This Application is related to U.S. Non-Provisional Application, entitled SYSTEMS AND METHODS FOR DETERMINING OPTIMAL COST-TO-SERVE FOR CLOUD APPLICATIONS IN THE PUBLIC CLOUD, Ser. No. 16/677,145, filed on Nov. 7, 2019.
Embodiments of the subject matter described herein relate generally to measuring the runtime cost-to-serve service of applications distributed across multiple platforms, services and customers, and more particularly to an automated cloud-agnostic method and system implementing cost-to-serve agents that are executed on hosted public cloud hardware and collect service usage statistics for each service and instance of use for measuring the actual runtime cost-to-serve service and cost attribution across multiple customers and applications.
Current software development is evolving away from the client-server model toward network-based processing systems that provide access to data and services via the Internet or other networks. That is, in contrast to traditional methods that host networked applications on dedicated server hardware, a “cloud” computing model allows applications to be provided over the network “as a service” or “on-demand” by an infrastructure provider, the development trend is for the infrastructure provider to deliver a customer-developed application so that the customer no longer needs to operate and support dedicated server hardware by abstracting the underlying hardware and other resources used. This type of cloud computing model can often provide substantial cost savings to the customer over the life of the application because the customer no longer needs to provide dedicated network infrastructure, electrical and temperature controls, physical security, and other logistics to support dedicated server hardware to host an application.
With the growth of the public cloud infrastructure and to justify the move of applications to the public cloud, there must be enabled more cost savings and more efficiency in the runtime of the public cloud-hosted applications. Hence, it is incumbent on businesses to show cost savings for customers when promoting public cloud hosting services and customers to be able to quantify the savings that result from application runtimes in the public cloud. In other words, there is a necessity to run systems with reduced cost, increased efficiency, and deliver business value at the lowest price point when moving services to the public cloud. In addition, given the multi-tenant architecture incorporating multiple applications and features in use across multiple platforms, networks and customers, there is a need for cost-to-serve service analysis of cost attribution across customers and across applications and features; particularly when executing applications on the similar if not the same networks and systems.
It is desired to provide an enhanced solution for measuring cost metrics near real-time and to enables wholly or at least near full agnostic automated tools for determining the cost attribution for various customers and across applications with feature comparisons in a public cloud environment.
Current systems fail to provide an adequate solution for measuring the runtime cost-to-serve of applications distributed across multiple platforms, services, and customers, with automated cloud-agnostic methods and systems implementing cost-to-serve agents, which are executed on hosted public cloud hardware and collect service usage statistics in a multi-tenant environment. Hence, systems and methods are thus needed which address these shortcomings.
A complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
Embodiments of the subject matter described herein generally relate to systems and methods for measuring the cost attributions of cloud applications by a CTS service and displaying various aggregated metrics based on various automated or selected parameters using a graphic user interface for displaying to a user and for enabling the user the realize the actual cost for operating various cloud applications. In exemplary embodiments, cost metrics are derived from a set of spawn agents for monitoring usage and instances of various cloud resources and sending data of the instances and usages to analytic processors for aggregating and displaying to a user.
It is desirable to further enhance this evolving development and deployment application architecture by providing a framework for cloud-agnostic Cost-To-Serve cost attributions which abstracts public cloud infrastructure deployment, application deployment, launching applications, thereby enabling automating end-to-end use case scenarios, collecting holistic CTS measurements and determining cost attributions for various cloud applications. In other words, it is desirable to enable a solution that integrates CTS analysis for cloud applications with cost analysis in a convenient use architecture. This enables end-users to gain insight into the actual operating costs of cloud applications in a hosted webspace and cost attributions of resources or features implemented.
In addition, with the use of automated resource provisioning techniques, the implementation of CTS services is enabled for this architecture, thereby adapting the available resources to available budgets. This is essential for improving efficiency aspects and reducing costs by identifying cost allocations for various cloud applications and enable proper expensing and guaranteeing of the quality of service (QoS) requirements for latency or response time ordinarily required for web servers with higher traffic load, data stream processing, or real-time big data analytics. It is desirable to implement the CTS services in cloud platforms and virtualized data-centers by various auto-scaling mechanisms that can make automated resource provisioning decisions based on cost attributions of specific infrastructure and/or service performance to accurately predict costs and cost attributions for processing particular loads and applications of a distributed server in order to reduce infrastructure costs.
Accordingly, it is desirable to provide a CTS framework for proactive performance cost monitoring and cost attribution, which is capable of identifying cost attributions prior to server application launches and on-going executions. In addition, it is desirable to automate CTS services by gathering metrics of virtual end-to-end scenarios of server use-cases, transactions, and requests and further gather performance metrics of each server ecosystems and technology layer for such processes enabling a holistic CTS measurement of the metrics of the processes of a particular server configuration.
It is desirable to integrate the server configuration CTS measuring with the server app development life cycle so developers can collect measured CTS metrics when actually developing and adding, subtracting, or otherwise modifying features and resources of server configurations and server apps in development.
It is desirable to provide automation tools that do not require manual or developer intervention to perform the CTS measuring, rather which provide automated actions for individual apps and feature developers to analyze CTS cost attributions in a chosen use case during the development cycle. In addition, when application testing, it is desirable to have one implementation that provides a cross-platform and another that provides a cross-device framework for scalable and fully automated mobile, server, and network CTS cost attributions.
It is desirable to use a multi-tenant cloud-based architecture integrated with the automated app CTS service to improve collaboration, integration, and community-based cooperation between CTS agents within tenant organizations without sacrificing data security. Multi-tenancy refers to a system where a single hardware and software platform simultaneously supports multiple user groups (also referred to as “organizations” or “tenants”) from a common data storage element (also referred to as a “multi-tenant database”).
The multi-tenant design provides a number of advantages over conventional server virtualization systems. First, the multi-tenant platform operator can often make improvements to the platform based upon collective information from the entire tenant community. Additionally, because all users in the multi-tenant environment execute apps within a common processing space, it is relatively easy to grant or deny access to specific sets of data for any user within the multi-tenant platform, thereby improving collaboration and integration between apps and the data managed by the various apps. The multi-tenant architecture, therefore, allows convenient and cost-effective sharing of similar app features between multiple sets of users and CTS agents.
Embodiments of the subject matter described herein generally relate to systems and methods for measuring the cost attributions of cloud applications using application use-case scenarios to model cost metrics from a plurality of use-case scenarios of cloud applications.
As described in greater detail below, primarily in the context of
By virtue of the CTS cost attributions and monitoring being distributed among the server/cloud sides, the perceived cost savings by balancing the resources used for performance relative to overburdening any one of the resources of the server sides can be realized. Additionally, having the server sides track CTS metrics associated with each server requests provides improved granularity and differentiation between the amount of time attributable to the overall processing versus the amount of time attributable to the server-side processing by viewing aggregated cost attributions. The performance monitoring API is also capable of assembling and formatting the cost attribution data in a manner that allows for the CTS data to be integrated or incorporated into any number of different database servers for storage or visualizations. In this regard, maintaining associations between server requests and corresponding CTS cost attribution metrics as well as differentiating between client and server-side metrics allows for drill-down into the details of what request, behavior, or actor is the primary cost contributor to the overall process.
The described subject matter can be implemented in the context of any computer-implemented system, such as a software-based system, a database system, a multi-tenant environment, or the like. Moreover, the described subject matter can be implemented in connection with two or more separate and distinct computer-implemented systems that cooperate and communicate with one another. The subject matter may be implemented in numerous ways, including as a process, an apparatus, a system, a device, a method, a computer-readable medium such as a computer-readable storage medium containing computer-readable instructions or computer program code, or as a computer program product comprising a computer-usable medium having a computer-readable program code embodied therein.
The solution provides a CTS service framework for cross-platform and cross-device cost attribution systems, which virtualizes the launching and execution of cloud applications, the controlling client, server, and network devices, the automating page-flows and the collecting of CTS measurements for these page-flows and requests. By integrating CTS analysis for the client, server, and network apps into the product development lifecycle with an easy to use architecture, product developers are able to analyze performance for development use cases without requiring manual intervention.
With reference to
A cost-to-serve service (CTS) module 105 is configured and implemented with each of the resources to spawn a plurality of CTS agents 107 to each resource, input, controller etc. to monitor and to run on every public cloud hardware host, collect service usage statistics for every service and instance in use and send these metrics to the Cost-To-Serve Service module 105 to determine real-time usage and costs of the deployed resources in the configured pod architecture. This also enables an analysis of cost attribution across multiple customers and multiple applications, services, and features without requiring any manual intervention. Each CTS agent 107 receives data to send for processing by the CTS service module 105 and for storing at a CTS metric database 110. The data sent is analyzed and displayed by a CTS analytics engine 120. The CTS Agent for each instance type (i.e., each server instance type) spawns with a CTS agent 107 that subscribes to a CTS Service and enables static cost metrics collection at the CTS metric database 110. Each CTS Agent 107 for each instance establishes metrics to be measured to determine cost units (e.g., cost per hour, storage, IOPS, etc.), and each transaction captures information about usage per transaction. Each transaction also captures cost attribution information (e.g., organization, user, feature, request ID, etc.).
The CTS analytics display 220 receives data from a CTS service 205, which includes components or a graphic APIs 207 for a CTS store 210, the transaction processor 215, APIs 217 for alerts stores 225, alert processors 230, and APIs 227 for metric stores 235 with CTS metric processors 240. The CTS metrics processors 240 aggregate metrics from the CTS Store 210 for cost attribution (organization, user, persona, cloud, feature, etc.).
The transaction processor 215, the alert processor 230, and the CTS metrics processor 240 are configured to interface with a distributed streaming platform 231. In this case, the distributed streaming platform 231 is an APACHE® KAFKA® platform for processing and assessing events in real-time from each of the CTS agents 249. The CTS agents 249 include service #1 (250), service #2 (255) to Service #n (260). The CTS agents 249 are distributed to each resource to monitor and send data of instances 1 to N from each resource.
With reference to
The server 910 generally represents a computing device, computing system, or another combination of processing logic, circuitry, hardware, and/or other components configured to support the processes, tasks, operations, and/or functions described herein. In this regard, the server 910 includes a processing system 920, which may be implemented using any suitable processing system and/or device, such as, for example, one or more processors, central processing units (CPUs), controllers, microprocessors, microcontrollers, processing cores and/or other hardware computing resources configured to support the operation of the processing system 920 described herein.
The processing system 920 may include or otherwise access a data storage element or memory 922 capable of storing programming instructions for execution by the processing system 920, that, when read and executed, cause processing system 920 to support the processes described herein. Depending on the embodiment, the memory 922 may be realized as random-access memory (RAM), read-only memory (ROM), flash memory, magnetic or optical mass storage, or any other suitable non-transitory short or long-term data storage or other computer-readable media, and/or any suitable combination thereof. In one or more embodiments, the programming instructions cause the processing system 920 to create, generate, or otherwise facilitate an application platform that is capable of supporting, producing, or otherwise providing instances of a virtual application at run-time (or “on-demand”) based at least in part upon code and other data that is stored or otherwise maintained in memory 922. In exemplary embodiments, the programming instructions also cause the processing system 920 to create, generate, or otherwise facilitate a CTS monitoring application program interface (API) that supports tracking, measuring and otherwise monitoring CTS metrics associated with the server configuration 910; for example, monitoring instances and instance types, usage, aggregating cost metrics between the configured resources of the app servers 940 providing web pages or other files, data, and/or information to the client device 906 as well as requests and sends executed between the app server 940, database servers 945, the storage 950, the network 955 and the additional services 960. Depending on the embodiment, the CTS monitoring API can be integrated with or otherwise incorporated as part of a virtual application or be realized as a separate or standalone component that is capable of interacting with the client devices 906, the server configuration 910 resources and any independent virtual applications.
The analysis engine 935 analyses each of the instances captured by the CTS agent. As an exemplary embodiment, for each combination of the above, the analysis engine 935 automatically analyses and trends each CTS metrics obtained. The analysis engine 935 also provides drill-down analysis, reporting, and dashboards for each of the combination of app server, database server, storage, etc. In an exemplary embodiment, the analysis engine 935 provides a breakdown of total CTS metrics and usage based on different attributes.
The client device 906 generally represents an electronic device coupled to the network 908 that may be utilized by a user to access the application platform on the app server 940 of the server 910 to thereby access instances of virtual applications supported by the app server 940 and/or retrieve cost and usage data from the database server 945 (or data store) via the network 908. In practice, client device 906 can be realized as any sort of personal computer, mobile telephone, tablet, or other network-enabled electronic devices. In exemplary embodiments, the client device 906 includes a display device, such as a monitor, screen, or another conventional electronic display, capable of graphically presenting data and/or information along with a user input device, such as a touchscreen, a touch panel, a mouse, a joystick, a directional pad, a motion sensor, or the like, capable of receiving input from the user of the client device 906.
With reference to
The cost metric analysis module 1085 analyzes the cost metrics received from the post metric module 1060 to determine areas of costs.
The app server 1020 can be configured as a platform as a service (“Paas”) that provides a host of features to develop, test, deploy, host, and maintain-apps in the same integrated development environment of the app platform. Additionally, the app server 1020 may be part of a multi-tenant architecture where multiple concurrent users utilize the same development apps installed on the app platform. Also, by utilizing the multi-tenant architecture in conjunction with the app platform integration with web services and databases via common standards and communication tools can be configured. As an example, SALESFORCE SERVICECLOUD® is an app platform residing on the app server that may host all the varying services needed to fulfill the app development process. The SALESFORCE SERVICECLOUD®, as an example, may provide web-based user interface creation tools to help to create, modify, test, and deploy different UI scenarios.
The app platform includes apps relating to APIs and objects. The app platform may include other apps in communication for accessing a multi-tenant database as an example, in a multi-tenant database system.
Additionally, a call or request is from an app server controller by an action initiated by a client controller. In a client controller, a callback is set, which is called after the server action is completed.
Additionally, the app platform has access to other databases for information retrieval and includes a database where cost metric data may be stored. The local database may be part of the multi-tenant database architecture allowing for communication with the multi-tenant database. In addition, the app platform can access a multi-tenant database, which is part of the multi-tenant architecture. The multi-tenant database allows for enterprise customer access, and the app platform may be given access to the multi-tenant database dependent upon different factors such as an associated session ID associated.
With reference to
Each app 1128 is suitably generated at run-time (or on-demand) using a common type of app platform 1110 that securely provides access to the data 1132 in the multi-tenant database 1130 for each of the various tenant organizations subscribing to the service cloud 1100. In accordance with one non-limiting example, the service cloud 1100 is implemented in the form of an on-demand multi-tenant customer relationship management (CRM) system that can support any number of authenticated users for a plurality of tenants.
As used herein, a “tenant” or an “organization” should be understood as referring to a group of one or more users (typically employees) that shares access to a common subset of the data within the multi-tenant database 1130. In this regard, each tenant includes one or more users and/or groups associated with, authorized by, or otherwise belonging to that respective tenant. Stated another way, each respective user within the multi-tenant system of the service cloud 1100 is associated with, assigned to, or otherwise belongs to a particular one of the plurality of enterprises supported by the system of the service cloud 1100.
Each enterprise tenant may represent a company, corporate department, business or legal organization, and/or any other entities that maintain data for particular sets of users (such as their respective employees or customers) within the multi-tenant system of the service cloud 1100. Although multiple tenants may share access to the server 1102 and the multi-tenant database 1130, the particular data and services provided from the server 1102 to each tenant can be securely isolated from those provided to other tenants. The multi-tenant architecture, therefore, allows different sets of users to share functionality and hardware resources without necessarily sharing any of the data 1132 belonging to or otherwise associated with other organizations.
The multi-tenant database 1130 may be a repository or other data storage system capable of storing and managing the data 1132 associated with any number of tenant organizations. The multi-tenant database 1130 may be implemented using conventional database server hardware. In various embodiments, the multi-tenant database 1130 shares the processing hardware 1104 with the server 1102. In other embodiments, the multi-tenant database 1130 is implemented using separate physical and/or virtual database server hardware that communicates with the server 1102 to perform the various functions described herein.
In an exemplary embodiment, the multi-tenant database 1130 includes a database management system or other equivalent software capable of determining an optimal query plan for retrieving and providing a particular subset of the data 1132 to an instance of app (or virtual app) 1128 in response to a query initiated or otherwise provided by an app 1128, as described in greater detail below. The multi-tenant database 1130 may alternatively be referred to herein as an on-demand database, in that the multi-tenant database 1130 provides (or is available to provide) data at run-time to on-demand virtual apps 1128 generated by the app platform 1110, as described in greater detail below.
In practice, the data 1132 may be organized and formatted in any manner to support the app platform 1110. In various embodiments, the data 1132 is suitably organized into a relatively small number of large data tables to maintain a semi-amorphous “heap”-type format. The data 1132 can then be organized as needed for a particular virtual app 1128. In various embodiments, conventional data relationships are established using any number of pivot tables 1134 that establish indexing, uniqueness, relationships between entities, and/or other aspects of conventional database organization as desired. Further data manipulation and report formatting are generally performed at run-time using a variety of metadata constructs. Metadata within a universal data directory (UDD) 1136, for example, can be used to describe any number of forms, reports, workflows, user access privileges, business logic, and other constructs that are common to multiple tenants.
Tenant-specific formatting, functions, and other constructs may be maintained as tenant-specific metadata 1138 for each tenant, as desired. Rather than forcing the data 1132 into an inflexible global structure that is common to all tenants and apps, the multi-tenant database 1130 is organized to be relatively amorphous, with the pivot tables 1134 and the metadata 1138 providing additional structure on an as-needed basis. To that end, the app platform 1110 suitably uses the pivot tables 1134 and/or the metadata 1138 to generate “virtual” components of the virtual apps 1128 to obtain, process logically, and present the relatively amorphous data from the multi-tenant database 1130.
The server 1102 may be implemented using one or more actual and/or virtual computing systems that collectively provide the dynamic type of app platform 1110 for generating the virtual apps 1128. For example, the server 1102 may be implemented using a cluster of actual and/or virtual servers operating in conjunction with each other, typically in association with conventional network communications, cluster management, load balancing and other features as appropriate. The server 1102 operates with any sort of processing hardware 1104, which is conventional, such as a processor 1105, memory 1106, input/output features 1107, and the like. The input/output features 1107 generally represent the interface(s) to networks (e.g., to the network 1145, or any other local area, wide area or other networks), mass storage, display devices, data entry devices and/or the like.
The processor 1105 may be implemented using any suitable processing system, such as one or more processors, controllers, microprocessors, microcontrollers, processing cores and/or other computing resources spread across any number of distributed or integrated systems, including any number of “cloud-based” or other virtual systems. The memory 1106 represents any non-transitory short- or long-term storage or other computer-readable media capable of storing programming instructions for execution on the processor 1105, including any sort of random-access memory (RAM), read-only memory (ROM), flash memory, magnetic or optical mass storage, and/or the like. The computer-executable programming instructions, when read and executed by the server 1102 and/or processor 1105, cause the server 1102 and/or processor 1105 to create, generate, or otherwise facilitate the app platform 1110 and/or virtual apps 1128 and perform one or more additional tasks, operations, functions, and/or processes described herein. It should be noted that the memory 1106 represents one suitable implementation of such computer-readable media, and alternatively or additionally, the server 1102 could receive and cooperate with external computer-readable media that is realized as a portable or mobile component or platform, e.g., a portable hard drive, a USB flash drive, an optical disc, or the like.
The app platform 1110 is any sort of software app or other data processing engine that generates the virtual apps 1128 that provide data and/or services to the tenant devices 1140. In a typical embodiment, the app platform 1110 gains access to processing resources, communications interface, and other features of the processing hardware 1104 using any sort of conventional or proprietary operating system 1108. The virtual apps 1128 are typically generated at run-time in response to input received from the tenant devices 1140. For the illustrated embodiment, the app platform 1110 includes a bulk data processing engine 1112, a query generator 1114, a search engine 1116 that provides text indexing and other search functionality, and a runtime app generator 1120. Each of these features may be implemented as a separate process or other modules, and many equivalent embodiments could include different and/or additional features, components, or other modules as desired.
The runtime app generator 1120 dynamically builds and executes the virtual apps 1128 in response to specific requests received from the tenant devices 1140. The virtual apps 1128 are typically constructed in accordance with the tenant-specific metadata 1138, which describes the particular tables, reports, interfaces, and/or other features of the particular app 1128. In various embodiments, each virtual app 1128 generates dynamic web content that can be served to a browser or other tenant program 1142 associated with its tenant device 1140, as appropriate.
The runtime app generator 1120 suitably interacts with the query generator 1114 to efficiently obtain data 1132 from the multi-tenant database 1130 as needed in response to input queries initiated or otherwise provided by users of the tenant devices 1140. In a typical embodiment, the query generator 1114 considers the identity of the user requesting a particular function (along with the user's associated tenant), and then builds and executes queries to the multi-tenant database 1130 using system-wide metadata 1136, tenant-specific metadata, pivot tables 1134, and/or any other available resources. The query generator 1114 in this example, therefore, maintains the security of the common database by ensuring that queries are consistent with access privileges granted to the user and/or tenant that initiated the request.
With continued reference to
In exemplary embodiments, the app platform 1110 is utilized to create and/or generate data-driven virtual apps 1128 for the tenants that they support. Such virtual apps 1128 may make use of interface features such as custom (or tenant-specific) screens 1124, standard (or universal) screens 1122, or the like. Any number of custom and/or standard objects 1126 may also be available for integration into tenant-developed virtual apps 1128. As used herein, “custom” should be understood as meaning that a respective object or app is tenant-specific (e.g., only available to users associated with a particular tenant in the multi-tenant system) or user-specific (e.g., only available to a particular subset of users within the multi-tenant system), whereas “standard” or “universal” apps or objects are available across multiple tenants in the multi-tenant system.
The data 1132 associated with each virtual app 1128 is provided to the multi-tenant database 1130, as appropriate, and stored until it is requested or is otherwise needed, along with the metadata 1138 that describes the particular features (e.g., reports, tables, functions, objects, fields, formulas, code, etc.) of that particular virtual app 1128. For example, a virtual app 1128 may include a number of objects 1126 accessible to a tenant, wherein for each object 1126 accessible to the tenant, information pertaining to its object type along with values for various fields associated with that respective object type are maintained as metadata 1138 in the multi-tenant database 1130. In this regard, the object type defines the structure (e.g., the formatting, functions, and other constructs) of each respective object 1126 and the various fields associated therewith.
Still referring to
Typically, the user operates a conventional browser app or other tenant program 1142 executed by the tenant device 1140 to contact the server 1102 via the network 1145 using a networking protocol, such as the hypertext transport protocol (HTTP) or the like. The user typically authenticates his or her identity to the server 1102 to obtain a session identifier (“Session ID”) that identifies the user in subsequent communications with the server 1102. When the identified user requests access to a virtual app 1128, the runtime app generator 1120 suitably creates the app at run time based upon the metadata 1138, as appropriate. However, if a user chooses to manually upload an updated file (through either the web-based user interface or through an API), it will also be shared automatically with all of the users/devices that are designated for sharing.
As noted above, the virtual app 1128 may contain Java, ActiveX, or other content that can be presented using conventional tenant software running on the tenant device 1140; other embodiments may simply provide dynamic web or other content that can be presented and viewed by the user, as desired. As described in greater detail below, the query generator 1114 suitably obtains the requested subsets of data 1132 from the multi-tenant database 1130 as needed to populate the tables, reports or other features of the particular virtual app 1128. In various embodiments, app 1128 embodies the functionality of an interactive performance review template linked to a database of performance and testing metrics, as described below in connection with
In various exemplary embodiments, a cost-to-serve (CTS) system is implementing for a CTS service to measure cost attributions of cloud applications and to display aggregated cost metrics in real-time, which includes: a plurality of CTS agent spawned across a plurality of resources to capture a set of instances associated with the plurality of resources wherein the set of instances includes an instance type and usage type. Also, a CTS agent transaction module to publish a set of metrics established by the CTS agent for each instance and usage type. A CTS service collector module to aggregate from each CTS agent, one or more instances from the set of instances to generate transaction metrics at the CTS Service collector of collected transactions based on the aggregated instances and for storing in a CTS store. A CTS measurement service module for measuring a total cost for each selected transaction stored at the CTS store based on a cost per unit. A CTS metrics processor module for aggregating a set of metrics related to the transactions in the CTS store to determine a set of cost attributions for at least a selected cloud. A CTS metrics analytic module to provide cost attribution analytics for cloud applications in the selected cloud in analytics display derived from the measurement of each cost unit and of cost attributions related to transaction data about the usage for each collected transaction. A CTS graphic user interfaces for receiving data from the CTS metrics analytic module to display cost units configured on a plurality of parameters on a cost per hour, cost per week, cost per month, and cost year to date basis.
The cost attribution data is associated with organizations, resources, and request IDs. The CTS agent configured in the first state with an attribution formula to send data about a compute instance to capture a set of instances associated with the plurality of resources. The CTS agent configured in a second state to receive requests via an adaptor for instructing the CTS service. The CTS agent configured in a third state to aggregate a set of requests based on a timer request for instructing the CTS service. A multi-tenant platform configured to communicate via a cloud with the CTS service to generate CTS metrics for each user or group of users connected to the multi-tenant platform with access to the CTS service. A CTS graphic user interfaces for receiving data from the CTS metrics analytic module to display analytic pie charts of cost attributions in accordance with a set at least comprising an organization and a resource.
Techniques and technologies may be described herein in terms of functional and/or logical block components, and with reference to symbolic representations of operations, processing tasks, and functions that may be performed by various computing components or devices. Such operations, tasks, and functions are sometimes referred to as being computer-executed, computerized, software-implemented, or computer-implemented. In practice, one or more processor devices can carry out the described operations, tasks, and functions by manipulating electrical signals representing data bits at memory locations in the system memory, as well as other processing of signals. The memory locations where data bits are maintained are physical locations that have particular electrical, magnetic, optical, or organic properties corresponding to the data bits. It should be appreciated that the various block components shown in the figures may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For example, an embodiment of a system or a component may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices.
When implemented in software or firmware, various elements of the systems described herein are essentially the code segments or instructions that perform the various tasks. The program or code segments can be stored in a processor-readable medium or transmitted by a computer data signal embodied in a carrier wave over a transmission medium or communication path. The “processor-readable medium” or “machine-readable medium” may include any medium that can store or transfer information. Examples of the processor-readable medium include an electronic circuit, a semiconductor memory device, a ROM, a flash memory, an erasable ROM (EROM), a floppy diskette, a CD-ROM, an optical disk, a hard disk, a fiber optic medium, a radio frequency (RF) link, or the like. The computer data signal may include any signal that can propagate over a transmission medium such as electronic network channels, optical fibers, air, electromagnetic paths, or RF links. The code segments may be downloaded via computer networks such as the Internet, an intranet, a LAN, or the like.
For the sake of brevity, conventional techniques related to signal processing, data transmission, signaling, network control, and other functional aspects of the systems (and the individual operating components of the systems) may not be described in detail herein. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in an embodiment of the subject matter.
The various tasks performed in connection with performance CTS metric monitoring may be performed by software, hardware, firmware, or any combination thereof. For illustrative purposes, the following description of object capture, shared display, and process may refer to elements mentioned above in connection with
The foregoing detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, or detailed description.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec et al. | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp et al. | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans et al. | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
7062502 | Kesler | Jun 2006 | B1 |
7069231 | Cinarkaya et al. | Jun 2006 | B1 |
7181758 | Chan | Feb 2007 | B1 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7412455 | Dillon | Aug 2008 | B2 |
7508789 | Chan | Mar 2009 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7730478 | Weissman | Jun 2010 | B2 |
7779475 | Jakobson et al. | Aug 2010 | B2 |
8014943 | Jakobsen | Sep 2011 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8032297 | Jakobsen | Oct 2011 | B2 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8209308 | Rueben et al. | Jun 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8457545 | Chan | Jun 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
8490025 | Jakobson et al. | Jul 2013 | B2 |
8504945 | Jakobson et al. | Aug 2013 | B2 |
8510045 | Rueben et al. | Aug 2013 | B2 |
8510664 | Rueben et al. | Aug 2013 | B2 |
8566301 | Rueben et al. | Oct 2013 | B2 |
8646103 | Jakobson et al. | Feb 2014 | B2 |
10432722 | Jain | Oct 2019 | B2 |
10678602 | Manglik | Jun 2020 | B2 |
10963294 | Fornash | Mar 2021 | B2 |
11171845 | Papacica | Nov 2021 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramanian et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robbins | Nov 2002 | A1 |
20030004971 | Gong | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane et al. | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker et al. | Apr 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec et al. | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio et al. | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20060021019 | Hinton et al. | Jan 2006 | A1 |
20080249972 | Dillon | Oct 2008 | A1 |
20090063414 | White et al. | Mar 2009 | A1 |
20090100342 | Jakobsen | Apr 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20110247051 | Bulumulla et al. | Oct 2011 | A1 |
20120022910 | Chi | Jan 2012 | A1 |
20120042218 | Cinarkaya et al. | Feb 2012 | A1 |
20120218958 | Rangaiah et al. | Aug 2012 | A1 |
20120233137 | Jakobsen et al. | Sep 2012 | A1 |
20130212497 | Zelenko et al. | Aug 2013 | A1 |
20130218948 | Jakobsen | Aug 2013 | A1 |
20130218949 | Jakobsen | Aug 2013 | A1 |
20130218966 | Jakobsen | Aug 2013 | A1 |
20130247216 | Cinarkaya et al. | Sep 2013 | A1 |
20140040656 | Ho | Feb 2014 | A1 |
20140068073 | Peles | Mar 2014 | A1 |
20140279201 | Iyoob | Sep 2014 | A1 |
20150363851 | Stella | Dec 2015 | A1 |
20160321115 | Thorpe | Nov 2016 | A1 |
20170279826 | Mohanty | Sep 2017 | A1 |
20180287864 | Hockett | Oct 2018 | A1 |
20210141708 | Mathur | May 2021 | A1 |
Entry |
---|
Walterbusch, M., Martens, B., & Teuteberg, F. (2013). Evaluating cloud computing services from a total cost of ownership perspective. Management Research Review, 36(6), 613-638. doi:http://dx.doi.org/10.1108/01409171311325769 (Year: 2013). |
Number | Date | Country | |
---|---|---|---|
20210142254 A1 | May 2021 | US |