a load location at which a mobile loading machine 12a or other resource operates to fill multiple mobile haul machines 12b with material. A second location 16 may be designated as a dump location at which mobile machines 12b discard their payloads. The first location 14 may be referred to herein as a predetermined location or a first predetermined location. The second location 16 may be referred to herein as a second or another predetermined location. The locations may be reversed, that is, the dump location may be the first predetermined location and the load location may be the second predetermined location, according to one or more embodiments of the disclosed subject matter, depending upon which predetermined location the mobile machines 12b are formed in a queue to reach. According to one or more embodiments, the first predetermined location, whether it be the load location or the dump location, may not be or include a fueling station (e.g., charging station) to refuel (e.g., recharge) the mobile machines 12b.
Though
Machines 12b may follow a travel path 18 that generally extends between load and dump locations 14, 16. One or more other mobile dozing or grading machines 12c at worksite 10 may be tasked with clearing or leveling load location 14, dump location 16, and/or travel path 18 such that travel by other machines 12 at these locations may be possible. As machines 12 operate at worksite 10, the shapes, dimensions, and general positions of load location 14, dump location 16, and travel path 18 may change.
As shown in
Locating device 22 may be configured to determine a position of machine 12 and generate a signal indicative thereof. Locating device 22 could embody, for example, a Global Positioning System (GPS) device, an Inertial Reference Unit (IRU), a local tracking system, or any other known locating device that receives or determines positional information associated with machine 12. Locating device 22 may be configured to convey a signal indicative of the received or determined positional information to onboard controller 26 for processing. It is contemplated that the location signal may also be directed to one or more of interface devices 27 (e.g., to the monitor) for display of machine location in an electronic representation of worksite 10, if desired.
Communicating device 24 may include hardware and/or software (including circuitry) that enables sending and receiving of data messages between onboard controller 26 and an offboard worksite controller (OWC) 28. The offboard worksite controller 28, together with each control module 20 of machines 12, may embody a control system 30. The data messages associated with control system 30 may be sent and received via a direct data link and/or a wireless communication link, as desired. The direct data link may include an Ethernet connection, a connected area network (CAN), or another data link. The wireless communications may include satellite, cellular, infrared, and any other type of wireless communications that enable communications device 24 to exchange information between onboard controller 28 and the components of control module 20.
With reference to
Generally, the queue manager 29, whether part of the mobile machine 12b or the offboard worksite controller 28, can control positioning of the mobile machine 12b relative to a queue of one or more additional mobile machines 12b (which may be the same or different type) to arrive at a predetermined location at the worksite 10 (e.g., either the load location 14 or the dump location 16). The queue of mobile machines 12b may be on one or more of the travel paths 18.
Generally, the queue manger 29 can determine where in the queue the mobile machine 12b should be positioned. Here, the queue of one or more other mobile machines 12b can already have been established. Furthermore, the mobile machine 12b for which the queue position determination is to be made can be outside of the queue but wishing or otherwise being required to join the queue. Alternatively, the mobile machine 12b for which the queue position determination is to be made can already be in the queue and the determination can be with respect to repositioning of the mobile machine 12b within the queue (e.g., advancing or moving up in the queue).
The queue manager 29 can determine where (i.e., a position or location) in the queue to provide (e.g., initial placement or reposition) the mobile machine 12b such that the mobile machine 12b is able to reach the predetermined location at the end of the queue, optionally perform a task at the predetermined location (e.g., dumping or being filled), and then reach another predetermined location at the worksite 10 for another task (the mobile machine 12b performs or is performed to the mobile machine 12b). As an example, the another predetermined location can be a refueling (e.g., recharging) site for the mobile machine 12b to be refueled (e.g., recharged).
Notably, the determination can be based on predicted or estimated amount of energy left in an energy source of the mobile machine 12b upon reaching the predetermined location at the end of the queue after arriving at the predetermined location via the queue. Examples of an energy source of the mobile machine 12b include one or more batteries and/or one or more fuel cells. Hence, the queue manager 29, according to one or more embodiments, can determine where in the queue the mobile machine 12b can be placed, based on the estimated amount of remaining energy, such that the mobile machine 12b can traverse the queue, perform a task at the predetermined location at the end of the queue, and still make it to the other predetermined location to perform another task. Optionally, at least according to some embodiments, the determination can be based on where the mobile machine 12b can be placed in the queue such that the mobile machine 12b has enough energy to traverse the queue and perform the task at the predetermined location at the end of the queue. The queue of mobile machines 12b can be on one or more portions of the travel path 18.
The determination can include receiving remaining energy data from a sensor 23 of the mobile machine 12b. That is, the queue manager 29 (and optionally the controller 26) can receive remaining energy data from the sensor 23. According to one or more embodiments, the sensor 23 can be a battery sensor. Hence, the energy data can be battery data, which can include a state of charge (SOC) of the battery (or batteries). The battery data can be current (e.g., real time) battery data from the battery of the mobile machine 12b. Energy data from the sensor 23 can be output continuously or periodically from the sensor 23.
The current state of charge data can be indicative of the amount of remaining energy for the battery at the current location of the mobile machine 12b. Rather than state of charge (SOC), one or more embodiments may instead implement depth of discharge (DOD) data. As noted above, the current location of the mobile machine 12b can be in the queue or outside of the queue. According to one or more embodiments, data from the locating system 22 can be associated with the current energy data (e.g., current state of charge data).
The queue manager 29 can determine an estimated amount of energy depletion of the energy source of the mobile machine 12b for the mobile machine to travel from the current location and arrive at the predetermined location at the end of the queue. In some cases, this may include determining multiple estimations for different positions for the mobile machine 12b within the queue. The estimated amount of energy depletion can, according to one or more embodiments, be or include estimated charge loss of the battery (or batteries).
The queue manager 29 can determine the estimated amount of energy depletion (e.g., charge loss) based on the current remaining energy (e.g., state of charge of the battery) at the current location of the mobile machine 12b, a predetermined route for the mobile machine 12b to travel to the predetermined location at the end of the queue (e.g., from the current location of the mobile machine 12b), an estimated time for the mobile machine 12b to travel to the predetermined location at the end of the queue (e.g., from the current location of the mobile machine 12b), and/or a position of the mobile machine 12b in the queue relative to one or more additional mobile machines (e.g. mobile machines 12 in front of the mobile machine 12b). Optionally, the estimated amount of energy depletion may be based on completion of a task at the predetermined location (e.g., loading).
Based on the estimated amount of energy depletion, the queue manager 29 can determine an estimated amount of remaining energy when the mobile machine 12b arrives at the predetermined location at the end of the queue. Optionally, the estimated amount of remaining energy may be based on completion of a task at the predetermined location (e.g., loading).
The queue manager 29 can compare the estimated future amount of energy of the energy source upon arrival of the mobile machine 12b at the predetermined location to a required amount of energy of the energy source to complete a predetermined task after the mobile machine 12b arrives at the predetermined location. Here, the predetermined task can be at the predetermined location (e.g., loading or dumping) or the predetermined task can be at a predetermined location different from the predetermined location at the end of the queue. For instance, the predetermined task can be a refueling task (e.g., recharging) at a refueling station (e.g., charging station). As another example, the predetermined task can be a dumping operation at the dump location 16 after a loading operation performed at the loading location 14, where the loading location 14 is at the end of the queue.
The queue manager 29, for instance, in conjunction with the resource manager 28, can provide the mobile machine 12b in the queue. In particular, such providing can be such that the estimated future amount of energy (e.g., state of charge) is at or above a required amount of energy to complete the predetermined task after the mobile machine 12b arrives at the predetermined location of the worksite 10. The queue manager 29 can output control signaling to cause the mobile machine 12b to move into the appropriate position in the queue (e.g., autonomously). Alternatively, the queue manager 29 can output instructions on a display device (e.g., of the operator interface device 27) with instructions to the operator where to position the mobile machine 12b in the queue.
Referring to
According to one or more embodiments, the mobile machine 12bx can be placed as far back as back possible in the queue 19 so as to still satisfy the estimated energy loss of the energy source of the mobile machine 12bx being at or above a required amount of energy to complete a predetermined task after the mobile machine 12bx arrives at the load location 14. For instance, if the queue manager 29 determines that between mobile machine 12b1 and 12b2 and between 12b2 and 12b3 will both satisfy the requirement, the queue manager 29 can control or instruct the mobile machine 12bx to be provided in the queue 19 between 12b2 and 12b3.
Referring to
Whether the situation in
As noted above, embodiments of the present disclosure relate to methods and systems for managing machines, and more particularly to systems and methods for queue management of machines based on battery-related characteristics. Some or all of the battery-operated machines may be battery electric machines or vehicles (i.e., all-electric machines/all-electric vehicles).
In general, according to embodiments of the disclosed subject matter, a queue management system and method for mobile machine (e.g., a battery electric vehicle (BEV)) based on energy state (e.g., a state of charge (SOC) of the BEV) is disclosed. The system and method can calculate energy loss (e.g., charge loss) based on different machine parameters, such as current SOC, planned route or task, queue position, and/or wait time. Further, based on the calculated energy loss (e.g., charge loss), and assigned route or task, the system can compare the remaining SOC with a required or an optimal SOC. Based on the comparison of the remaining SOC, the system and method can prioritize or change a position of the mobile machine in the queue. For haulage vehicles, this can occur at dump and load locations, for instance, where idle time may impact the ability for machines to complete additional tasks, which can lead to decreased productivity.
The system and method can use sensors onboard the mobile machine to monitor, for instance, battery SOC (or for a fuel cell vehicle combined with fuel depletion) and can determine subsequent tasks through a site level route planner, such as the resource manager 28. The system and method can calculate for each potential route, and locations of recharge stations, for instance, expected battery usage for subsequent tasks, and ensure that the mobile machine(s) is/are capable of completing tasks and returning to charge stations (with attendant wait times). The system and method can then prioritize machines in queue to achieve task plans. Other priorities beyond that may be maintaining optimal or threshold SOC to achieve optimal power usage and or improve battery life, efficiency of the vehicle (size and capacity) versus other machines, quality or type of material hauled, and other considerations should be considered as additional parameters.
At 52 the method 50 can include receiving remaining energy data from a sensor 23 of the mobile machine 12b. For instance, the queue manager 29 (and optionally the controller 26) can receive remaining energy data from the sensor 23. According to one or more embodiments, the sensor 23 can be a battery sensor. Hence, the energy data can be battery data, which can include a state of charge (SOC) of the battery (or batteries). The battery data can be current (e.g., real time) battery data from the battery of the mobile machine 12b.
At 54 the method 50 can include determining an estimated amount of energy depletion of the energy source of the mobile machine 12b for the mobile machine to travel from the current location and arrive at the predetermined location at the end of the queue 19. In some cases, this may include determining multiple estimations for different positions for the mobile machine 12b within the queue 19. The estimated amount of energy depletion can, according to one or more embodiments, be or include estimated charge loss of the battery (or batteries).
The queue manager 29, for instance, can determine the estimated amount of energy depletion (e.g., charge loss) based on the current remaining energy (e.g., state of charge of the battery) at the current location of the mobile machine 12b, a predetermined route for the mobile machine 12b to travel to the predetermined location at the end of the queue 19 (e.g., from the current location of the mobile machine 12b), an estimated time for the mobile machine 12b to travel to the predetermined location at the end of the queue 19 (e.g., from the current location of the mobile machine 12b), and/or a position of the mobile machine 12b in the queue 19 relative to one or more additional mobile machines (e.g. mobile machines 12 in front of the mobile machine 12b) and/or the tasks to be performed by the one or more additional mobile machines at the predetermined location. Optionally, the estimated amount of energy depletion may be based on completion of a task at the predetermined location (e.g., loading).
At 56 the method 50 can include can determining an estimated amount of remaining energy when the mobile machine 12b arrives at the predetermined location at the end of the queue 19. Such determination can be based on the estimated amount of energy depletion at 54. Optionally, the estimated amount of remaining energy may be based on completion of a task at the predetermined location (e.g., loading).
At 58 the method 50 can include comparing the estimated future amount of energy of the energy source upon arrival of the mobile machine 12b at the predetermined location to a required amount of energy of the energy source to complete a predetermined task after the mobile machine 12b arrives at the predetermined location at the end of the queue 19. Here, the predetermined task can be at the predetermined location (e.g., loading or dumping) or the predetermined task can be at a predetermined location different from the predetermined location at the end of the queue 19. For instance, the predetermined task can be a refueling task (e.g., recharging) at a refueling station (e.g., charging station). As another example, the predetermined task can be a dumping operation at the dump location 16 after a loading operation performed at the loading location 14, where the loading location 14 is at the end of the queue 19.
At 60 the method 50 can including providing the mobile machine 12b to the queue 19. Such providing can be such that the estimated future amount of energy (e.g., state of charge) is at or above a required amount of energy to complete the predetermined task after the mobile machine 12b arrives at the predetermined location of the worksite 10. The queue manager 29 can output control signaling to cause the mobile machine 12b to move into the appropriate position in the queue (e.g., autonomously). Alternatively, the queue manager 29 can output instructions on a display device (e.g., of the operator interface device 27) with instructions to the operator where to position the mobile machine 12b in the queue.
As noted above, referring again to
Referring again to
As will be appreciated by one skilled in the art, aspects of the present disclosure may be embodied as a system, method or computer program product. Accordingly, aspects of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
The functionality of the elements disclosed herein may be implemented using circuitry or processing circuitry which includes general purpose processors, special purpose processors, integrated circuits, ASICs (“Application Specific Integrated Circuits”), conventional circuitry and/or combinations thereof which are configured or programmed to perform the disclosed functionality. Processors are considered processing circuitry or circuitry as they include transistors and other circuitry therein. The processor may be a programmed processor which executes a program stored in a memory. In the disclosure, the circuitry, units, or means are hardware that carry out or are programmed to perform the recited functionality. The hardware may be any hardware disclosed herein or otherwise known which is programmed or configured to carry out the recited functionality. When the hardware is a processor which may be considered a type of circuitry, the circuitry, means, or units are a combination of hardware and software, the software being used to configure the hardware and/or processor.
Further, as used herein, the term “circuitry” can refer to any or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry); (b) to combinations of circuits and software (and/or firmware), such as (as applicable): (i) a combination of processor(s) or (ii) portions of processor(s)/software (including digital signal processor(s)), software and memory(ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions); and (c) to circuits, such as a microprocessor(s) or a portion of a microprocessor(s), that require software or firmware for operation, even if the software or firmware is not physically present. This definition of “circuitry” can apply to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term “circuitry” can also cover an implementation of merely a processor (or multiple processors) or portion of a processor and its (or their) accompanying software and/or firmware.
Use of the terms “data,” “content,” “information” and similar terms may be used interchangeably, according to some example embodiments of the present disclosure, to refer to data capable of being transmitted, received, operated on, and/or stored. The term “network” may refer to a group of interconnected computers or other computing devices. Within a network, these computers or other computing devices may be interconnected directly or indirectly by various means including via one or more switches, routers, gateways, access points or the like.
Aspects of the present disclosure have been described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the present disclosure. In this regard, the flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present disclosure. For instance, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
It also will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks. The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. That is, unless clearly specified otherwise, as used herein the words “a” and “an” and the like carry the meaning of “one or more.” The use of the term “at least one” followed by a list of one or more items (for example, “at least one of A and B” or one or more of A and B”) is to be construed to mean one item selected from the listed items (A or B) or any combination of two or more of the listed items (A and B; A, A and B; A, B and B), unless otherwise indicated herein or clearly contradicted by context. Similarly, as used herein, the word “or” refers to any possible permutation of a set of items. For example, the phrase “A, B, or C” refers to at least one of A, B, C, or any combination thereof, such as any of: A; B; C; A and B; A and C; B and C; A, B, and C; or multiple of any item such as A and A; B, B, and C; A, A, B, C, and C; etc.
Additionally, it is to be understood that terms such as “left,” “right,” “top,” “bottom,” “front,” “rear,” “side,” “height,” “length,” “width,” “upper,” “lower,” “interior,” “exterior,” “inner,” “outer,” and the like that may be used herein, merely describe points of reference and do not necessarily limit embodiments of the disclosed subject matter to any particular orientation or configuration. Furthermore, terms such as “first,” “second,” “third,” etc., merely identify one of a number of portions, components, points of reference, operations and/or functions as described herein, and likewise do not necessarily limit embodiments of the disclosed subject matter to any particular configuration or orientation.
While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, assemblies, systems, and methods without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.