Systems and methods for recognizing textual identifiers within a plurality of words

Information

  • Patent Grant
  • 10019994
  • Patent Number
    10,019,994
  • Date Filed
    Friday, June 7, 2013
    11 years ago
  • Date Issued
    Tuesday, July 10, 2018
    6 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Desir; Pierre-Louis
    • Wang; Yi-Sheng
    Agents
    • Dentons US LLP
Abstract
Methods and systems for recognizing textual identifiers within a plurality of words are described. A textual representation of a voice input is received from a user. The textual representation includes a plurality of words. A keyword is identified in the textual representation. It is determined whether one or more words adjacent to the keyword correspond to a textual identifier of a collection of textual identifiers. Responsive to a determination that the one or more adjacent words correspond to a textual identifier, the keyword and the one or more adjacent words are replaced with the textual identifier.
Description
TECHNICAL FIELD

The disclosed embodiments relate generally to digital assistant systems, and more specifically, methods of recognizing textual identifiers in textual representations that are input by a user.


BACKGROUND

Just like human personal assistants, digital assistant systems can perform requested tasks and provide requested advice, information, or services. A digital assistant system's ability to fulfill a user's request is dependent on the digital assistant system's correct comprehension of the request or instructions. Recent advances in natural language processing have enabled users to interact with digital assistant systems using natural language, in spoken or textual forms. Such digital assistant systems can interpret the user's input to deduce the user's intent, translate the deduced intent into actionable tasks and parameters, execute operations or deploy services to perform the tasks, and produce output that is intelligible to the user. The ability of a digital assistant system to produce satisfactory responses to user requests depends on the natural language processing, knowledge base, and artificial intelligence available to the digital assistant system.


Also, users are increasingly using mobile devices to post status updates, messages, or blog posts to online services such as social networks, blogs, and the like. Traditionally, however, speech-to-text systems and/or digital assistants have been confined to information retrieval (e.g., web search), transcribing voice inputs for email or text messages, and the like, and have not been able to handle the special types of text that are sometimes used in postings to social networks, such as FACEBOOK or TWITTER. For example, a user may wish to input via a digital assistant special types of text, such as online handles or usernames (e.g., a TWITTER username), tags (e.g., a TWITTER hashtag), etc., that are difficult for traditional speech-to-text systems and/or digital assistants to identify as anything other than simple text. Accordingly, there is a need for digital assistants to be able to recognize when a user intends to input these special types of text via voice input, and process them appropriately.


SUMMARY

As described above, there is a need for digital assistant systems that are capable of recognizing special types of text, and processing them appropriately. This enables the digital assistant to provide a complete and comprehensive experience in contexts where special types of text are provided via voice input. For example, to enable digital assistants to provide a comprehensive user experience when posting to social networks, it is necessary to be able to recognize when a user is attempting to input a textual identifier (e.g., a TWITTER hashtag or username). This is especially helpful where it would otherwise be ambiguous whether a voice input should be transcribed directly, or converted or modified in some way to account for the user's intention. Specifically, a speech-to-text system will simply transcribe words, without recognizing the intent that they should have any special formatting: the spoken utterance “hashtag favorite band” will be transcribed just as it is spoken, rather than as the intended “#FavoriteBand.” The disclosed systems and methods enable digital assistant systems to recognize when a user intends to input a textual identifier via a voice input, and replace it with the appropriate text, symbols, and/or formatting.


Some embodiments provide a method of recognizing textual identifiers within a plurality of words. The method is performed at an electronic device having one or more processors and memory storing one or more programs. The method includes receiving a textual representation of a user's voice input. In some embodiments, the voice input is received from the user. The textual representation including a plurality of words. The method further includes identifying a keyword in the textual representation. The method further includes determining whether one or more words adjacent to the keyword correspond to a textual identifier of a collection of textual identifiers. The method further includes, responsive to a determination that the one or more adjacent words correspond to a textual identifier, replacing the keyword and the one or more adjacent words with the textual identifier. In some embodiments, the method further includes, responsive to a determination that the one or more adjacent words do not correspond to a textual identifier, not replacing the keyword and the one or more adjacent words.


In some embodiments, the adjacent words immediately follow the keyword. In some embodiments, at least one of the one or more adjacent words is composed only of a single letter. In some embodiments, the textual identifier is a concatenation of the one or more adjacent words without interstitial spaces. In some embodiments, the textual identifier is a concatenation of a symbol and the one or more adjacent words without interstitial spaces.


In some embodiments, the textual identifier is a hashtag. In some embodiments, the hashtag is a TWITTER hashtag. In some embodiments, the hashtag includes the symbol “#” followed by one or more words.


In some embodiments, the collection of textual identifiers includes hashtags that were previously identified by a social network. In some embodiments, the collection includes hashtags that meet a predefined popularity metric. In some embodiments, the predefined popularity metric is a frequency of appearance in a social network within a predefined time period.


In some embodiments, the textual identifier is a username. In some embodiments, the username is a TWITTER username. In some embodiments, the username includes the symbol “@” followed by one or more words.


In some embodiments, the collection of textual identifiers includes usernames that are registered in a social network. In some embodiments, the social network is TWITTER.


In some embodiments, the collection of textual identifiers is a contact list of the user. In some embodiments, the collection is a set of usernames previously input by the user. In some embodiments, the textual identifier is an email address.


Some embodiments provide a method of recognizing textual identifiers within a plurality of words. The method is performed at an electronic device having one or more processors and memory storing one or more programs. The method includes receiving a textual representation of a user's voice input, the textual representation including a plurality of words. In some embodiments, the method includes receiving the voice input from the user. The method further includes identifying a first keyword in the textual representation, the first keyword indicating the beginning of a textual tag, and identifying a second keyword in the textual representation, the second keyword indicating the end of a textual tag. The method further includes identifying one or more words between the first keyword and the second keyword. The method further includes replacing the first keyword, the second keyword, and the one or more words therebetween with a textual tag, wherein the textual tag comprises the one or more words.


In some embodiments, the textual tag further comprises a symbol preceding the one or more words. In some embodiments, the symbol is “#.” In some embodiments, the first keyword is “hashtag,” and the second keyword is “end hashtag.” In some embodiments, the textual identifier is a concatenation of the one or more adjacent words without interstitial spaces.


In accordance with some embodiments, a computer-readable storage medium (e.g., a non-transitory computer readable storage medium) is provided, the computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for performing any of the methods described above.


In accordance with some embodiments, an electronic device is provided that comprises means for performing any of the methods described above.


In accordance with some embodiments, an electronic device is provided that comprises a processing unit configured to perform any of the methods described above.


In accordance with some embodiments, an electronic device is provided that comprises one or more processors and memory storing one or more programs for execution by the one or more processors, the one or more programs including instructions for performing any of the methods described above.


In accordance with some embodiments, an information processing apparatus for use in an electronic device is provided, the information processing apparatus comprising means for performing any of the methods described above.


In accordance with some embodiments, a graphical user interface on a portable electronic device or a computer system with a display, a memory, and one or more processors to execute one or more programs stored in the memory is provided, the graphical user interface comprising user interfaces displayed in accordance with any of the methods described above.


Thus, digital assistant systems are provided with new and improved methods that recognize textual identifiers within a plurality of words. Such methods and systems may complement or replace existing methods and systems.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating an environment in which a digital assistant operates in accordance with some embodiments.



FIG. 2 is a block diagram illustrating a digital assistant client system in accordance with some embodiments.



FIG. 3A is a block diagram illustrating a standalone digital assistant system or a digital assistant server system in accordance with some embodiments.



FIG. 3B is a block diagram illustrating functions of the digital assistant shown in FIG. 3A in accordance with some embodiments.



FIG. 3C is a network diagram illustrating a portion of an ontology in accordance with some embodiments.



FIGS. 4A-5C are block diagrams illustrating example user interfaces depicting portions of dialogue between a digital assistant and a user in accordance with some embodiments.



FIGS. 6-7 are flow charts illustrating methods of recognizing textual identifiers within a plurality of words in accordance with some embodiments.





Like reference numerals refer to corresponding parts throughout the drawings.


DESCRIPTION OF EMBODIMENTS

Digital Assistant



FIG. 1 is a block diagram of an operating environment 100 of a digital assistant according to some embodiments. The terms “digital assistant,” “virtual assistant,” “intelligent automated assistant,” or “automatic digital assistant,” refer to any information processing system that interprets natural language input in spoken and/or textual form to deduce user intent (e.g., identify a task type that corresponds to the natural language input), and performs actions based on the deduced user intent (e.g., perform a task corresponding to the identified task type). For example, to act on a deduced user intent, the system can perform one or more of the following: identifying a task flow with steps and parameters designed to accomplish the deduced user intent (e.g., identifying a task type), inputting specific requirements from the deduced user intent into the task flow, executing the task flow by invoking programs, methods, services, APIs, or the like (e.g., sending a request to a service provider); and generating output responses to the user in an audible (e.g., speech) and/or visual form.


Specifically, a digital assistant system is capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request seeks either an informational answer or performance of a task by the digital assistant system. A satisfactory response to the user request is generally either provision of the requested informational answer, performance of the requested task, or a combination of the two. For example, a user may ask the digital assistant system a question, such as “Where am I right now?” Based on the user's current location, the digital assistant may answer, “You are in Central Park near the west gate.” The user may also request the performance of a task, for example, by stating “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant may acknowledge the request by generating a voice output, “Yes, right away,” and then sending a suitable calendar invite from the user's email address to each of the user' friends listed in the user's electronic address book or contact list. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant can also provide responses in other visual or audio forms (e.g., as text, alerts, music, videos, animations, etc.).


As shown in FIG. 1, in some embodiments, a digital assistant system is implemented according to a client-server model. The digital assistant system includes a client-side portion (e.g., 102a and 102b) (hereafter “digital assistant (DA) client 102”) executed on a user device (e.g., 104a and 104b), and a server-side portion 106 (hereafter “digital assistant (DA) server 106”) executed on a server system 108. The DA client 102 communicates with the DA server 106 through one or more networks 110. The DA client 102 provides client-side functionalities such as user-facing input and output processing and communications with the DA server 106. The DA server 106 provides server-side functionalities for any number of DA clients 102 each residing on a respective user device 104 (also called a client device).


In some embodiments, the DA server 106 includes a client-facing I/O interface 112, one or more processing modules 114, data and models 116, and an I/O interface to external services 118. The client-facing I/O interface facilitates the client-facing input and output processing for the digital assistant server 106. The one or more processing modules 114 utilize the data and models 116 to determine the user's intent based on natural language input and perform task execution based on the deduced user intent.


In some embodiments, the DA server 106 communicates with external services 120 (e.g., navigation service(s) 122-1, messaging service(s) 122-2, information service(s) 122-3, calendar service 122-4, telephony service 122-5, social networking service 122-6, etc.) through the network(s) 110 for task completion or information acquisition. In some embodiments, the I/O interface to the external services 118 facilitates such communications. In some embodiments, the DA client 102 communicate with external services 120 through the network(s) 110 for task completion or information acquisition.


Examples of the user device 104 include, but are not limited to, a handheld computer, a personal digital assistant (PDA), a tablet computer, a laptop computer, a desktop computer, a cellular telephone, a smartphone, an enhanced general packet radio service (EGPRS) mobile phone, a media player, a navigation device, a game console, a television, a remote control, or a combination of any two or more of these data processing devices or any other suitable data processing devices. More details on the user device 104 are provided in reference to an exemplary user device 104 shown in FIG. 2.


Examples of the communication network(s) 110 include local area networks (“LAN”) and wide area networks (“WAN”), e.g., the Internet. The communication network(s) 110 may be implemented using any known network protocol, including various wired or wireless protocols, such as Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.


The server system 108 can be implemented on at least one data processing apparatus and/or a distributed network of computers. In some embodiments, the server system 108 also employs various virtual devices and/or services of third party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of the server system 108.


Although the digital assistant system shown in FIG. 1 includes both a client-side portion (e.g., the DA client 102) and a server-side portion (e.g., the DA server 106), in some embodiments, a digital assistant system refers only to the server-side portion (e.g., the DA server 106). In some embodiments, the functions of a digital assistant can be implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different embodiments. For example, in some embodiments, the DA client 102 is a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to the DA server 106. In some other embodiments, the DA client 102 is configured to perform or assist one or more functions of the DA server 106.



FIG. 2 is a block diagram of a user device 104 in accordance with some embodiments. The user device 104 includes a memory interface 202, one or more processors 204, and a peripherals interface 206. The various components in the user device 104 are coupled by one or more communication buses or signal lines. The user device 104 includes various sensors, subsystems, and peripheral devices that are coupled to the peripherals interface 206. The sensors, subsystems, and peripheral devices gather information and/or facilitate various functionalities of the user device 104.


For example, in some embodiments, a motion sensor 210, a light sensor 212, and a proximity sensor 214 are coupled to the peripherals interface 206 to facilitate orientation, light, and proximity sensing functions. In some embodiments, other sensors 216, such as a positioning system (e.g., GPS receiver), a temperature sensor, a biometric sensor, and the like, are connected to the peripherals interface 206, to facilitate related functionalities.


In some embodiments, the user device 104 includes a camera subsystem 220 coupled to the peripherals interface 206. In some embodiments, an optical sensor 222 of the camera subsystem 220 facilitates camera functions, such as taking photographs and recording video clips. In some embodiments, the user device 104 includes one or more wired and/or wireless communication subsystems 224 to provide communication functions. The communication subsystems 224 typically include various communication ports, radio frequency receivers and transmitters, and/or optical (e.g., infrared) receivers and transmitters. In some embodiments, the user device 104 includes an audio subsystem 226 coupled to one or more speakers 228 and one or more microphones 230 to facilitate voice-enabled functions, such as voice recognition, voice transcription, voice replication, digital recording, and telephony functions.


In some embodiments, an I/O subsystem 240 is also coupled to the peripherals interface 206. In some embodiments, the user device 104 includes a touch screen 246, and the I/O subsystem 240 includes a touch screen controller 242 coupled to the touch screen 246. When the user device 104 includes the touch screen 246 and the touch screen controller 242, the touch screen 246 and the touch screen controller 242 are typically configured to, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, such as capacitive, resistive, infrared, surface acoustic wave technologies, proximity sensor arrays, and the like. In some embodiments, the user device 104 includes a display that does not include a touch-sensitive surface. In some embodiments, the user device 104 includes a separate touch-sensitive surface. In some embodiments, the user device 104 includes other input controller(s) 244. When the user device 104 includes the other input controller(s) 244, the other input controller(s) 244 are typically coupled to other input/control devices 248, such as one or more buttons, rocker switches, thumb-wheels, infrared ports, USB ports, and/or pointer devices (such as a stylus).


The memory interface 202 is coupled to memory 250. In some embodiments, the memory 250 includes a non-transitory computer readable medium, such as high-speed random access memory and/or non-volatile memory (e.g., one or more magnetic disk storage devices, one or more flash memory devices, one or more optical storage devices, and/or other non-volatile solid-state memory devices).


In some embodiments, the memory 250 stores an operating system 252, a communications module 254, a graphical user interface (“GUI”) module 256, a sensor processing module 258, a phone module 260, and applications 262, and a subset or superset thereof. The operating system 252 includes instructions for handling basic system services and for performing hardware dependent tasks. The communications module 254 facilitates communicating with one or more additional devices, one or more computers and/or one or more servers. The graphical user interface module 256 facilitates graphic user interface processing. The sensor processing module 258 facilitates sensor-related processing and functions (e.g., processing voice input received with the one or more microphones 228). The phone module 260 facilitates phone-related processes and functions. The application module 262 facilitates various functionalities of user applications, such as electronic-messaging, web browsing, media processing, navigation, imaging and/or other processes and functions. In some embodiments, the user device 104 stores in the memory 250 one or more software applications 270-1 and 270-2 each associated with at least one of the external service providers.


As described above, in some embodiments, the memory 250 also stores client-side digital assistant instructions (e.g., in a digital assistant client module 264) and various user data 266 (e.g., user-specific vocabulary data, preference data, and/or other data such as the user's electronic address book or contact list, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant.


In various embodiments, the digital assistant client module 264 is capable of accepting voice input, text input, touch input, and/or gestural input through various user interfaces (e.g., the I/O subsystem 240) of the user device 104. The digital assistant client module 264 is also capable of providing output in audio, visual, and/or tactile forms. For example, output can be provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, the digital assistant client module 264 communicates with the digital assistant server (e.g., the digital assistant server 106, FIG. 1) using the communication subsystems 224.


In some embodiments, the digital assistant client module 264 utilizes various sensors, subsystems and peripheral devices to gather additional information from the surrounding environment of the user device 104 to establish a context associated with a user input. In some embodiments, the digital assistant client module 264 provides the context information or a subset thereof with the user input to the digital assistant server (e.g., the digital assistant server 106, FIG. 1) to help deduce the user's intent.


In some embodiments, the context information that can accompany the user input includes sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some embodiments, the context information also includes the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signal strength, etc. In some embodiments, information related to the software state of the user device 104, e.g., running processes, installed programs, past and present network activities, background services, error logs, resource usage, etc., of the user device 104 is also provided to the digital assistant server (e.g., the digital assistant server 106, FIG. 1) as context information associated with a user input.


In some embodiments, the DA client module 264 selectively provides information (e.g., at least a portion of the user data 266) stored on the user device 104 in response to requests from the digital assistant server. In some embodiments, the digital assistant client module 264 also elicits additional input from the user via a natural language dialogue or other user interfaces upon request by the digital assistant server 106 (FIG. 1). The digital assistant client module 264 passes the additional input to the digital assistant server 106 to help the digital assistant server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.


In some embodiments, the memory 250 may include additional instructions or fewer instructions. Furthermore, various functions of the user device 104 may be implemented in hardware and/or in firmware, including in one or more signal processing and/or application specific integrated circuits, and the user device 104, thus, need not include all modules and applications illustrated in FIG. 2.



FIG. 3A is a block diagram of an exemplary digital assistant system 300 in accordance with some embodiments. In some embodiments, the digital assistant system 300 is implemented on a standalone computer system. In some embodiments, the digital assistant system 300 is distributed across multiple computers. In some embodiments, some of the modules and functions of the digital assistant are divided into a server portion and a client portion, where the client portion resides on a user device (e.g., the user device 104) and communicates with the server portion (e.g., the server system 108) through one or more networks, e.g., as shown in FIG. 1. In some embodiments, the digital assistant system 300 is an embodiment of the server system 108 (and/or the digital assistant server 106) shown in FIG. 1. In some embodiments, the digital assistant system 300 is implemented in a user device (e.g., the user device 104, FIG. 1), thereby eliminating the need for a client-server system. It should be noted that the digital assistant system 300 is only one example of a digital assistant system, and that the digital assistant system 300 may have more or fewer components than shown, may combine two or more components, or may have a different configuration or arrangement of the components. The various components shown in FIG. 3A may be implemented in hardware, software, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination of thereof.


The digital assistant system 300 includes memory 302, one or more processors 304, an input/output (I/O) interface 306, and a network communications interface 308. These components communicate with one another over one or more communication buses or signal lines 310.


In some embodiments, the memory 302 includes a non-transitory computer readable medium, such as high-speed random access memory and/or a non-volatile computer readable storage medium (e.g., one or more magnetic disk storage devices, one or more flash memory devices, one or more optical storage devices, and/or other non-volatile solid-state memory devices).


The I/O interface 306 couples input/output devices 316 of the digital assistant system 300, such as displays, a keyboards, touch screens, and microphones, to the user interface module 322. The I/O interface 306, in conjunction with the user interface module 322, receives user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and process them accordingly. In some embodiments, when the digital assistant is implemented on a standalone user device, the digital assistant system 300 includes any of the components and I/O and communication interfaces described with respect to the user device 104 in FIG. 2 (e.g., one or more microphones 230). In some embodiments, the digital assistant system 300 represents the server portion of a digital assistant implementation, and interacts with the user through a client-side portion residing on a user device (e.g., the user device 104 shown in FIG. 2).


In some embodiments, the network communications interface 308 includes wired communication port(s) 312 and/or wireless transmission and reception circuitry 314. The wired communication port(s) receive and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 314 typically receives and sends RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications may use any of a plurality of communications standards, protocols and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. The network communications interface 308 enables communication between the digital assistant system 300 with networks, such as the Internet, an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices.


In some embodiments, the non-transitory computer readable storage medium of memory 302 stores programs, modules, instructions, and data structures including all or a subset of: an operating system 318, a communications module 320, a user interface module 322, one or more applications 324, and a digital assistant module 326. The one or more processors 304 execute these programs, modules, and instructions, and reads/writes from/to the data structures.


The operating system 318 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.


The communications module 320 facilitates communications between the digital assistant system 300 with other devices over the network communications interface 308. For example, the communication module 320 may communicate with the communications module 254 of the device 104 shown in FIG. 2. The communications module 320 also includes various software components for handling data received by the wireless circuitry 314 and/or wired communications port 312.


In some embodiments, the user interface module 322 receives commands and/or inputs from a user via the I/O interface 306 (e.g., from a keyboard, touch screen, and/or microphone), and provides user interface objects on a display.


The applications 324 include programs and/or modules that are configured to be executed by the one or more processors 304. For example, if the digital assistant system is implemented on a standalone user device, the applications 324 may include user applications, such as games, a calendar application, a navigation application, or an email application. If the digital assistant system 300 is implemented on a server farm, the applications 324 may include resource management applications, diagnostic applications, or scheduling applications, for example.


The memory 302 also stores the digital assistant module (or the server portion of a digital assistant) 326. In some embodiments, the digital assistant module 326 includes the following sub-modules, or a subset or superset thereof: an input/output processing module 328, a speech-to-text (STT) processing module 330, a natural language processing module 332, a dialogue flow processing module 334, a task flow processing module 336, and a service processing module 338. Each of these processing modules has access to one or more of the following data and models of the digital assistant 326, or a subset or superset thereof: ontology 360, vocabulary index 344, user data 348, task flow models 354, and service models 356.


In some embodiments, using the processing modules (e.g., the input/output processing module 328, the STT processing module 330, the natural language processing module 332, the dialogue flow processing module 334, the task flow processing module 336, and/or the service processing module 338), data, and models implemented in the digital assistant module 326, the digital assistant system 300 performs at least some of the following: identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully deduce the user's intent (e.g., by disambiguating words, names, intentions, etc.); determining the task flow for fulfilling the deduced intent; and executing the task flow to fulfill the deduced intent. In some embodiments, the digital assistant also takes appropriate actions when a satisfactory response was not or could not be provided to the user for various reasons.


As shown in FIG. 3B, in some embodiments, the I/O processing module 328 interacts with the user through the I/O devices 316 in FIG. 3A or with a user device (e.g., a user device 104 in FIG. 1) through the network communications interface 308 in FIG. 3A to obtain user input (e.g., a speech input) and to provide responses to the user input. The I/O processing module 328 optionally obtains context information associated with the user input from the user device, along with or shortly after the receipt of the user input. The context information includes user-specific data, vocabulary, and/or preferences relevant to the user input. In some embodiments, the context information also includes software and hardware states of the device (e.g., the user device 104 in FIG. 1) at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received. In some embodiments, the I/O processing module 328 also sends follow-up questions to, and receives answers from, the user regarding the user request. In some embodiments, when a user request is received by the I/O processing module 328 and the user request contains a speech input, the I/O processing module 328 forwards the speech input to the speech-to-text (STT) processing module 330 for speech-to-text conversions.


In some embodiments, the speech-to-text processing module 330 receives speech input (e.g., a user utterance captured in a voice recording) through the I/O processing module 328. In some embodiments, the speech-to-text processing module 330 uses various acoustic and language models to recognize the speech input as a sequence of phonemes, and ultimately, a sequence of words or tokens written in one or more languages. The speech-to-text processing module 330 is implemented using any suitable speech recognition techniques, acoustic models, and language models, such as Hidden Markov Models, Dynamic Time Warping (DTW)-based speech recognition, and other statistical and/or analytical techniques. In some embodiments, the speech-to-text processing can be performed at least partially by a third party service or on the user's device. Once the speech-to-text processing module 330 obtains the result of the speech-to-text processing (e.g., a sequence of words or tokens), it passes the result to the natural language processing module 332 for intent deduction.


The natural language processing module 332 (“natural language processor”) of the digital assistant 326 takes the sequence of words or tokens (“token sequence”) generated by the speech-to-text processing module 330, and attempts to associate the token sequence with one or more “actionable intents” recognized by the digital assistant. As used herein, an “actionable intent” represents a task that can be performed by the digital assistant 326 and/or the digital assistant system 300 (FIG. 3A), and has an associated task flow implemented in the task flow models 354. The associated task flow is a series of programmed actions and steps that the digital assistant system 300 takes in order to perform the task. The scope of a digital assistant system's capabilities is dependent on the number and variety of task flows that have been implemented and stored in the task flow models 354, or in other words, on the number and variety of “actionable intents” that the digital assistant system 300 recognizes. The effectiveness of the digital assistant system 300, however, is also dependent on the digital assistant system's ability to deduce the correct “actionable intent(s)” from the user request expressed in natural language.


In some embodiments, in addition to the sequence of words or tokens obtained from the speech-to-text processing module 330, the natural language processor 332 also receives context information associated with the user request (e.g., from the I/O processing module 328). The natural language processor 332 optionally uses the context information to clarify, supplement, and/or further define the information contained in the token sequence received from the speech-to-text processing module 330. The context information includes, for example, user preferences, hardware and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like.


In some embodiments, the natural language processing is based on an ontology 360. The ontology 360 is a hierarchical structure containing a plurality of nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.” As noted above, an “actionable intent” represents a task that the digital assistant system 300 is capable of performing (e.g., a task that is “actionable” or can be acted on). A “property” represents a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in the ontology 360 defines how a parameter represented by the property node pertains to the task represented by the actionable intent node.


In some embodiments, the ontology 360 is made up of actionable intent nodes and property nodes. Within the ontology 360, each actionable intent node is linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node is linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, the ontology 360 shown in FIG. 3C includes a “restaurant reservation” node, which is an actionable intent node. Property nodes “restaurant,” “date/time” (for the reservation), and “party size” are each directly linked to the “restaurant reservation” node (i.e., the actionable intent node). In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” are sub-nodes of the property node “restaurant,” and are each linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, the ontology 360 shown in FIG. 3C also includes a “set reminder” node, which is another actionable intent node. Property nodes “date/time” (for the setting the reminder) and “subject” (for the reminder) are each linked to the “set reminder” node. Since the property “date/time” is relevant to both the task of making a restaurant reservation and the task of setting a reminder, the property node “date/time” is linked to both the “restaurant reservation” node and the “set reminder” node in the ontology 360.


An actionable intent node, along with its linked concept nodes, may be described as a “domain.” In the present discussion, each domain is associated with a respective actionable intent, and refers to the group of nodes (and the relationships therebetween) associated with the particular actionable intent. For example, the ontology 360 shown in FIG. 3C includes an example of a restaurant reservation domain 362, a reminder domain 364, and a social network domain 366 within the ontology 360. The restaurant reservation domain includes the actionable intent node “restaurant reservation,” property nodes “restaurant,” “date/time,” and “party size,” and sub-property nodes “cuisine,” “price range,” “phone number,” and “location.” The reminder domain 364 includes the actionable intent node “set reminder,” and property nodes “subject” and “date/time.” The social network domain 366 includes the actionable intent node “post to a social network,” and property nodes “social network ID” and “message body.” In some embodiments, the ontology 360 is made up of many domains. Each domain may share one or more property nodes with one or more other domains. For example, the “date/time” property node may be associated with many other domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to the restaurant reservation domain 362 and the reminder domain 364.


While FIG. 3C illustrates three exemplary domains within the ontology 360, the ontology 360 may include other domains (or actionable intents), such as “initiate a phone call,” “find directions,” “schedule a meeting,” “send a message,” “provide an answer to a question,” and so on. For example, a “send a message” domain is associated with a “send a message” actionable intent node, and may further include property nodes such as “recipient(s),” “message type,” and “message body.” The property node “recipient” may be further defined, for example, by the sub-property nodes such as “recipient name” and “message address.”


In some embodiments, the ontology 360 includes all of the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some embodiments, the ontology 360 may be modified, such as by adding or removing domains or nodes, or by modifying relationships between the nodes within the ontology 360.


In some embodiments, nodes associated with multiple related actionable intents may be clustered under a “super domain” in the ontology 360. For example, a “travel” super-domain may include a cluster of property nodes and actionable intent nodes related to travel. The actionable intent nodes related to travel may include “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. The actionable intent nodes under the same super domain (e.g., the “travel” super domain) may have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest” may share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.”


In some embodiments, each node in the ontology 360 is associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node is the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node can be stored in the vocabulary index 344 (FIG. 3B) in association with the property or actionable intent represented by the node. For example, returning to FIG. 3B, the vocabulary associated with the node for the property of “restaurant” may include words such as “food,” “drinks,” “cuisine,” “hungry,” “eat,” “pizza,” “fast food,” “meal,” and so on. For another example, the vocabulary associated with the node for the actionable intent of “initiate a phone call” may include words and phrases such as “call,” “phone,” “dial,” “ring,” “call this number,” “make a call to,” and so on. The vocabulary index 344 optionally includes words and phrases in different languages.


In some embodiments, the natural language processor 332 shown in FIG. 3B receives the token sequence (e.g., a text string) from the speech-to-text processing module 330, and determines what nodes are implicated by the words in the token sequence. In some embodiments, if a word or phrase in the token sequence is found to be associated with one or more nodes in the ontology 360 (via the vocabulary index 344), the word or phrase will “trigger” or “activate” those nodes. When multiple nodes are “triggered,” based on the quantity and/or relative importance of the activated nodes, the natural language processor 332 will select one of the actionable intents as the task (or task type) that the user intended the digital assistant to perform. In some embodiments, the domain that has the most “triggered” nodes is selected. In some embodiments, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) is selected. In some embodiments, the domain is selected based on a combination of the number and the importance of the triggered nodes. In some embodiments, additional factors are considered in selecting the node as well, such as whether the digital assistant system 300 has previously correctly interpreted a similar request from a user.


In some embodiments, the digital assistant system 300 also stores names of specific entities in the vocabulary index 344, so that when one of these names is detected in the user request, the natural language processor 332 will be able to recognize that the name refers to a specific instance of a property or sub-property in the ontology. In some embodiments, the names of specific entities are names of businesses, restaurants, people, movies, and the like. In some embodiments, the digital assistant system 300 can search and identify specific entity names from other data sources, such as the user's address book or contact list, a movies database, a musicians database, and/or a restaurant database. In some embodiments, when the natural language processor 332 identifies that a word in the token sequence is a name of a specific entity (such as a name in the user's address book or contact list), that word is given additional significance in selecting the actionable intent within the ontology for the user request.


For example, when the words “Mr. Santo” are recognized from the user request, and the last name “Santo” is found in the vocabulary index 344 as one of the contacts in the user's contact list, then it is likely that the user request corresponds to a “send a message” or “initiate a phone call” domain. For another example, when the words “ABC Café” are found in the user request, and the term “ABC Café” is found in the vocabulary index 344 as the name of a particular restaurant in the user's city, then it is likely that the user request corresponds to a “restaurant reservation” domain.


User data 348 includes user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. The natural language processor 332 can use the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” the natural language processor 332 is able to access user data 348 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.


Once the natural language processor 332 identifies an actionable intent (or domain) based on the user request, the natural language processor 332 generates a structured query to represent the identified actionable intent. In some embodiments, the structured query includes parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user may say “Make me a dinner reservation at a sushi place at 7.” In this case, the natural language processor 332 may be able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain may include parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. Based on the information contained in the user's utterance, the natural language processor 332 may generate a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi”} and {Time=“7 pm”}. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} are not specified in the structured query based on the information currently available. In some embodiments, the natural language processor 332 populates some parameters of the structured query with received context information. For example, if the user requested a sushi restaurant “near me,” the natural language processor 332 may populate a {location} parameter in the structured query with GPS coordinates from the user device 104.


In some embodiments, the natural language processor 332 passes the structured query (including any completed parameters) to the task flow processing module 336 (“task flow processor”). The task flow processor 336 is configured to perform one or more of: receiving the structured query from the natural language processor 332, completing the structured query, and performing the actions required to “complete” the user's ultimate request. In some embodiments, the various procedures necessary to complete these tasks are provided in task flow models 354. In some embodiments, the task flow models 354 include procedures for obtaining additional information from the user, and task flows for performing actions associated with the actionable intent.


As described above, in order to complete a structured query, the task flow processor 336 may need to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, the task flow processor 336 invokes the dialogue processing module 334 (“dialogue processor”) to engage in a dialogue with the user. In some embodiments, the dialogue processing module 334 determines how (and/or when) to ask the user for the additional information, and receives and processes the user responses. In some embodiments, the questions are provided to and answers are received from the users through the I/O processing module 328. For example, the dialogue processing module 334 presents dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., touch gesture) responses. Continuing with the example above, when the task flow processor 336 invokes the dialogue processor 334 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” the dialogue processor 334 generates questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, the dialogue processing module 334 populates the structured query with the missing information, or passes the information to the task flow processor 336 to complete the missing information from the structured query.


In some cases, the task flow processor 336 may receive a structured query that has one or more ambiguous properties. For example, a structured query for the “send a message” domain may indicate that the intended recipient is “Bob,” and the user may have multiple contacts named “Bob.” The task flow processor 336 will request that the dialogue processor 334 disambiguate this property of the structured query. In turn, the dialogue processor 334 may ask the user “Which Bob?”, and display (or read) a list of contacts named “Bob” from which the user may choose.


Once the task flow processor 336 has completed the structured query for an actionable intent, the task flow processor 336 proceeds to perform the ultimate task associated with the actionable intent. Accordingly, the task flow processor 336 executes the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” may include steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=Mar. 12, 2012, time=7 pm, party size=5}, the task flow processor 336 may perform the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system that is configured to accept reservations for multiple restaurants, such as the ABC Café, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.


In some embodiments, the task flow processor 336 employs the assistance of a service processing module 338 (“service processor”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, the service processor 338 can act on behalf of the task flow processor 336 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third party services (e.g. a restaurant reservation portal, a social networking website or service, a banking portal, etc.). In some embodiments, the protocols and application programming interfaces (API) required by each service can be specified by a respective service model among the service models 356. The service processor 338 accesses the appropriate service model for a service and generates requests for the service in accordance with the protocols and APIs required by the service according to the service model.


For example, if a restaurant has enabled an online reservation service, the restaurant can submit a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameters to the online reservation service. When requested by the task flow processor 336, the service processor 338 can establish a network connection with the online reservation service using the web address stored in the service models 356, and send the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.


For another example, a social networking service can submit a service model specifying the necessary parameters for posting a message to the service and the APIs for communicating the values of the necessary parameters to the social networking service. When requested by the task flow processor 336, the service processor 338 can establish a network connection with the social networking service using a web address stored in the service models 356, and send the necessary parameters of the message (e.g., account username, credentials, message content) to the social networking service in a format according to the established API.


In some embodiments, the natural language processor 332, dialogue processor 334, and task flow processor 336 are used collectively and iteratively to deduce and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (e.g., provide an output to the user, or complete a task) to fulfill the user's intent.


In some embodiments, after all of the tasks needed to fulfill the user's request have been performed, the digital assistant 326 formulates a confirmation response, and sends the response back to the user through the I/O processing module 328. If the user request seeks an informational answer, the confirmation response presents the requested information to the user. In some embodiments, the digital assistant also requests the user to indicate whether the user is satisfied with the response produced by the digital assistant 326.


Automatic Identification of Textual Identifiers


As noted above, digital assistants are sometimes used to quickly and easily create textual messages to be sent to a recipient (e.g., via text message, email, etc.), or posted to an information service (e.g., a social network, a blog, a website, etc.). For example, a user may tell a digital assistant to “Send Bob a text message saying I'm on my way,” causing the digital assistant to send a text message (e.g., via short message service, or “SMS”) with the content “I'm on my way.” The user's utterance is, for example, transcribed by the speech-to-text processing module 330 of a digital assistant system 300. Once transcribed, the digital assistant uses the converted text to determine the user's intent (to send a text message) and the intended content of the message (“I'm on my way”).


Increasingly, users are also using mobile devices to post status updates, messages, or blog posts to external services such as social networks, blogs, and the like. Many social networks provide mobile-device applications (e.g., included in applications 262) from which a user can input a message to be posted, broadcast, or otherwise made available to other users. For example, a FACEBOOK application may allow a user to post status updates to his FACEBOOK account. Likewise, a TWITTER application may allow a user to compose and post short text messages, or “tweets,” which are then posted to or made available to other TWITTER users.


However, text input mechanisms for portable electronic devices, such as smart phones, tend to be very small, and inputting text can be cumbersome and time consuming. Accordingly, it would be advantageous to leverage the capabilities of a digital assistant, including its speech-to-text capabilities, to help simplify text input for messages and social network postings. Moreover, because the digital assistant can interact with external services, such as a social networking service 122-6, the digital assistant can post a user's text directly to that external service without requiring the user to open a separate application associated with that service (e.g., a dedicated FACEBOOK or TWITTER application). In some embodiments, a digital assistant is permitted to post to a particular service if there is an application associated with that service installed on the same device as the digital assistant, or otherwise associated with a user of the digital assistant.


While a typical speech-to-text system may simplify text input on mobile devices, it will not allow a user to take advantage of all of the functionality provided by certain services or social networks. Specifically, some social networks allow special textual identifiers to differentiate and/or signify certain types of information within their postings. For example, a social networking service may use special characters to signify portions of the text that correspond to usernames or tags within a posting. The social network may use these characters to facilitate indexing, searching, and/or analyzing postings, and/or to differentiate (graphically or otherwise) the usernames or tags from the surrounding text.


One social networking service that uses special textual identifiers to signify certain types of information is TWITTER, where users compose short messages (e.g., containing 144 characters or less), and post those messages to their accounts. These messages, or “tweets,” are then available to other users within the social network. In many cases, a user's tweets are sent to the accounts of anyone who has chosen to “follow” the user, rather than to a specified addressee (as in the case of email or text messages).


Two examples of special textual identifiers recognized in TWITTER messages are the username and the hashtag. TWITTER usernames uniquely identify members of the social network, and are preceded by the “@” symbol. For example, a user may be associated with a username “@user1234.” (The “@” symbol is typically verbalized as the word “at,” so this username may be spoken as “at user 1234.”) Usernames are often included in the text of a tweet, for example, when a user is responding to or referring to another user. Usernames can then be used to organize messages for searching, categorization, and the like, such as when someone wishes to search for tweets posted by a particular user, or that mention a particular user.


Hashtags are any combination of words, letters, numbers, and/or symbols that follow a “#” symbol (without interstitial spaces). As discussed below, hashtags can be used to organize messages for searching, categorization, and the like. In many cases, hashtags are contextually relevant to the tweet in which they are included. For example, a user may compose a tweet saying “I like Mint Chocolate Chip! #FavoriteIceCream.” In this case, the hashtag “#FavoriteIceCream” is relevant to the content of the tweet. Often, hashtags become social trends, and numerous users will post tweets with the same hashtag in order to participate in the trend. For example, another user may read the above tweet regarding his friend's preference for mint chocolate chip ice cream, and post a message with his preference: “Call me boring, but I love vanilla! #FavoriteIceCream.”


As noted above, usernames and hashtags can be used to facilitate indexing, searching, and analyzing messages posted to a social network, such as TWITTER. For example, a TWITTER user can easily search for tweets that mention a particular person by entering that person's TWITTER username into a search field. Because usernames are preceded by the “@” symbol, searching for tweets based on usernames can be performed faster and more efficiently than by full text searching. Similarly, a user can search for tweets that refer to a particular subject matter by searching for an associated hashtag. Continuing the example from above, a user may search for all tweets with the hashtag “#FavoriteIceCream” in order to find other tweets containing (and presumably related to) that hashtag.


Typical speech-to-text systems are not suitable, however, for composing messages that include properly formatted TWITTER usernames and hashtags. For example, typical speech-to-text systems attempt to place spaces between each successive word uttered by a user, which makes it difficult to input a hashtag or username that is composed of more than one word strung together without spaces. Thus, if a user intended to input the hashtag “#FavoriteIceCream” using a typical speech-to-text system, the user's utterance would be transcribed as separate words, resulting in the text “hashtag favorite ice cream,” which fails to capture the user's intent. Indeed, a typical speech-to-text system will not recognize that “hashtag” indicates the beginning of a special textual identifier, nor will it identify that one or more of the uttered words should be concatenated into one continuous string of characters. This problem is exacerbated by the fact that any user may create new hashtags at any time: there is no rule by which the typical speech-to-text system could identify which words following the word “hashtag” (or some other suitable keyword) should be concatenated. This is especially true because hashtags need not be placed at the end of a message—they may be placed at the beginning or in the middle of a message. For example, a user may intend to compose a message saying “Trying my #FavoriteIceCream at the ice cream stand. Rocky Road!” Typical speech-to-text transcriptions may transcribe the utterance as “hashtag favorite ice cream at the ice cream stand . . . ” or “#favorite ice cream at the ice cream stand . . . ,” neither of which captures the user's intent. Usernames present similar problems, because they may be composed of multiple words, letters, numbers, etc. For example, a username “@HannahBee2” would be difficult to correctly transcribe using traditional speech-to-text systems.


Accordingly, it would be beneficial to provide a digital assistant that can correctly transcribe usernames and hashtags (and/or other special textual identifiers) for inclusion into messages, tweets, emails, and the like. In some embodiments, a digital assistant (e.g., digital assistant system 300) is configured to recognize that certain parts of a transcribed speech input correspond to a special textual identifier such as a username or a hashtag. In some embodiments, the digital assistant is configured to recognize one or more keywords indicating that one or more words, letters, numbers, and/or symbols following or preceding the keyword should be replaced with a properly formatted username or hashtag. In some embodiments, the digital assistant determines whether one or more of the words, letters, etc., following or preceding a keyword correspond to a known hashtag or username. The following discussion provides details of a digital assistant that can recognize special textual identifiers as described.



FIG. 4A illustrates an example of a user interface 400 showing a possible dialogue between a user and a digital assistant in accordance with some embodiments. In this example, the digital assistant module 326 (e.g., using the speech to text processing module 330) transcribed an utterance from a user including the words “Tweet having lunch with at Hannah Baxter.” The digital assistant 326 uses natural language processing (e.g., with the natural language processing module 332) to determine that the user is requesting the digital assistant to post a message to the user's TWITTER feed.


In some embodiments, the digital assistant displays this transcription to the user in bubble 402. In this example, the words “at Hannah Baxter” suggest that the user intended to include Hannah Baxter's username in the tweet. However, the username is not properly reflected in the transcription. Thus, the digital assistant identifies that “at Hannah Baxter” should be replaced with a username associated with Hannah Baxter.


In some embodiments, in order to identify and replace text with an intended username, the digital assistant 326 recognizes a particular word in the transcribed utterance as a keyword indicating that one or more of the following words (or nearby words) refer to a particular person who is associated with a username. In this example, the digital assistant 326 recognizes the word “at” as the keyword, though other keywords may also be used. In some cases, a user will simply recite a person's name (e.g., “Hannah Baxter”), and the digital assistant will determine the appropriate username to include (e.g., “@HannahBee2”). In other cases, a user will recite an actual username (e.g., by saying “at Hannah Be Two”).


Returning to FIG. 4A, the digital assistant identifies the appropriate username, and replaces the transcription “at Hannah Baxter” with the username “@HannahBee2”. In some embodiments, the digital assistant identifies usernames included in a tweet by searching a contact list associated with the user of the digital assistant. In the present example, the digital assistant may search a contact list on a user device 104 in order to determine the appropriate username of a person named Hannah Baxter. In some embodiments, the digital assistant 326 identifies usernames by searching a list of usernames within a social network, such as all usernames within the social network, or usernames of people that are specifically associated with the user (e.g., usernames of the user's followers, usernames of people that the user is following, etc.). Once the username is identified, the digital assistant 326 may present the tweet, including the properly formatted username, in the preview bubble 404. In some embodiments, the preview bubble 404 is displayed without also displaying the bubble 402 with the first transcribed input.


As noted above, a user may dictate an actual username, rather than simply referring to the proper name of a particular user. FIG. 4B illustrates an example of another user interface 410 showing a possible dialogue between a user and a digital assistant in accordance with some embodiments. In this example, the user dictated a verbal representation of the username associated with Hannah Baxter. Bubble 412 displays a transcription of the user's utterance: “Tweet having lunch with at Hannah Be Two.” The digital assistant 326 can recognize that one or more words following “at” might represent a username, and search for possible usernames with which to replace the transcribed text. For example, the digital assistant may search a contact list on the user device 104 (or a group of usernames registered within the social network) for users that have a username corresponding to “@Hannah,” “@HannahB,” “@HannahBee,” “@HannahB2,” etc. If the digital assistant identifies a username that is an appropriate match, the transcribed text can be replaced with the identified username. If the digital assistant identifies more than one possible match (e.g., “@HannahBToo” and “@HannahBee2”), the digital assistant may engage in a dialogue with the user to disambiguate the input. The bubble 414 illustrates a possible disambiguation dialogue, where the digital assistant 326 asks the user to specify which username was intended. The user may select the intended username, via voice or touch input, for example. The selected username is then included in the preview bubble 416 for the user to review. In some embodiments, if no username can be identified, the digital assistant will not replace the transcribed words with a username, and will simply use the transcribed words as identified by the speech-to-text processing module 330 and/or the natural language processing module 332.


In some embodiments, a digital assistant 326 does not rely on keywords in order to automatically identify and replace input text with usernames or other textual identifiers. For example, a user may provide an utterance that includes a name of a person without any keywords, such as “Tweet having lunch with Hannah Baxter.” In some embodiments, the digital assistant will search the input text for words that correspond to names in the user's contact list, or names of people that are associated with any of the user's social networks. If a name is found in the input text, the digital assistant may replace the name with the appropriate username (e.g., a TWITTER username). In some embodiments, the digital assistant will prompt the user to confirm whether an identified username should be used in place of the plain-text name.


Another example of a textual identifier that a digital assistant 326 can recognize in a spoken utterance is a hashtag. As described above with reference to usernames, in some embodiments, the digital assistant is configured to replace one or more words following a certain keyword with a properly formatted hashtag. A properly formatted hashtag may comprise a string of words, letters, numbers, and/or symbols that follow a “#” symbol (without interstitial spaces).



FIG. 5A illustrates an example of a user interface 500 showing a possible dialogue between a user and a digital assistant in accordance with some embodiments. In this example, the digital assistant 326 (e.g., using the speech to text processing module 330) transcribed an utterance from a user including the words “Tweet I don't care what flavor, just give me lots hashtag favorite ice cream.” In some embodiments, the digital assistant 326 provides this transcription in the bubble 502. FIG. 5A illustrates an example where the term “hashtag” acts as a keyword to indicate that one or more of the following (or nearby) words should be replaced with a properly formatted hashtag. Other keywords could be used instead or in addition to “hashtag,” including, for example, “hash,” “tag,” “pound,” “mark,” etc. Upon detection of the keyword, the digital assistant 326 will attempt to replace one or more of the words following (or preceding) the keyword with a properly formatted hashtag. In some embodiments, the digital assistant creates a properly formatted hashtag by concatenating all (or at least some) of the words following the keyword, and adding the proper symbol to the beginning of the concatenated text. As shown in the preview bubble 504, the digital assistant 326 has replaced the text “hashtag favorite ice cream” with “#FavoriteIceCream.”


However, it is not always the case that every word following a keyword is intended to be part of the hashtag. For example, a hashtag comprising multiple concatenated words may be placed at the beginning or middle of a message, making it difficult to determine which words should be converted to a hashtag, and which should not. FIG. 5B illustrates an example of a user interface 510 showing a possible dialogue between a user and a digital assistant where the user placed a hashtag in between other textual portions of a message, in accordance with some embodiments. In this example, the digital assistant (e.g., using the speech to text processing module 330) transcribed an utterance from a user including the words “Tweet Vanilla. Can you believe my hashtag favorite ice cream is so boring?” In some embodiments, the digital assistant 326 provides this transcription in the bubble 512. Once again, the digital assistant 326 recognizes that the word “hashtag” indicates the possibility that the user intends one or more of the following words to be replaced with a properly formatted hashtag. In this case, however, it is not clear what those words may be. For example, it not clear whether the user intended the message to include “#Favorite,” “#FavoriteIceCream,” or “#FavoriteIceCreamIsSoBoring.” The problem is exacerbated by the fact that hashtags need not follow any particular grammar, or even be composed of complete words (e.g., #AMA, #M5, #CNN, etc.).


In some embodiments, in order to correctly identify text that is intended to correspond to a hashtag, the digital assistant 326 determines whether the user's input corresponds to any of a set of known hashtags. Because hashtags often represent a popular social themes, ideas, sentiments, etc., people will include a hashtag in a message after seeing it in other people's messages, or after seeing it in a list of popular hashtags. Thus, in some embodiments, the digital assistant 326 (in some embodiments, in combination with social networking service 122-6) searches among a set of currently popular hashtags for any that match one or more of the words following the keyword. In another example, the digital assistant 326 may search among a set of hashtags that are found in messages (e.g., tweets) that the user has recently read, or which are posted to the user's account. The digital assistant 326 then attempts to identify popular hashtags that may match the words input by the user. In FIG. 5B, the candidate words that may comprise the hashtag are those that follow the keyword: “favorite ice cream is so boring.” In some embodiments, the digital assistant 326 will search for various potential concatenations of these words (e.g., “#Favorite,” “#FavoriteIce,” “#FavoriteIceCream,” etc.) to determine a best candidate hashtag. If one of the hashtags matches (or is similar to), for example, a popular hashtag or a recently read hashtag, that particular combination of words and/or characters is converted into a properly formatted hashtag for inclusion into the user's message. In some embodiments, matching algorithms also account for possible transcription errors in searching for candidate hashtags. For example, if a user's utterance was incorrectly transcribed as “hashtag favorite eyes cream,” the digital assistant 326 can determine, using an appropriate algorithm (e.g., by searching previously used hashtags), that this is similar to “#FavoriteIceCream,” and replace the transcribed text accordingly.


In some embodiments, the digital assistant requests additional input from a user to disambiguate possible candidate hashtags. This may occur, for example, when the digital assistant finds multiple possible hashtags for different combinations of transcribed words, when there are two or more possible transcriptions, and/or when no popular hashtag is found and it is not obvious what words the user intended to be included in the hashtag. For example, the digital assistant may ask the user “Did you mean: #Favorite; #FavoriteIceCream; or #FavoriteIceCreamIsSoBoring?” The user may then select the intended hashtag, via voice or touch input, for example.


Once the digital assistant determines the best candidate hashtag, or once the user selects the intended hashtag, the formatted message may be displayed in the preview bubble 514, including the properly formatted hashtag “#FavoriteIceCream.”


In some embodiments, keywords can also be used to signal the end of an intended hashtag. Specifically, the digital assistant may recognize a first keyword indicating the beginning of a hashtag (e.g., the word “hashtag”), and a second keyword to indicate the end of a hashtag (e.g., “hashtag” or “end hashtag”). Other keywords may also be used instead of or in addition to these, such as “hash start” and “hash end,” or simply “hash” and “hash.” FIG. 5C illustrates an example of a user interface 520 showing a dialogue between a user and a digital assistant where the user indicated both the beginning and the end of a hashtag with keywords, in accordance with some embodiments. In this example, the digital assistant 326 (e.g., using the speech to text processing module 330) transcribed an utterance from a user including the words “Tweet Vanilla. Can you believe my hashtag favorite ice cream end hashtag is so boring?” In some embodiments, this transcription is provided in bubble 522. The digital assistant 326 recognizes the keywords “hashtag” and “end hashtag,” and creates a properly formatted hashtag using the words, numbers, and/or characters therebetween. As shown in preview bubble 524, the hashtag “#FavoriteIceCream” has been inserted into the message by the digital assistant 326 in response to recognizing the two keywords.



FIG. 6 is a flow diagram illustrating a method 600 of recognizing textual identifiers within a plurality of words, in accordance with some embodiments. Textual identifiers are a type of special text that may be included in a body of text, and typically identify a particular person, theme, idea, comment, trend, etc. Textual identifiers include, for example, usernames (e.g., TWITTER usernames), tags (e.g., TWITTER hashtags), email addresses, and the like. In some embodiments, the method 600 is performed by the digital assistant system 300. In some embodiments, the method 600 is performed by the natural language processing module 332 of the digital assistant system 300.


In some embodiments, a voice input is received (601) from a user. The digital assistant receives (602) a textual representation of the user's voice input, the textual representation including a plurality of words. In some embodiments, the textual representation is generated by the speech-to-text processing module 330. In some embodiments, the textual representation is a file or data structure containing text that represents of one or more words, characters, etc. In some embodiments, the voice input is received via a microphone (e.g., microphone 230) of the user device 104. In some embodiments, the voice input is received at the same device that receives the textual representation (e.g., the user device 104).


The digital assistant identifies (604) a keyword in the textual representation. In some embodiments, the keyword is used to indicate that one or more of the following or adjacent words comprise a textual identifier. Any word(s) may be chosen as a keyword (including characters, numbers, letters, etc.), and the present method may recognize multiple types of textual identifiers, each identified by one or more keywords. In some embodiments, the keyword signaling a username is “at.” In some embodiments, the keyword signaling a hashtag is “hashtag.” In some embodiments, the keyword for a textual identifier corresponds to a symbol that signifies the textual identifier (e.g., “@” for a username, “#” for a hashtag).


In some embodiments, certain keywords are recognized only in the appropriate context. For example, if a user is composing a typical text message or email, the digital assistant may not attempt to identify usernames or hashtags, for example, by detecting keywords. In some embodiments, different keywords are used to trigger different behaviors in different contexts. For example, when composing a TWITTER message, the method may recognize the keywords “at” and/or “hashtag.” When composing a different type of message or posting, however, the method may recognize the keywords “nickname” and/or “topic.”


The digital assistant determines (606) whether one or more words adjacent to the keyword correspond to a textual identifier of a collection of textual identifiers. In some embodiments, the one or more adjacent words precede the keyword. In some embodiments, the one or more adjacent words follow the keyword. In some embodiments, the one or more adjacent words include words following and words preceding the keyword.


In some embodiments, the collection of textual identifiers is a set of usernames in a contact list associated with a user. In some embodiments, the collection is a set of usernames previously input by the user. In some embodiments, the collection is a set of usernames associated with a social networking account of the user. In some embodiments, the collection includes some or all usernames that are registered in a social network. In some embodiments, the collection includes hashtags that were previously input by the user. In some embodiments, the collection includes hashtags that were previously identified by a social network. In some embodiments, the collection includes hashtags that meet a predefined popularity metric. An example of a popularity metric in accordance with some embodiments is a frequency of appearance of the hashtag in a social network within a predefined time period.


Responsive to a determination that the one or more adjacent words correspond to a textual identifier, the digital assistant replaces (608) the keyword and the one or more adjacent words with the textual identifier. In some embodiments, at least one of the one or more adjacent words are composed only of a single letter. In some embodiments, the textual identifier is a concatenation of the one or more adjacent words without interstitial spaces. In some embodiments, the textual identifier is a concatenation of a symbol and the one or more adjacent words without interstitial spaces. In some embodiments, the symbol is “@.” In some embodiments, the symbol is “#.”


In some cases, a user may wish to include a keyword (e.g., “at,” “hashtag,” “tag,” etc.) in a message, but does not want the word to identify a textual identifier. Accordingly, in some embodiments, responsive to determining that the one or more adjacent words do not correspond to a textual identifier, the digital assistant will not replace (610) the keyword with the word.



FIG. 7 is a flow diagram illustrating a method 700 of recognizing textual identifiers within a plurality of words, in accordance with some embodiments. In some embodiments, the method 700 is performed by the natural language processing module 332 of the digital assistant system 300.


In some embodiments, a voice input is received (701) from a user. The digital assistant receives (702) a textual representation of the user's voice input, the textual representation including a plurality of words. In some embodiments, the textual representation is generated by the speech-to-text processing module 330. In some embodiments, the textual representation is a file or data structure containing text that represents of one or more words, characters, etc. In some embodiments, the voice input is received via a microphone (e.g., microphone 230) of a user device 104. In some embodiments, the voice input is received at the same device that receives the textual representation (e.g., the user device 104).


The digital assistant identifies (704) a first keyword in the textual representation, the first keyword indicating the beginning of a textual tag. In some embodiments, the first keyword is “hashtag,” though any other suitable keyword could be used, such as “at,” “begin tag,” “tag,” etc.


The digital assistant identifies (706) a second keyword in the textual representation, the second keyword indicating the end of a textual tag. In some embodiments, the second keyword is “end hashtag,” though any other suitable keyword could be used, such as “hashtag,” “end tag,” “end at,” etc.


The digital assistant identifies (708) one or more words between the first keyword and the second keyword. The digital assistant then replaces (710) the first keyword, the second keyword, and the one or more words therebetween with a textual tag, wherein the textual tag comprises the one or more words. In some embodiments, the textual tag is a hashtag. In some embodiments, the textual tag comprises a symbol (such as “#”) preceding the one or more words.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the disclosed embodiments to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles and practical applications of the disclosed ideas, to thereby enable others skilled in the art to best utilize them with various modifications as are suited to the particular use contemplated.

Claims
  • 1. A method of recognizing textual identifiers within a plurality of words, comprising: at an electronic device, which comprises a digital assistant, having one or more processors and memory storing one or more programs that when executed by the one or more processors cause the electronic device to perform the method:receiving voice input from a user and processing the voice input using natural language processing to produce a textual representation, the textual representation including a plurality of words;identifying, from the textual representation, an actionable intent from among a plurality of actionable intents recognizable by the electronic device, the actionable intent corresponding to tasks that can be performed by the electronic device;identifying a keyword in the textual representation;determining whether one or more words adjacent to the keyword correspond to a textual identifier of a collection of textual identifiers; andwherein, responsive to the identified actionable intent and a determination that the one or more adjacent words correspond to a properly formatted textual identifier, the digital assistant replaces the keyword and the one or more adjacent words with the textual identifier,wherein the textual identifier is a known hashtag or a username,wherein, if the textual identifier is a known hashtag, the collection includes hashtags that were previously identified by a social network,wherein, if the textual identifier is a username, the collection is a set of usernames that are registered in the social network.
  • 2. The method of claim 1, wherein the textual identifier is a known hashtag.
  • 3. The method of claim 2, wherein the known hashtag includes the symbol “#” followed by one or more words.
  • 4. The method of claim 2, wherein the collection includes hashtags that meet a predefined popularity metric.
  • 5. The method of claim 4, wherein the predefined popularity metric is a frequency of appearance in the social network within a predefined time period.
  • 6. The method of claim 1, wherein the textual identifier is a username.
  • 7. The method of claim 6, wherein the keyword corresponds to the symbol “@” and the word “at”.
  • 8. The method of claim 1, wherein the collection is a contact list of the user.
  • 9. The method of claim 1, wherein the collection is a set of usernames previously input by the user.
  • 10. The method of claim 1, wherein the adjacent words immediately follow the keyword.
  • 11. The method of claim 1, wherein the textual identifier is a concatenation of the one or more adjacent words without interstitial spaces.
  • 12. The method of claim 1, wherein the textual identifier is a concatenation of a symbol and the one or more adjacent words without interstitial spaces.
  • 13. The method of claim 1, further comprising: displaying the textual representation on a display of the electronic device.
  • 14. The method of claim 13, wherein replacing the keyword and the one or more adjacent words with the textual identifier comprises replacing the keyword and the one or more adjacent words with the textual identifier on the display of the electronic device.
  • 15. An electronic device, comprising: one or more processors;memory; andone or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for:receiving voice input from a user and processing the voice input using natural language processing to produce a textual representation, the textual representation including a plurality of words;identifying, from the textual representation, an actionable intent from among a plurality of actionable intents recognizable by the electronic device, the actionable intents corresponding to tasks that can be performed by the electronic device;identifying a keyword in the textual representation;determining whether one or more words adjacent to the keyword correspond to a textual identifier of a collection of textual identifiers; andwherein, responsive to the identified actionable intent and a determination that the one or more adjacent words correspond to a properly formatted textual identifier, the digital assistant replaces the keyword and the one or more adjacent words with the textual identifier,wherein the textual identifier is a known hashtag or a username,wherein, if the textual identifier is a known hashtag, the collection includes hashtags that were previously identified by a social network,wherein if the textual identifier is a username the collection is a set of usernames that are registered in the social network.
  • 16. The electronic device of claim 15, wherein the textual identifier is a known hashtag.
  • 17. The electronic device of claim 16, wherein the known hashtag includes the symbol “#”followed by one or more words.
  • 18. The electronic device of claim 15, wherein the textual identifier is a concatenation of the one or more adjacent words without interstitial spaces.
  • 19. The electronic device of claim 15, wherein the textual identifier is a concatenation of a symbol and the one or more adjacent words without interstitial spaces.
  • 20. The electronic device of claim 15, wherein the one or more programs further include instructions for: displaying the textual representation on a display of the electronic device.
  • 21. The electronic device of claim 20, wherein replacing the keyword and the one or more adjacent words with the textual identifier comprises replacing the keyword and the one or more adjacent words with the textual identifier on the display of the electronic device.
  • 22. A non-transitory computer readable storage medium storing one or more programs, the one or more programs including instructions, which when executed by an electronic device, cause the device to: receive voice input from a user and processing the voice input using natural language processing to produce a textual representation the textual representation including a plurality of words;identify, from the textual representation, an actionable intent from among a plurality of actionable intents recognizable by the electronic device, the actionable intent corresponding to tasks that can be performed by the electronic device;identify a keyword in the textual representation;determine whether one or more words adjacent to the keyword correspond to a textual identifier of a collection of textual identifiers; andwherein, responsive to the identified actionable intent and a determination that the one or more adjacent words correspond to a properly formatted textual identifier, replaeeth_e digital assistant replaces the keyword and the one or more adjacent words with the textual identifier,wherein the textual identifier is a known hashtag or a username, wherein, if the textual identifier is a known hashtag, the collection includes hashtags that were previously identified by a social network,wherein if the textual identifier is a username the collection is a set of usernames that are registered in the social network.
  • 23. The non-transitory computer readable medium of claim 22, wherein the textual identifier is a known hashtag.
  • 24. The non-transitory computer readable medium of claim 23, wherein the known hashtag includes the symbol“#” followed by one or more words.
  • 25. The non-transitory computer readable storage medium of claim 22, wherein the textual identifier is a concatenation of the one or more adjacent words without interstitial spaces.
  • 26. The non-transitory computer readable storage medium of claim 22, wherein the textual identifier is a concatenation of a symbol and the one or more adjacent words without interstitial spaces.
  • 27. The non-transitory computer readable storage medium of claim 22, wherein the one or more programs further include instructions, which when executed by the electronic device, cause the device to: display the textual representation on a display of the electronic device.
  • 28. The non-transitory computer readable storage medium of claim 27, wherein replacing the keyword and the one or more adjacent words with the textual identifier comprises replacing the keyword and the one or more adjacent words with the textual identifier on the display of the electronic device.
  • 29. A method comprising: at an electronic device, which comprises a digital assistant, having one or more processors, a display, and memory storing one or more programs that when executed by the one or more processors cause the electronic device to perform the method:receiving a voice input from a user and processing the voice input using natural language processing to produce first textual representation, the first textual representation including a plurality of words;displaying the first textual representation on the display;identifying, from the textual representation, an actionable intent from among a plurality of actionable intents recognizable by the electronic device, the actionable intent corresponding to tasks that can be performed by the electronic device;identifying a keyword in the first textual representation;determining whether one or more words adjacent to the keyword correspond to a textual identifier of a collection of textual identifiers,wherein, responsive to the identified actionable intent and a determination that the one or more adjacent words correspond to a properly formatted textual identifier, the digital assistant replaces the keyword and the one or more adjacent words with the textual identifier to provide a second textual representation; anddisplaying the second textual representation on the display,wherein the textual identifier is a known hashtag or a username,wherein, if the textual identifier is a known hashtag, the collection includes hashtags that were previously identified by a social network,wherein if the textual identifier is a username the collection is a set of usernames that are registered in the social network.
  • 30. The method of claim 29, further comprising: providing the second textual representation to another electronic deVice in response to a user input.
RELATED APPLICATION

This application claims priority to U.S. Provisional Application Ser. No. 61/657,723, filed Jun. 8, 2012, which is incorporated herein by reference in its entirety.

US Referenced Citations (662)
Number Name Date Kind
3704345 Coker et al. Nov 1972 A
3828132 Flanagan et al. Aug 1974 A
3979557 Schulman et al. Sep 1976 A
4278838 Antonov Jul 1981 A
4282405 Taguchi Aug 1981 A
4310721 Manley et al. Jan 1982 A
4348553 Baker et al. Sep 1982 A
4653021 Takagi Mar 1987 A
4688195 Thompson et al. Aug 1987 A
4692941 Jacks et al. Sep 1987 A
4718094 Bahl et al. Jan 1988 A
4724542 Williford Feb 1988 A
4726065 Froessl Feb 1988 A
4727354 Lindsay Feb 1988 A
4776016 Hansen Oct 1988 A
4783807 Marley Nov 1988 A
4811243 Racine Mar 1989 A
4819271 Bahl et al. Apr 1989 A
4827520 Zeinstra May 1989 A
4829576 Porter May 1989 A
4833712 Bahl et al. May 1989 A
4839853 Deerwester et al. Jun 1989 A
4852168 Sprague Jul 1989 A
4862504 Nomura Aug 1989 A
4878230 Murakami et al. Oct 1989 A
4903305 Gillick et al. Feb 1990 A
4905163 Garber et al. Feb 1990 A
4914586 Swinehart et al. Apr 1990 A
4914590 Loatman et al. Apr 1990 A
4944013 Gouvianakis et al. Jul 1990 A
4955047 Morganstein et al. Sep 1990 A
4965763 Zamora Oct 1990 A
4974191 Amirghodsi et al. Nov 1990 A
4977598 Doddington et al. Dec 1990 A
4992972 Brooks et al. Feb 1991 A
5010574 Wang Apr 1991 A
5020112 Chou May 1991 A
5021971 Lindsay Jun 1991 A
5022081 Hirose et al. Jun 1991 A
5027406 Roberts et al. Jun 1991 A
5031217 Nishimura Jul 1991 A
5032989 Tornetta Jul 1991 A
5040218 Vitale et al. Aug 1991 A
5047617 Bianco Sep 1991 A
5057915 Kohorn et al. Oct 1991 A
5072452 Brown et al. Dec 1991 A
5091945 Kleijn Feb 1992 A
5127053 Koch Jun 1992 A
5127055 Larkey Jun 1992 A
5128672 Kaehler Jul 1992 A
5133011 McKiel, Jr. Jul 1992 A
5142584 Ozawa Aug 1992 A
5164900 Bernath Nov 1992 A
5165007 Bahl et al. Nov 1992 A
5179652 Rozmanith et al. Jan 1993 A
5194950 Murakami et al. Mar 1993 A
5197005 Shwartz et al. Mar 1993 A
5199077 Wilcox et al. Mar 1993 A
5202952 Gillick et al. Apr 1993 A
5208862 Ozawa May 1993 A
5216747 Hardwick et al. Jun 1993 A
5220639 Lee Jun 1993 A
5220657 Bly et al. Jun 1993 A
5222146 Bahl et al. Jun 1993 A
5230036 Akamine et al. Jul 1993 A
5235680 Bijnagte Aug 1993 A
5267345 Brown et al. Nov 1993 A
5268990 Cohen et al. Dec 1993 A
5282265 Rohra Suda et al. Jan 1994 A
RE34562 Murakami et al. Mar 1994 E
5291286 Murakami et al. Mar 1994 A
5293448 Honda Mar 1994 A
5293452 Picone et al. Mar 1994 A
5297170 Eyuboglu et al. Mar 1994 A
5301109 Landauer et al. Apr 1994 A
5303406 Hansen et al. Apr 1994 A
5309359 Katz et al. May 1994 A
5317507 Gallant May 1994 A
5317647 Pagallo May 1994 A
5325297 Bird et al. Jun 1994 A
5325298 Gallant Jun 1994 A
5327498 Hamon Jul 1994 A
5333236 Bahl et al. Jul 1994 A
5333275 Wheatley et al. Jul 1994 A
5345536 Hoshimi et al. Sep 1994 A
5349645 Zhao Sep 1994 A
5353377 Kuroda et al. Oct 1994 A
5377301 Rosenberg et al. Dec 1994 A
5384892 Strong Jan 1995 A
5384893 Hutchins Jan 1995 A
5386494 White Jan 1995 A
5386556 Hedin et al. Jan 1995 A
5390279 Strong Feb 1995 A
5396625 Parkes Mar 1995 A
5400434 Pearson Mar 1995 A
5404295 Katz et al. Apr 1995 A
5412756 Bauman et al. May 1995 A
5412804 Krishna May 1995 A
5412806 Du et al. May 1995 A
5418951 Damashek May 1995 A
5424947 Nagao et al. Jun 1995 A
5434777 Luciw Jul 1995 A
5444823 Nguyen Aug 1995 A
5455888 Iyengar et al. Oct 1995 A
5469529 Bimbot et al. Nov 1995 A
5471611 McGregor Nov 1995 A
5475587 Anick et al. Dec 1995 A
5479488 Lenning et al. Dec 1995 A
5491772 Hardwick et al. Feb 1996 A
5493677 Balogh Feb 1996 A
5495604 Harding et al. Feb 1996 A
5502790 Yi Mar 1996 A
5502791 Nishimura et al. Mar 1996 A
5515475 Gupta et al. May 1996 A
5536902 Serra et al. Jul 1996 A
5537618 Boulton et al. Jul 1996 A
5574823 Hassanein et al. Nov 1996 A
5577241 Spencer Nov 1996 A
5578808 Taylor Nov 1996 A
5579436 Chou et al. Nov 1996 A
5581655 Cohen et al. Dec 1996 A
5584024 Shwartz Dec 1996 A
5596676 Swaminathan et al. Jan 1997 A
5596994 Bro Jan 1997 A
5608624 Luciw Mar 1997 A
5613036 Strong Mar 1997 A
5617507 Lee et al. Apr 1997 A
5619694 Shimazu Apr 1997 A
5621859 Schwartz et al. Apr 1997 A
5621903 Luciw et al. Apr 1997 A
5642464 Yue et al. Jun 1997 A
5642519 Martin Jun 1997 A
5644727 Atkins Jul 1997 A
5664055 Kroon Sep 1997 A
5675819 Schuetze Oct 1997 A
5682539 Conrad et al. Oct 1997 A
5687077 Gough, Jr. Nov 1997 A
5696962 Kupiec Dec 1997 A
5701400 Amado Dec 1997 A
5706442 Anderson et al. Jan 1998 A
5710886 Christensen et al. Jan 1998 A
5712957 Waibel et al. Jan 1998 A
5715468 Budzinski Feb 1998 A
5721827 Logan et al. Feb 1998 A
5727950 Cook et al. Mar 1998 A
5729694 Holzrichter et al. Mar 1998 A
5732390 Katayanagi et al. Mar 1998 A
5734791 Acero et al. Mar 1998 A
5737734 Schultz Apr 1998 A
5748974 Johnson May 1998 A
5749081 Whiteis May 1998 A
5759101 Von Kohorn Jun 1998 A
5790978 Olive et al. Aug 1998 A
5794050 Dahlgren et al. Aug 1998 A
5794182 Manduchi et al. Aug 1998 A
5794207 Walker et al. Aug 1998 A
5794237 Gore, Jr. Aug 1998 A
5799276 Komissarchik et al. Aug 1998 A
5822743 Gupta et al. Oct 1998 A
5825881 Colvin, Sr. Oct 1998 A
5826261 Spencer Oct 1998 A
5828999 Bellegarda et al. Oct 1998 A
5835893 Ushioda Nov 1998 A
5839106 Bellegarda Nov 1998 A
5845255 Mayaud Dec 1998 A
5857184 Lynch Jan 1999 A
5860063 Gorin et al. Jan 1999 A
5862233 Walker et al. Jan 1999 A
5864806 Mokbel et al. Jan 1999 A
5864844 James et al. Jan 1999 A
5867799 Lang et al. Feb 1999 A
5873056 Liddy et al. Feb 1999 A
5875437 Atkins Feb 1999 A
5884323 Hawkins et al. Mar 1999 A
5895464 Bhandari et al. Apr 1999 A
5895466 Goldberg et al. Apr 1999 A
5899972 Miyazawa et al. May 1999 A
5913193 Huang et al. Jun 1999 A
5915249 Spencer Jun 1999 A
5930769 Rose Jul 1999 A
5933822 Braden-Harder et al. Aug 1999 A
5936926 Yokouchi et al. Aug 1999 A
5940811 Norris Aug 1999 A
5941944 Messerly Aug 1999 A
5943670 Prager Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5956699 Wong et al. Sep 1999 A
5960422 Prasad Sep 1999 A
5963924 Williams et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5970474 LeRoy et al. Oct 1999 A
5974146 Randle et al. Oct 1999 A
5982891 Ginter et al. Nov 1999 A
5987132 Rowney Nov 1999 A
5987140 Rowney et al. Nov 1999 A
5987404 Della Pietra et al. Nov 1999 A
5987440 O'Neil et al. Nov 1999 A
5999908 Abelow Dec 1999 A
6016471 Kuhn et al. Jan 2000 A
6023684 Pearson Feb 2000 A
6024288 Gottlich et al. Feb 2000 A
6026345 Shah et al. Feb 2000 A
6026375 Hall et al. Feb 2000 A
6026388 Liddy et al. Feb 2000 A
6026393 Gupta et al. Feb 2000 A
6029132 Kuhn et al. Feb 2000 A
6038533 Buchsbaum et al. Mar 2000 A
6052656 Suda et al. Apr 2000 A
6055514 Wren Apr 2000 A
6055531 Bennett et al. Apr 2000 A
6064960 Bellegarda et al. May 2000 A
6070139 Miyazawa et al. May 2000 A
6070147 Harms et al. May 2000 A
6076051 Messerly et al. Jun 2000 A
6076088 Paik et al. Jun 2000 A
6078914 Redfern Jun 2000 A
6081750 Hoffberg et al. Jun 2000 A
6081774 de Hita et al. Jun 2000 A
6094649 Bowen et al. Jun 2000 A
6088731 Kiraly et al. Jul 2000 A
6105865 Hardesty Aug 2000 A
6108627 Sabourin Aug 2000 A
6119101 Peckover Sep 2000 A
6122616 Henton Sep 2000 A
6125356 Brockman et al. Sep 2000 A
6144938 Surace et al. Nov 2000 A
6173261 Arai et al. Jan 2001 B1
6173279 Levin et al. Jan 2001 B1
6188999 Moody Feb 2001 B1
6195641 Loring et al. Feb 2001 B1
6205456 Nakao Mar 2001 B1
6208971 Bellegarda et al. Mar 2001 B1
6233559 Balakrishnan May 2001 B1
6233578 Machihara et al. May 2001 B1
6246981 Papineni et al. Jun 2001 B1
6260024 Shkedy Jul 2001 B1
6266637 Donovan et al. Jul 2001 B1
6275824 O'Flaherty et al. Aug 2001 B1
6285786 Seni et al. Sep 2001 B1
6308149 Gaussier et al. Oct 2001 B1
6311189 deVries et al. Oct 2001 B1
6317594 Gossman et al. Nov 2001 B1
6317707 Bangalore et al. Nov 2001 B1
6317831 King Nov 2001 B1
6321092 Fitch et al. Nov 2001 B1
6334103 Surace et al. Dec 2001 B1
6356854 Schubert et al. Mar 2002 B1
6356905 Gershman et al. Mar 2002 B1
6366883 Campbell et al. Apr 2002 B1
6366884 Belllegarda et al. Apr 2002 B1
6421672 McAllister et al. Jul 2002 B1
6434524 Weber Aug 2002 B1
6446076 Burkey et al. Sep 2002 B1
6449620 Draper et al. Sep 2002 B1
6453292 Ramaswamy et al. Sep 2002 B2
6460029 Fries et al. Oct 2002 B1
6466654 Cooper et al. Oct 2002 B1
6477488 Bellegarda Nov 2002 B1
6487534 Thelen et al. Nov 2002 B1
6499013 Weber Dec 2002 B1
6501937 Ho et al. Dec 2002 B1
6505158 Conkie Jan 2003 B1
6505175 Silverman et al. Jan 2003 B1
6505183 Loofbourrow et al. Jan 2003 B1
6510417 Woods et al. Jan 2003 B1
6513063 Julia et al. Jan 2003 B1
6523061 Halverson et al. Feb 2003 B1
6523172 Martinez-Guerra et al. Feb 2003 B1
6526382 Yuschik Feb 2003 B1
6526395 Morris Feb 2003 B1
6532444 Weber Mar 2003 B1
6532446 King Mar 2003 B1
6546388 Edlund et al. Apr 2003 B1
6553344 Bellegarda et al. Apr 2003 B2
6556983 Altschuler et al. Apr 2003 B1
6584464 Warthen Jun 2003 B1
6598039 Livowsky Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6601234 Bowman-Amuah Jul 2003 B1
6604059 Strubbe et al. Aug 2003 B2
6615172 Bennett et al. Sep 2003 B1
6615175 Gazdzinski Sep 2003 B1
6615220 Austin et al. Sep 2003 B1
6625583 Silverman et al. Sep 2003 B1
6631346 Karaorman et al. Oct 2003 B1
6633846 Bennett et al. Oct 2003 B1
6647260 Dusse et al. Nov 2003 B2
6650735 Burton et al. Nov 2003 B2
6654740 Tokuda et al. Nov 2003 B2
6665639 Mozer et al. Dec 2003 B2
6665640 Bennett et al. Dec 2003 B1
6665641 Coorman et al. Dec 2003 B1
6684187 Conkie Jan 2004 B1
6691064 Vroman Feb 2004 B2
6691111 Lazaridis et al. Feb 2004 B2
6691151 Cheyer et al. Feb 2004 B1
6697780 Beutnagel et al. Feb 2004 B1
6697824 Bowman-Amuah Feb 2004 B1
6701294 Ball et al. Mar 2004 B1
6711585 Copperman et al. Mar 2004 B1
6718324 Edlund et al. Apr 2004 B2
6721728 McGreevy Apr 2004 B2
6735632 Kiraly et al. May 2004 B1
6742021 Halverson et al. May 2004 B1
6757362 Cooper et al. Jun 2004 B1
6757718 Halverson et al. Jun 2004 B1
6766320 Want et al. Jul 2004 B1
6778951 Contractor Aug 2004 B1
6778952 Bellegarda Aug 2004 B2
6778962 Kasai et al. Aug 2004 B1
6778970 Au Aug 2004 B2
6792082 Levine Sep 2004 B1
6807574 Partovi et al. Oct 2004 B1
6810379 Vermeulen et al. Oct 2004 B1
6813491 McKinney Nov 2004 B1
6829603 Chai et al. Dec 2004 B1
6832194 Mozer et al. Dec 2004 B1
6842767 Partovi et al. Jan 2005 B1
6847966 Sommer et al. Jan 2005 B1
6847979 Allemang et al. Jan 2005 B2
6851115 Cheyer et al. Feb 2005 B1
6859931 Cheyer et al. Feb 2005 B1
6895380 Sepe, Jr. May 2005 B2
6895558 Loveland May 2005 B1
6901399 Corston et al. May 2005 B1
6912499 Sabourin et al. Jun 2005 B1
6924828 Hirsch Aug 2005 B1
6928614 Everhart Aug 2005 B1
6931384 Horvitz et al. Aug 2005 B1
6937975 Elworthy Aug 2005 B1
6937986 Denenberg et al. Aug 2005 B2
6964023 Maes et al. Nov 2005 B2
6980949 Ford Dec 2005 B2
6980955 Okutani et al. Dec 2005 B2
6985865 Packingham et al. Jan 2006 B1
6988071 Gazdzinski Jan 2006 B1
6996531 Korall et al. Feb 2006 B2
6999927 Mozer et al. Feb 2006 B2
7020685 Chen et al. Mar 2006 B1
7027974 Busch et al. Apr 2006 B1
7036128 Julia et al. Apr 2006 B1
7050977 Bennett May 2006 B1
7058569 Coorman et al. Jun 2006 B2
7062428 Hogenhout et al. Jun 2006 B2
7069560 Cheyer et al. Jun 2006 B1
7092887 Mozer et al. Aug 2006 B2
7092928 Elad et al. Aug 2006 B1
7093693 Gazdzinski Aug 2006 B1
7127046 Smith et al. Oct 2006 B1
7127403 Saylor et al. Oct 2006 B1
7136710 Hoffberg et al. Nov 2006 B1
7137126 Coffman et al. Nov 2006 B1
7139714 Bennett et al. Nov 2006 B2
7139722 Perrella et al. Nov 2006 B2
7152070 Musick et al. Dec 2006 B1
7177798 Hsu et al. Feb 2007 B2
7197460 Gupta et al. Mar 2007 B1
7200559 Wang Apr 2007 B2
7203646 Bennett Apr 2007 B2
7216073 Lavi et al. May 2007 B2
7216080 Tsiao et al. May 2007 B2
7225125 Bennett et al. May 2007 B2
7233790 Kjellberg et al. Jun 2007 B2
7233904 Luisi Jun 2007 B2
7266496 Wang et al. Sep 2007 B2
7277854 Bennett et al. Oct 2007 B2
7290039 Lisitsa et al. Oct 2007 B1
7299033 Kjellberg et al. Nov 2007 B2
7310600 Garner et al. Dec 2007 B1
7324947 Jordan et al. Jan 2008 B2
7349953 Lisitsa et al. Mar 2008 B2
7376556 Bennett May 2008 B2
7376645 Bernard May 2008 B2
7379874 Schmid et al. May 2008 B2
7386449 Sun et al. Jun 2008 B2
7389224 Elworthy Jun 2008 B1
7392185 Bennett Jun 2008 B2
7398209 Kennewick et al. Jul 2008 B2
7403938 Harrison et al. Jul 2008 B2
7409337 Potter et al. Aug 2008 B1
7415100 Cooper et al. Aug 2008 B2
7418392 Mozer et al. Aug 2008 B1
7426467 Nashida et al. Sep 2008 B2
7427024 Gazdzinski et al. Sep 2008 B1
7447635 Konopka et al. Nov 2008 B1
7454351 Jeschke et al. Nov 2008 B2
7467087 Gillick et al. Dec 2008 B1
7475010 Chao Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7496498 Chu et al. Feb 2009 B2
7496512 Zhao et al. Feb 2009 B2
7502738 Kennewick et al. Mar 2009 B2
7508373 Lin et al. Mar 2009 B2
7522927 Fitch et al. Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7529671 Rockenbeck et al. May 2009 B2
7529676 Koyama May 2009 B2
7539656 Fratkina et al. May 2009 B2
7546382 Healey et al. Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7558730 Davis et al. Jul 2009 B2
7571106 Cao et al. Aug 2009 B2
7599918 Shen et al. Oct 2009 B2
7620549 Di Cristo et al. Nov 2009 B2
7624007 Bennett Nov 2009 B2
7634409 Kennewick et al. Dec 2009 B2
7636657 Ju et al. Dec 2009 B2
7640160 Di Cristo et al. Dec 2009 B2
7647225 Bennett et al. Jan 2010 B2
7657424 Bennett Feb 2010 B2
7672841 Bennett Mar 2010 B2
7676026 Baxter, Jr. Mar 2010 B1
7684985 Dominach et al. Mar 2010 B2
7693715 Hwang et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707267 Lisitsa et al. Apr 2010 B2
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7716056 Weng et al. May 2010 B2
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7725307 Bennett May 2010 B2
7725318 Gavalda et al. May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7774204 Mozer et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7801729 Mozer Sep 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7831426 Bennett Nov 2010 B2
7840400 Lavi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7873519 Bennett Jan 2011 B2
7873654 Bernard Jan 2011 B2
7881936 Longé et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7912702 Bennett Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7996228 Miller et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8024195 Mozer et al. Sep 2011 B2
8036901 Mozer Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8082153 Coffman et al. Dec 2011 B2
8095364 Longé et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8131557 Davis et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8190359 Bourne May 2012 B2
8195467 Mozer et al. Jun 2012 B2
8195468 Weider et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8219407 Roy et al. Jul 2012 B1
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8296380 Kelly Oct 2012 B1
8301456 Gazdzinski Oct 2012 B2
8311834 Gazdzinski Nov 2012 B1
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8447612 Gazdzinski May 2013 B2
8989713 Doulton Mar 2015 B2
20010047264 Roundtree Nov 2001 A1
20020032564 Ehsani et al. Mar 2002 A1
20020046025 Hain Apr 2002 A1
20020069063 Buchner et al. Jun 2002 A1
20020077817 Atal Jun 2002 A1
20020103641 Kuo et al. Aug 2002 A1
20020164000 Cohen et al. Nov 2002 A1
20020198714 Zhou Dec 2002 A1
20040135701 Yasuda et al. Jul 2004 A1
20040236778 Junqua et al. Nov 2004 A1
20050055403 Brittan Mar 2005 A1
20050071332 Ortega et al. Mar 2005 A1
20050080625 Bennett et al. Apr 2005 A1
20050091118 Fano Apr 2005 A1
20050102614 Brockett et al. May 2005 A1
20050108001 Aarskog May 2005 A1
20050114124 Liu et al. May 2005 A1
20050119897 Bennett et al. Jun 2005 A1
20050143972 Gopalakrishnan et al. Jun 2005 A1
20050165607 DiFabbrizio et al. Jul 2005 A1
20050182629 Coorman et al. Aug 2005 A1
20050196733 Budra et al. Sep 2005 A1
20050288936 Busayapongchai et al. Dec 2005 A1
20060018492 Chiu et al. Jan 2006 A1
20060106592 Brockett et al. May 2006 A1
20060106594 Brockett et al. May 2006 A1
20060106595 Brockett et al. May 2006 A1
20060117002 Swen Jun 2006 A1
20060122834 Bennett Jun 2006 A1
20060143007 Koh et al. Jun 2006 A1
20070055529 Kanevsky et al. Mar 2007 A1
20070058832 Hug et al. Mar 2007 A1
20070088556 Andrew Apr 2007 A1
20070100790 Cheyer et al. May 2007 A1
20070106674 Agrawal et al. May 2007 A1
20070118377 Badino et al. May 2007 A1
20070135949 Snover et al. Jun 2007 A1
20070174188 Fish Jul 2007 A1
20070185917 Prahlad et al. Aug 2007 A1
20070282595 Tunning et al. Dec 2007 A1
20080015864 Ross et al. Jan 2008 A1
20080021708 Bennett et al. Jan 2008 A1
20080034032 Healey et al. Feb 2008 A1
20080052063 Bennett et al. Feb 2008 A1
20080120112 Jordan et al. May 2008 A1
20080129520 Lee Jun 2008 A1
20080140657 Azvine et al. Jun 2008 A1
20080221903 Kanevsky et al. Sep 2008 A1
20080228496 Yu et al. Sep 2008 A1
20080247519 Abella et al. Oct 2008 A1
20080249770 Kim et al. Oct 2008 A1
20080300878 Bennett Dec 2008 A1
20080319763 Di Fabbrizio et al. Dec 2008 A1
20090006100 Badger et al. Jan 2009 A1
20090006343 Platt et al. Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090055179 Cho et al. Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090077165 Rhodes et al. Mar 2009 A1
20090100049 Cao Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090150156 Kennewick et al. Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090171664 Kennewick et al. Jul 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090299849 Cao et al. Dec 2009 A1
20090307162 Bui et al. Dec 2009 A1
20100005081 Bennett Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100036660 Bennett Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100138215 Williams Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100228540 Bennett Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100257160 Cao Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100286955 Kennewick et al. Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100312547 van Os et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100332235 David Dec 2010 A1
20100332348 Cao Dec 2010 A1
20110047072 Ciurea Feb 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110125540 Jang et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 Di Cristo et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110184730 LeBeau et al. Jul 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110264643 Cao Oct 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110306426 Novak et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035908 LeBeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120066212 Jennings Mar 2012 A1
20120136985 Popescu et al. May 2012 A1
20120137367 Dupont et al. May 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120197995 Caruso Aug 2012 A1
20120201362 Crossan Aug 2012 A1
20120254152 Park Oct 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120265806 Blanchflower Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20130055099 Yao Feb 2013 A1
20130110518 Gruber et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
Foreign Referenced Citations (49)
Number Date Country
681573 Apr 1993 CH
3837590 May 1990 DE
198 41 541 Dec 2007 DE
0138061 Sep 1984 EP
0138061 Apr 1985 EP
0218859 Apr 1987 EP
0262938 Apr 1988 EP
0293259 Nov 1988 EP
0299572 Jan 1989 EP
0313975 May 1989 EP
0314908 May 1989 EP
0327408 Aug 1989 EP
0389271 Sep 1990 EP
0411675 Feb 1991 EP
0559349 Sep 1993 EP
0559349 Sep 1993 EP
0570660 Nov 1993 EP
0863453 Sep 1998 EP
1245023 Oct 2002 EP
2 109 295 Oct 2009 EP
2293667 Apr 1996 GB
06 019965 Jan 1994 JP
2001 125896 May 2001 JP
2002 024212 Jan 2002 JP
2003 517158 May 2003 JP
2009 036999 Feb 2009 JP
10-2007-0057496 Jun 2007 KR
10-0776800 Nov 2007 KR
10-2008-001227 Feb 2008 KR
10-0810500 Mar 2008 KR
10 2008 109322 Dec 2008 KR
10 2009 086805 Aug 2009 KR
10-0920267 Oct 2009 KR
10-2010-0032792 Apr 2010 KR
10 2011 0113414 Oct 2011 KR
WO 9502221 Jan 1995 WO
WO 9726612 Jul 1997 WO
WO 9841956 Sep 1998 WO
WO 9901834 Jan 1999 WO
WO 9908238 Feb 1999 WO
WO 9956227 Nov 1999 WO
WO 200060435 Oct 2000 WO
WO 200060435 Oct 2000 WO
0231814 Apr 2002 WO
WO 02073603 Sep 2002 WO
WO 2006129967 Dec 2006 WO
WO 2008085742 Jul 2008 WO
WO 2008109835 Sep 2008 WO
WO 2011088053 Jul 2011 WO
Non-Patent Literature Citations (410)
Entry
Zangerle, et al “Recommending #-Tag in Twitter”, in proceedings of the Workshop on Semantic Adaptive Socail Web, 2011.
Dragon NaturallySpeaking Version 11 Users Guide, Copyright @2002-2010 Nuance Communications, Inc.
Agnäs, MS., et al., “Spoken Language Translator: First-Year Report,” Jan. 1994, SICS (ISSN 0283-3638), SRI and Telia Research AB, 161 pages.
Allen, J., “Natural Language Understanding,” 2nd Edition, Copyright © 1995 by The Benjamin/Cummings Publishing Company, Inc., 671 pages.
Alshawi, H., et al., “CLARE: A Contextual Reasoning and Cooperative Response Framework for the Core Language Engine,” Dec. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 273 pages.
Alshawi, H., et al., “Declarative Derivation of Database Queries from Meaning Representations,” Oct. 1991, Proceedings of the BANKAI Workshop on Intelligent Information Access, 12 pages.
Alshawi H., et al., “Logical Forms in the Core Language Engine,” 1989, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 8 pages.
Alshawi, H., et al., “Overview of the Core Language Engine,” Sep. 1988, Proceedings of Future Generation Computing Systems, Tokyo, 13 pages.
Alshawi, H., “Translation and Monotonic Interpretation/Generation,” Jul. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 18 pages, http://www.cam.sri.com/tr/crc024/paper.ps.Z_1992.
Appelt, D., et al., “Fastus: A Finite-state Processor for Information Extraction from Real-world Text,” 1993, Proceedings of IJCAI, 8 pages.
Appelt, D., et al., “SRI: Description of the JV-FASTUS System Used for MUC-5,” 1993, SRI International, Artificial Intelligence Center, 19 pages.
Appelt, D., et al., SRI International Fastus System MUC-6 Test Results and Analysis, 1995, SRI International, Menlo Park, California, 12 pages.
Archbold, A., et al., “A Team User's Guide,” Dec. 21, 1981, SRI International, 70 pages.
Bear, J., et al., “A System for Labeling Self-Repairs in Speech,” Feb. 22, 1993, SRI International, 9 pages.
Bear, J., et al., “Detection and Correction of Repairs in Human-Computer Dialog,” May 5, 1992, SRI International, 11 pages.
Bear, J., et al., “Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog,” 1992, Proceedings of the 30th annual meeting on Association for Computational Linguistics (ACL), 8 pages.
Bear, J., et al., “Using Information Extraction to Improve Document Retrieval,” 1998, SRI International, Menlo Park, California, 11 pages.
Berry, P., et al., “Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project,” 2005, Proceedings of CP'05 Workshop on Constraint Solving under Change, 5 pages.
Bobrow, R. et al., “Knowledge Representation for Syntactic/Semantic Processing,” From: AAA-80 Proceedings. Copyright © 1980, AAAI, 8 pages.
Bouchou, B., et al., “Using Transducers in Natural Language Database Query,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 17 pages.
Bratt, H., et al., “The SRI Telephone-based ATIS System,” 1995, Proceedings of ARPA Workshop on Spoken Language Technology, 3 pages.
Burke, R., et al., “Question Answering from Frequently Asked Question Files,” 1997, AI Magazine, vol. 18, No. 2, 10 pages.
Burns, A., et al., “Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce,” Dec. 31, 1998, Proceedings of the Americas Conference on Information system (AMCIS), 4 pages.
Carter, D., “Lexical Acquisition in the Core Language Engine,” 1989, Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 8 pages.
Carter, D., et al., “The Speech-Language Interface in the Spoken Language Translator,” Nov. 23, 1994, SRI International, 9 pages.
Chai, J., et al., “Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: a Case Study,” Apr. 2000, Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, 11 pages.
Cheyer, A., et al., “Multimodal Maps: An Agent-based Approach,” International Conference on Cooperative Multimodal Communication, 1995, 15 pages.
Cheyer, A., et al., “The Open Agent Architecture,” Autonomous Agents and Multi-Agent systems, vol. 4, Mar. 1, 2001, 6 pages.
Cheyer, A., et al., “The Open Agent Architecture: Building communities of distributed software agents” Feb. 21, 1998, Artificial Intelligence Center SRI International, Power Point presentation, downloaded from http://www.ai.sri.com/˜oaa/, 25 pages.
Codd, E. F., “Databases: Improving Usability and Responsiveness—‘How About Recently’,” Copyright © 1978, by Academic Press, Inc., 28 pages.
Cohen, P.R., et al., “An Open Agent Architecture,” 1994, 8 pages. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.480.
Coles, L. S., et al., “Chemistry Question-Answering,” Jun. 1969, SRI International, 15 pages.
Coles, L. S., “Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input,” Nov. 1972, SRI International, 198 Pages.
Coles, L. S., “The Application of Theorem Proving to Information Retrieval,” Jan. 1971, SRI International, 21 pages.
Constantinides, P., et al., “A Schema Based Approach to Dialog Control,” 1998, Proceedings of the International Conference on Spoken Language Processing, 4 pages.
Craig, J., et al., “Deacon: Direct English Access and Control,” Nov. 7-10, 1966 AFIPS Conference Proceedings, vol. 19, San Francisco, 18 pages.
Dar, S., et al., “DTL's DataSpot: Database Exploration Using Plain Language,” 1998 Proceedings of the 24th VLDB Conference, New York, 5 pages.
Decker, K., et al., “Designing Behaviors for Information Agents,” The Robotics Institute, Carnegie-Mellon University, paper, Jul. 6, 1996, 15 pages.
Decker, K., et al., “Matchmaking and Brokering,” The Robotics Institute, Carnegie-Mellon University, paper, May 16, 1996, 19 pages.
Dowding, J., et al., “Gemini: A Natural Language System for Spoken-Language Understanding,” 1993, Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 8 pages.
Dowding, J., et al., “Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser,” 1994, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 7 pages.
Epstein, M., et al., “Natural Language Access to a Melanoma Data Base,” Sep. 1978, SRI International, 7 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” Classes/Subclasses Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” List of Publications Manually reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Ferguson, G., et al., “TRIPS: An Integrated Intelligent Problem-Solving Assistant,” 1998, Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 7 pages.
Fikes, R., et al., “A Network-based knowledge Representation and its Natural Deduction System,” Jul. 1977, SRI International, 43 pages.
Gambäck, B., et al., “The Swedish Core Language Engine,” 1992 NOTEX Conference, 17 pages.
Glass, J., et al., “Multilingual Language Generation Across Multiple Domains,” Sep. 18-22, 1994, International Conference on Spoken Language Processing, Japan, 5 pages.
Green, C. “The Application of Theorem Proving to Question-Answering Systems,” Jun. 1969, SRI Stanford Research Institute, Artificial Intelligence Group, 169 pages.
Gregg, D. G., “DSS Access on the WWW: An Intelligent Agent Prototype,” 1998 Proceedings of the Americas Conference on Information Systems-Association for Information Systems, 3 pages.
Grishman, R., “Computational Linguistics: An Introduction,” © Cambridge University Press 1986, 172 pages.
Grosz, B. et al., “Dialogic: A Core Natural-Language Processing System,” Nov. 9, 1982, SRI International, 17 pages.
Grosz, B. et al., “Research on Natural-Language Processing at SRI,” Nov. 1981, SRI International, 21 pages.
Grosz, B., et al., “TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces,” Artificial Intelligence, vol. 32, 1987, 71 pages.
Grosz, B., “Team: A Transportable Natural-Language Interface System,” 1983, Proceedings of the First Conference on Applied Natural Language Processing, 7 pages.
Guida, G., et al., “NLI: A Robust Interface for Natural Language Person-Machine Communication,” Int. J. Man-Machine Studies, vol. 17, 1982, 17 pages.
Guzzoni, D., et al., “Active, A platform for Building Intelligent Software,” Computational Intelligence 2006, 5 pages. http://www.informatik.uni-trier.de/˜ley/pers/hd/g/Guzzoni:Didier.
Guzzoni, D., “Active: A unified platform for building intelligent assistant applications,” Oct. 25, 2007, 262 pages.
Guzzoni, D., et al., “Many Robots Make Short Work,” 1996 AAAI Robot Contest, SRI International, 9 pages.
Haas, N., et al., “An Approach to Acquiring and Applying Knowledge,” Nov. 1980, SRI International, 22 pages.
Hadidi, R., et al., “Students' Acceptance of Web-Based Course Offerings: An Empirical Assessment,” 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Hawkins, J., et al., “Hierarchical Temporal Memory: Concepts, Theory, and Terminology,” Mar. 27, 2007, Numenta, Inc., 20 pages.
He, Q., et al., “Personal Security Agent: KQML-Based PKI,” The Robotics Institute, Carnegie-Mellon University, paper, Oct. 1, 1997, 14 pages.
Hendrix, G. et al., “Developing a Natural Language Interface to Complex Data,” ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, 43 pages.
Hendrix, G., “Human Engineering for Applied Natural Language Processing,” Feb. 1977, SRI International, 27 pages.
Hendrix, G., “Klaus: A System for Managing Information and Computational Resources,” Oct. 1980, SRI International, 34 pages.
Hendrix, G., “Lifer: A Natural Language Interface Facility,” Dec. 1976, SRI Stanford Research Institute, Artificial Intelligence Center, 9 pages.
Hendrix, G., “Natural-Language Interface,” Apr.-Jun. 1982, American Journal of Computational Linguistics, vol. 8, No. 2, 7 pages.
Hendrix, G., “The Lifer Manual: A Guide to Building Practical Natural Language Interfaces,” Feb. 1977, SRI International, 76 pages.
Hendrix, G., et al., “Transportable Natural-Language Interfaces to Databases,” Apr. 30, 1981, SRI International, 18 pages.
Hirschman, L., et al., “Multi-Site Data Collection and Evaluation in Spoken Language Understanding,” 1993, Proceedings of the workshop on Human Language Technology, 6 pages.
Hobbs, J., et al., “Fastus: A System for Extracting Information from Natural-Language Text,” Nov. 19, 1992, SRI International, Artificial Intelligence Center, 26 pages.
Hobbs, J., et al.,“Fastus: Extracting Information from Natural-Language Texts,” 1992, SRI International, Artificial Intelligence Center, 22 pages.
Hobbs, J., “Sublanguage and Knowledge,” Jun. 1984, SRI International, Artificial Intelligence Center, 30 pages.
Hodjat, B., et al., “Iterative Statistical Language Model Generation for Use with an Agent-Oriented Natural Language Interface,” vol. 4 of the Proceedings of HCI International 2003, 7 pages.
Huang, X., et al., “The SPHINX-II Speech Recognition System: An Overview,” Jan. 15, 1992, Computer, Speech and Language, 14 pages.
Issar, S., et al., “CMU's Robust Spoken Language Understanding System,” 1993, Proceedings of Eurospeech, 4 pages.
Issar, S., “Estimation of Language Models for New Spoken Language Applications,” Oct. 3-6, 1996, Proceedings of 4th International Conference on Spoken language Processing, Philadelphia, 4 pages.
Janas, J., “The Semantics-Based Natural Language Interface to Relational Databases,” © Springer-Verlag Berlin Heidelberg 1986, Germany, 48 pages.
Johnson, J., “A Data Management Strategy for Transportable Natural Language Interfaces,” Jun. 1989, doctoral thesis submitted to the Department of Computer Science, University of British Columbia, Canada, 285 pages.
Julia, L., et al., “http://www.speech.sri.com/demos/atis.html,” 1997, Proceedings of AAAI, Spring Symposium, 5 pages.
Kahn, M., et al., “CoABS Grid Scalability Experiments,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 8 pages.
Kamel, M., et al., “A Graph Based Knowledge Retrieval System,” © 1990 IEEE, 7 pages.
Katz, B., “Annotating the World Wide Web Using Natural Language,” 1997, Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 7 pages.
Katz, B., “A Three-Step Procedure for Language Generation,” Dec. 1980, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 42 pages.
Katz, B., et al., “Exploiting Lexical Regularities in Designing Natural Language Systems,” 1988, Proceedings of the 12th International Conference on Computational Linguistics, Coling'88, Budapest, Hungary, 22 pages.
Katz, B., et al., “Rextor: A System for Generating Relations from Natural Language,” In Proceedings of the ACL Oct. 2000 Workshop on Natural Language Processing and Information Retrieval (NLP&IR), 11 pages.
Katz, B., “Using English for Indexing and Retrieving,” 1988 Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image (RIAO'88), 19 pages.
Konolige, K., “A Framework for a Portable Natural-Language Interface to Large Data Bases,” Oct. 12, 1979, SRI International, Artificial Intelligence Center, 54 pages.
Laird, J., et al., “SOAR: An Architecture for General Intelligence,” 1987, Artificial Intelligence vol. 33, 64 pages.
Langly, P., et al.,“A Design for the Icarus Architechture,” SIGART Bulletin, vol. 2, No. 4, 6 pages.
Larks, “Intelligent Software Agents: Larks,” 2006, downloaded on Mar. 15, 2013 from http://www.cs.cmu.edu/larks.html, 2 pages.
Martin, D., et al., “Building Distributed Software Systems with the Open Agent Architecture,” Mar. 23-25, 1998, Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 23 pages.
Martin, D., et al., “Development Tools for the Open Agent Architecture,” Apr. 1996, Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 17 pages.
Martin, D., et al., “Information Brokering in an Agent Architecture,” Apr. 1997, Proceedings of the second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 20 pages.
Martin, D., et al., “PAAM '98 Tutorial: Building and Using Practical Agent Applications,” 1998, SRI International, 78 pages.
Martin, P., et al., “Transportability and Generality in a Natural-Language Interface System,” Aug. 8-12, 1983, Proceedings of the Eight International Joint Conference on Artificial Intelligence, West Germany, 21 pages.
Matiasek, J., et al., “Tamic-P: A System for NL Access to Social Insurance Database,” Jun. 17-19, 1999, Proceeding of the 4th International Conference on Applications of Natural Language to Information Systems, Austria, 7 pages.
Michos, S.E., et al., “Towards an adaptive natural language interface to command languages,” Natural Language Engineering 2 (3), © 1994 Cambridge University Press, 19 pages. Best Copy Available.
Milstead, J., et al., “Metadata: Cataloging by Any Other Name . . . ” Jan. 1999, Online, Copyright @ 1999 Information Today, Inc., 18 pages.
Minker, W., et al., “Hidden Understanding Models for Machine Translation,” 1999, Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, 4 pages.
Modi, P. J., et al., “CMRadar: A Personal Assistant Agent for Calendar Management,” © 2004, American Association for Artificial Intelligence, Intelligent Systems Demonstrations, 2 pages.
Moore, R., et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS,” 1995, SRI International, Artificial Intelligence Center, 4 pages.
Moore, R., “Handling Complex Queries in a Distributed Data Base,” Oct. 8, 1979, SRI International, Artificial Intelligence Center, 38 pages.
Moore, R., “Practical Natural-Language Processing by Computer,” Oct. 1981, SRI International, Artificial Intelligence Center, 34 pages.
Moore, R., et al., “SRI's Experience with the ATIS Evaluation,” Jun. 24-27, 1990, Proceedings of a workshop held at Hidden Valley, Pennsylvania, 4 pages.
Moore, et al., “The Information Warefare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web,” Dec. 31, 1998 Proceedings of Americas Conference on Information Systems (AMCIS), 4 pages.
Moore, R., “The Role of Logic in Knowledge Representation and Commonsense Reasoning,” Jun. 1982, SRI International, Artificial Intelligence Center, 19 pages.
Moore, R., “Using Natural-Language Knowledge Sources in Speech Recognition,” Jan. 1999, SRI International, Artificial Intelligence Center, 24 pages.
Moran, D., et al., “Intelligent Agent-based User Interfaces,” Oct. 12-13, 1995, Proceedings of International Workshop on Human Interface Technology, University of Aizu, Japan, 4 pages. http://www.dougmoran.com/dmoran/PAPERS/oaa-iwhit1995.pdf.
Moran, D., “Quantifier Scoping in the SRI Core Language Engine,” 1988, Proceedings of the 26th annual meeting on Association for Computational Linguistics, 8 pages.
Motro, A., “Flex: A Tolerant and Cooperative User Interface to Databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, 16 pages.
Murveit, H., et al., “Speech Recognition in SRI's Resource Management and ATIS Systems,” 1991, Proceedings of the workshop on Speech and Natural Language (HTL'91), 7 pages.
OAA, “The Open Agent Architecture 1.0 Distribution Source Code,” Copyright 1999, SRI International, 2 pages.
Odubiyi, J., et al., “SAIRE—a scalable agent-based information retrieval engine,” 1997 Proceedings of the First International Conference on Autonomous Agents, 12 pages.
Owei, V., et al., “Natural Language Query Filtration in the Conceptual Query Language,” © 1997 IEEE, 11 pages.
Pannu, A., et al., “A Learning Personal Agent for Text Filtering and Notification,” 1996, The Robotics Institute School of Computer Science, Carnegie-Mellon University, 12 pages.
Pereira, “Logic for Natural Language Analysis,” Jan. 1983, SRI International, Artificial Intelligence Center, 194 pages.
Perrault, C.R., et al., “Natural-Language Interfaces,” Aug. 22, 1986, SRI International, 48 pages.
Pulman, S.G., et al., “Clare: A Combined Language and Reasoning Engine,” 1993, Proceedings of JFIT Conference, 8 pages. URL: http://www.cam.sri.com/tr/crc042/paper.ps.Z.
Ravishankar, “Efficient Algorithms for Speech Recognition,” May 15, 1996, Doctoral Thesis submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburg, 146 pages.
Rayner, M., et al., “Adapting the Core Language Engine to French and Spanish,” May 10, 1996, Cornell University Library, 9 pages. http://arxiv.org/abs/cmp-lg/9605015.
Rayner, M., “Abductive Equivalential Translation and its application to Natural Language Database Interfacing,” Sep. 1993 Dissertation paper, SRI International, 163 pages.
Rayner, M., et al., “Deriving Database Queries from Logical Forms by Abductive Definition Expansion,” 1992, Proceedings of the Third Conference on Applied Natural Language Processing, ANLC'92, 8 pages.
Rayner, M., “Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles,” 1993, SRI International, Cambridge, 11 pages.
Rayner, M., et al., “Spoken Language Translation With Mid-90's Technology: A Case Study,” 1993, Eurospeech, ISCA, 4 pages. http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1993.html#RaynerBCCDGKKLPPS93.
Rudnicky, A.I., et al., “Creating Natural Dialogs in the Carnegie Mellon Communicator System,”.
Russell, S., et al., “Artificial Intelligence, A Modern Approach,” © 1995 Prentice Hall, Inc., 121 pages.
Sacerdoti, E., et al., “A Ladder User's Guide (Revised),” Mar. 1980, SRI International, Artificial Intelligence Center, 39 pages.
Sagalowicz, D., “A D-Ladder User's Guide,” Sep. 1980, SRI International, 42 pages.
Sameshima, Y., et al., “Authorization with security attributes and privilege delegation Access control beyond the ACL,” Computer Communications, vol. 20, 1997, 9 pages.
San-Segundo, R., et al., “Confidence Measures for Dialogue Management in the CU Communicator System,” Jun. 5-9, 2000, Proceedings of Acoustics, Speech, and Signal Processing (ICASSP'00), 4 pages.
Sato, H., “A Data Model, Knowledge Base, and Natural Language Processing for Sharing a Large Statistical Database,” 1989, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 20 pages.
Schnelle, D., “Context Aware Voice User Interfaces for Workflow Support,” Aug. 27, 2007, Dissertation paper, 254 pages.
Sharoff, S., et al., “Register-domain Separation as a Methodology for Development of Natural Language Interfaces to Databases,” 1999, Proceedings of Human-Computer Interaction (INTERACT'99), 7 pages.
Shimazu, H., et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser,” NEC Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages.
Shinkle, L., “Team User's Guide,” Nov. 1984, SRI International, Artificial Intelligence Center, 78 pages.
Shklar, L., et al., “Info Harness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information,” 1995 Proceedings of CAiSE'95, Finland.
Singh, N., “Unifying Heterogeneous Information Models,” 1998 Communications of the ACM, 13 pages.
SRI2009, “SRI Speech: Products: Software Development Kits: EduSpeak,” 2009, 2 pages, available at http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak.shtml.
Starr, B., et al., “Knowledge-Intensive Query Processing,” May 31, 1998, Proceedings of the 5th KRDB Workshop, Seattle, 6 pages.
Stern, R., et al. “Multiple Approaches to Robust Speech Recognition,” 1992, Proceedings of Speech and Natural Language Workshop, 6 pages.
Stickel, “A Nonclausal Connection-Graph Resolution Theorem-Proving Program,” 1982, Proceedings of AAAI'82, 5 pages.
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System,” Dec. 31, 1998, Proceedings of the Americas Conference on Information systems (AMCIS), 4 pages.
Sycara, K., et al., “Coordination of Multiple Intelligent Software Agents,” International Journal of Cooperative Information Systems (IJCIS), vol. 5, Nos. 2 & 3, Jun. & Sep. 1996, 33 pages.
Sycara, K., et al., “Distributed Intelligent Agents,” IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages.
Sycara, K., et al., “Dynamic Service Matchmaking Among Agents in Open Information Environments ,” 1999, SIGMOD Record, 7 pages.
Sycara, K., et al., “The RETSINA MAS Infrastructure,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 20 pages.
Tyson, M., et al., “Domain-Independent Task Specification in the TACITUS Natural Language System,” May 1990, SRI International, Artificial Intelligence Center, 16 pages.
Wahlster, W., et al., “Smartkom: multimodal communication with a life-like character,” 2001 EUROSPEECH—Scandinavia, 7th European Conference on Speech Communication and Technology, 5 pages.
Waldinger, R., et al., “Deductive Question Answering from Multiple Resources,” 2003, New Directions in Question Answering, published by AAAI, Menlo Park, 22 pages.
Walker, D., et al., “Natural Language Access to Medical Text,” Mar. 1981, SRI International, Artificial Intelligence Center, 23 pages.
Waltz, D., “An English Language Question Answering System for a Large Relational Database,” © 1978 ACM, vol. 21, No. 7, 14 pages.
Ward, W., et al., “A Class Based Language Model for Speech Recognition,” © 1996 IEEE, 3 pages.
Ward, W., et al., “Recent Improvements in the CMU Spoken Language Understanding System,” 1994, ARPA Human Language Technology Workshop, 4 pages.
Ward, W., “The CMU Air Travel Information Service: Understanding Spontaneous Speech,” 3 pages.
Warren, D.H.D., et al., “An Efficient Easily Adaptable System for Interpreting Natural Language Queries,” Jul.-Dec. 1982, American Journal of Computational Linguistics, vol. 8, No. 3-4, 11 pages.
Weizenbaum, J., “ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine,” Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages.
Winiwarter, W., “Adaptive Natural Language Interfaces to FAQ Knowledge Bases,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 22 pages.
Wu, X. et al., “KDA: A Knowledge-based Database Assistant,” Data Engineering, Feb. 6-10, 1989, Proceeding of the Fifth International Conference on Engineering (IEEE Cat. No. 89CH2695-5), 8 pages.
Yang, J., et al., “Smart Sight: A Tourist Assistant System,” 1999 Proceedings of Third International Symposium on Wearable Computers, 6 pages.
Zeng, D., et al., “Cooperative Intelligent Software Agents,” The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages.
Zhao, L., “Intelligent Agents for Flexible Workflow Systems,” Oct. 31, 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Zue, V., et al., “From Interface to Content: Translingual Access and Delivery of On-Line Information,” 1997, EUROSPEECH, 4 pages.
Zue, V., et al., “Jupiter: A Telephone-Based Conversational Interface for Weather Information,” Jan. 2000, IEEE Transactions on Speech and Audio Processing, 13 pages.
Zue, V., et al., “Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning,” 1994 Elsevier, Speech Communication 15 (1994), 10 pages.
Zue, V., et al., “The Voyager Speech Understanding System: Preliminary Development and Evaluation,” 1990, Proceedings of IEEE 1990 International Conference on Acoustics, Speech, and Signal Processing, 4 pages.
Acero, A., et al., “Environmental Robustness in Automatic Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Acero, A., et al., “Robust Speech Recognition by Normalization of The Acoustic Space,” International Conference on Acoustics, Speech, and Signal Processing, 1991, 4 pages.
Ahlbom, G., et al., “Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques,” IEEE International Conference of Acoustics, Speech, and Signal Processing (ICASSP'87), Apr. 1987, vol. 12, 4 pages.
Aikawa, K., “Speech Recognition Using Time-Warping Neural Networks,” Proceedings of the 1991 IEEE Workshop on Neural Networks for Signal Processing, Sep. 30 to Oct. 1, 1991, 10 pages.
Anastasakos, A., et al., “Duration Modeling in Large Vocabulary Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Anderson, R. H., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics,” In Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, © 1967, 12 pages.
Ansari, R., et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach,” IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, 3 pages.
Anthony, N. J., et al., “Supervised Adaption for Signature Verification System,” Jun. 1, 1978, IBM Technical Disclosure, 3 pages.
Apple Computer, “Guide Maker User's Guide,” © Apple Computer, Inc., Apr. 27, 1994, 8 pages.
Apple Computer, “Introduction to Apple Guide,” © Apple Computer, Inc., Apr. 28, 1994, 20 pages.
Asanović, K., et al., “Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks,” In Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.berkeley.EDU, 7 pages.
Atal, B. S., “Efficient Coding of LPC Parameters by Temporal Decomposition,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'83), Apr. 1983, 4 pages.
Bahl, L. R., et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14,1988, vol. 1, 4 pages.
Bahl, L. R., et al., “A Maximum Likelihood Approach to Continuous Speech Recognition,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages.
Bahl, L. R., et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, Issue 7, Jul. 1989, 8 pages.
Bahl, L. R., et al., “Large Vocabulary Natural Language Continuous Speech Recognition,” In Proceedings of 1989 International Conference on Acoustics, Speech, and Signal Processing, May 23-26, 1989, vol. 1, 6 pages.
Bahl, L. R., et al, “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages.
Bahl, L. R., et al., “Speech Recognition with Continuous-Parameter Hidden Markov Models,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 8 pages.
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective,” A thesis submitted for the degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages.
Belaid, A., et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages.
Bellegarda, E. J., et al., “On-Line Handwriting Recognition Using Statistical Mixtures,” Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris-France, Jul. 1993, 11 pages.
Bellegarda, J. R., “A Latent Semantic Analysis Framework for Large-Span Language Modeling,” 5th European Conference on Speech, Communication and Technology, (Eurospeech'97), Sep. 22-25, 1997, 4 pages.
Bellegarda, J. R., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages.
Bellegarda, J. R., et al, “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, 4 pages.
Bellegarda, J. R., et al., “Experiments Using Data Augmentation for Speaker Adaptation,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Bellegarda, J. R., “Exploiting Both Local and Global Constraints for Multi-Span Statistical Language Modeling,” Proceeding of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'98), vol. 2, May 12-15, 1998, 5 pages.
Bellegarda, J. R., “Exploiting Latent Semantic Information in Statistical Language Modeling,” In Proceedings of the IEEE, Aug. 2000, vol. 88, No. 8, 18 pages.
Bellegarda, J. R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of Both Local and Global Language Constraints,” 1992, 7 pages, available at http://old.sigchi.org/bulletin/1998.2/bellegarda.html.
Bellegarda, J. R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages.
Bellegarda, J. R., et al., “Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task,” Signal Processing VII: Theories and Applications, © 1994 European Association for Signal Processing, 4 pages.
Bellegarda, J. R., et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages.
Black, A. W., et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis,” In Proceedings of Eurospeech 1997, vol. 2, 4 pages.
Blair, D. C., et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System,” Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages.
Briner, L. L., “Identifying Keywords in Text Data Processing,” In Zelkowitz, Marvin V., ED, Directions and Challenges, 15th Annual Technical Symposium, Jun. 17, 1976, Gaithersbury, Maryland, 7 pages.
Bulyko, I. et al., “Error-Correction Detection and Response Generation in a Spoken Dialogue System,” © 2004 Elsevier B.V., specom.2004.09.009, 18 pages.
Bulyko, I., et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis,” Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages.
Bussler, C., et al., “Web Service Execution Environment (WSMX),” Jun. 3, 2005, W3C Member Submission, http://www.w3.org/Submission/WSMX, 29 pages.
Bussey, H. E., et al., “Service Architecture, Prototype Description, and Network Implications of A Personalized Information Grazing Service,” INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Jun. 3-7 1990, http://slrohall.com/publications/, 8 pages.
Buzo, A., et al., “Speech Coding Based Upon Vector Quantization,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages.
Caminero-Gil, J., et al., “Data-Driven Discourse Modeling for Semantic Interpretation,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, May 7-10, 1996, 6 pages.
Cawley, G. C., “The Application of Neural Networks to Phonetic Modelling,” PhD Thesis, University of Essex, Mar. 1996, 13 pages.
Chang, S., et al., “A Segment-based Speech Recognition System for Isolated Mandarin Syllables,” Proceedings TENCON '93, IEEE Region 10 conference on Computer, Communication, Control and Power Engineering, Oct. 19-21, 1993, vol. 3, 6 pages.
Cheyer, A., “About Adam Cheyer,” Sep. 17, 2012, http://www.adam.cheyer.com/about.html, 2 pages.
Cheyer, A., “A Perspective on AI & Agent Technologies for SCM,” VerticalNet, 2001 presentation, 22 pages.
Conklin, J., “Hypertext: An Introduction and Survey,” Computer Magazine, Sep. 1987, 25 pages.
Connolly, F. T., et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1989, vol. 37, No. 6, 13 pages.
Cox, R. V., et al., “Speech and Language Processing for Next-Millennium Communications Services,” Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages.
Davis, Z., et al., “A Personal Handheld Multi-Modal Shopping Assistant,” 2006 IEEE, 9 pages.
Deerwester, S., et al., “Indexing by Latent Semantic Analysis,” Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages.
Deller, Jr., J. R., et al., “Discrete-Time Processing of Speech Signals,” © 1987 Prentice Hall, ISBN: 0-02-328301-7, 14 pages.
Digital Equipment Corporation, “Open VMS Software Overview,” Dec. 1995, software manual, 159 pages.
Domingue, J., et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services,” Jun. 9-10, 2005, position paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, 6 pages.
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers,” 2001, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6398, 4 pages.
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook,” Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages.
Goldberg, D., et al., “Using Collaborative Filtering to Weave an Information Tapestry,” Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages.
Gorin, A. L., et al., “On Adaptive Acquisition of Language,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), vol. 1, Apr. 3-6, 1990, 5 pages.
Gotoh, Y., et al., “Document Space Models Using Latent Semantic Analysis,” In Proceedings of Eurospeech, 1997, 4 pages.
Gray, R. M., “Vector Quantization,” IEEE ASSP Magazine, Apr. 1984, 26 pages.
Guzzoni, D., et al., “A Unified Platform for Building Intelligent Web Interaction Assistants,” Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 4 pages.
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages.
Helm, R., et al., “Building Visual Language Parsers,” In Proceedings of CHI'91 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 8 pages.
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech,” Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages.
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing,” In proceedings of IEEE International Conference on Acoustics, speech, and Signal Processing (ICASSP'93), Apr. 27-30, 1993, 4 pages.
Hoehfeld M., et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm,” IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages.
Holmes, J. N., “Speech Synthesis and Recognition—Stochastic Models for Word Recognition,” Speech Synthesis and Recognition, Published by Chapman & Hall, London, ISBN 0 412 53430 4, © 1998 J. N. Holmes, 7 pages.
Hon, H.W., et al., “CMU Robust Vocabulary-Independent Speech Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-91), Apr. 14-17, 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Editor,” vol. 29, No. 10, Mar. 10, 1987, 3 pages.
IBM Technical Disclosure Bulletin, “Integrated Audio-Graphics User Interface,” vol. 33, No. 11, Apr. 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Recognition with Hidden Markov Models of Speech Waveforms,” vol. 34, No. 1, Jun. 1991, 10 pages.
Iowegian International, “FIR Filter Properties,” dspGuro, Digital Signal Processing Central, http://www.dspguru.com/dsp/tags/fir/properties, downloaded on Jul. 28, 2010, 6 pages.
Jacobs, P. S., et al., “Scisor: Extracting Information from On-Line News,” Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages.
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition,” Readings in Speech Recognition, edited by Alex Waibel and Kai-Fu Lee, May 15, 1990, © 1990 Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 63 pages.
Jennings, A., et al., “A Personal News Service Based on a User Model Neural Network,” IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, Tokyo, JP, 12 pages.
Ji, T., et al., “A Method for Chinese Syllables Recognition based upon Sub-syllable Hidden Markov Model,” 1994 International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 4 pages.
Jones, J., “Speech Recognition for Cyclone,” Apple Computer, Inc., E.R.S., Revision 2.9, Sep. 10, 1992, 93 pages.
Katz, S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages.
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System,” Jun. 1991 Computer, vol. 24, No. 6, 13 pages.
Klabbers, E., et al., “Reducing Audible Spectral Discontinuities,” IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages.
Klatt, D. H., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence,” Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages.
Kominek, J., et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs,” 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages.
Kubala, F., et al., “Speaker Adaptation from a Speaker-Independent Training Corpus,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Kubala, F., et al., “The Hub and Spoke Paradigm for CSR Evaluation,” Proceedings of the Spoken Language Technology Workshop, Mar. 6-8, 1994, 9 pages.
Lee, K.F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System,” Apr. 18, 1988, Partial fulfillment of the requirements for the degree of Doctor of Philosophy, Computer Science Department, Carnegie Mellon University, 195 pages.
Lee, L., et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary,” International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 3-6, 1990, 5 pages.
Lee, L, et al., “Golden Mandarin(II)—An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary,” 0-7803-0946-4/93 © 1993 IEEE, 4 pages.
Lee, L, et al., “Golden Mandarin(II)—An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions,” International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 5 pages.
Lee, L., et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters,” International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, Nos. 3 & 4, Nov. 1991, 16 pages.
Lin, C.H., et al., “A New Framework for Recognition of Mandarin Syllables With Tones Using Sub-syllabic Unites,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-93), Apr. 27-30, 1993, 4 pages.
Linde, Y., et al., “An Algorithm for Vector Quantizer Design,” IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages.
Liu, F.H., et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering,” IEEE International Conference of Acoustics, Speech, and Signal Processing, ICASSP-92, Mar. 23-26, 1992, 4 pages.
Logan, B., “Mel Frequency Cepstral Coefficients for Music Modeling,” In International Symposium on Music Information Retrieval, 2000, 2 pages.
Lowerre, B. T., “The-HARPY Speech Recognition System,” Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages.
Maghbouleh, A., “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations,” Revised version of a paper presented at the Computational Phonology in Speech Technology workshop, 1996 annual meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages.
Markel, J. D., et al., “Linear Prediction of Speech,” Springer-Verlag, Berlin Heidelberg New York 1976, 12 pages.
Morgan, B., “Business Objects,” (Business Objects for Windows) Business Objects Inc., DBMS Sep. 1992, vol. 5, No. 10, 3 pages.
Mountford, S. J., et al., “Talking and Listening to Computers,” The Art of Human-Computer Interface Design, Copyright © 1990 Apple Computer, Inc. Addison-Wesley Publishing Company, Inc., 17 pages.
Murty, K. S. R., et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition,” IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages.
Murveit H. et al., “Integrating Natural Language Constraints into HMM-based Speech Recognition,” 1990 International Conference on Acoustics, Speech, and Signal Processing, Apr. 3-6, 1990, 5 pages.
Nakagawa, S., et al., “Speaker Recognition by Combining MFCC and Phase Information,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Mar. 14-19, 2010, 4 pages.
Niesler, T. R., et al., “A Variable-Length Category-Based N-Gram Language Model,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, May 7-10, 1996, 6 pages.
Papadimitriou, C. H., et al., “Latent Semantic Indexing: A Probabilistic Analysis,” Nov. 14, 1997, http://citeseerx.ist.psu.edu/messages/downloadsexceeded.html, 21 pages.
Parsons, T. W., “Voice and Speech Processing,” Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 5 pages.
Parsons, T. W., “Voice and Speech Processing,” Pitch and Formant Estimation, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 15 pages.
Picone, J., “Continuous Speech Recognition Using Hidden Markov Models,” IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages.
Rabiner, L. R., et al., “Fundamental of Speech Recognition,” © 1993 AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 17 pages.
Rabiner, L. R., et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients,” The Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages.
Ratcliffe, M., “ClearAccess 2.0 allows SQL searches off-line,” (Structured Query Language), ClearAcess Corp., MacWeek Nov. 16, 1992, vol. 6, No. 41, 2 pages.
Remde, J. R., et al., “SuperBook: An Automatic Tool for Information Exploration-Hypertext?,” In Proceedings of Hyspertext'87 papers, Nov. 13-15, 1987, 14 pages.
Reynolds, C. F., “On-Line Reviews: A New Application of the HICOM Conferencing System,” IEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages.
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'89), May 23-26, 1989, 4 pages.
Riley, M. D., “Tree-Based Modelling of Segmental Durations,” Talking Machines Theories, Models, and Designs, 1992 © Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 15 pages.
Rivoira, S., et al., “Syntax and Semantics in a Word-Sequence Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'79), Apr. 1979, 5 pages.
Roddy, D., et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces,” VerticalNet Solutions, white paper, Jun. 15, 2000, 24 pages.
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling,” Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages.
Roszkiewicz, A., “Extending your Apple,” Back Talk—Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages.
Sakoe, H., et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,” IEEE Transactins on Acoustics, Speech, and Signal Processing, Feb. 1978, vol. ASSP-26 No. 1, 8 pages.
Salton, G., et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis,” Information Processing and Management, vol. 26, No. 1, Great Britain 1990, 22 pages.
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence,” International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1993, 15 pages.
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition,” International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages.
Schmandt, C., et al., “Augmenting a Window System with Speech Input,” IEEE Computer Society, Computer Aug. 1990, vol. 23, No. 8, 8 pages.
Schütze, H., “Dimensions of Meaning,” Proceedings of Supercomputing'92 Conference, Nov. 16-20, 1992, 10 pages.
Sheth B., et al., “Evolving Agents for Personalized Information Filtering,” In Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1-5, 1993, 9 pages.
Shikano, K., et al., “Speaker Adaptation Through Vector Quantization,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages.
Sigurdsson, S., et al., “Mel Frequency Cepstral Coefficients: An Evaluation of Robustness of MP3 Encoded Music,” In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), 2006, 4 pages.
Silverman, K. E. A., et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration,” Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 15-19, 1999, 5 pages.
SRI2009, “SRI Speech: Products: Software Development Kits: EduSpeak,” 2 pages, available at http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak.shtml.
Tenenbaum, A.M., et al., “Data Structure Using Pascal,” 1981 Prentice-Hall, Inc., 34 pages.
Tsai, W.H., et al., “Attributed Grammar-A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages.
Udell, J., “Computer Telephony,” BYTE, vol. 19, No. 7, Jul. 1, 1994, 9 pages.
Van Santen, J. P. H., “Contextual Effects on Vowel Duration,” Journal Speech Communication, vol. 11, No. 6, Dec. 1992, 34 pages.
Vepa, J., et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis,” In Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 4 pages.
Verschelde, J., “MATLAB Lecture 8. Special Matrices in MATLAB,” Nov. 23, 2005, UIC Dept. of Math., Stat., & C.S., MCS 320, Introduction to Symbolic Computation, 4 pages.
Vingron, M. “Near-Optimal Sequence Alignment,” Deutsches Krebsforschungszentrum (DKFZ), Abteilung Theoretische Bioinformatik, Heidelberg, Germany, Jun. 1996, 20 pages.
Werner, S., et al., “Prosodic Aspects of Speech,” Université de Lausanne, Switzerland, 1994, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art, and Future Challenges, 18 pages.
Wikipedia, “Mel Scale,” Wikipedia, the free encyclopedia, last modified page date: Oct. 13, 2009, http://en.wikipedia.org/wiki/Mel_scale, 2 pages.
Wikipedia, “Minimum Phase,” Wikipedia, the free encyclopedia, last modified page date: Jan. 12, 2010, http://en.wikipedia.org/wiki/Minimum_phase, 8 pages.
Wolff, M., “Poststructuralism and the ARTFUL Database: Some Theoretical Considerations,” Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages.
Wu, M., “Digital Speech Processing and Coding,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-2 course presentation, University of Maryland, College Park, 8 pages.
Wu, M., “Speech Recognition, Synthesis, and H.C.I.,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-3 course presentation, University of Maryland, College Park, 11 pages.
Wyle, M. F., “A Wide Area Network Information Filter,” In Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 9-11, 1991, 6 pages.
Yankelovich, N., et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment,” Computer Magazine, Jan. 1988, © 1988 IEEE, 16 pages.
Yoon, K., et al., “Letter-to-Sound Rules for Korean,” Department of Linguistics, The Ohio State University, 2002, 4 pages.
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 15 pages.
Zovato, E., et al., “Towards Emotional Speech Synthesis: A Rule Based Approach,” 5th ISCA Speech Synthesis Workshop—Pittsburgh, Jun. 14-16, 2004, 2 pages.
International Search Report dated Nov. 9, 1994, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 8 pages (Robert Don Strong).
International Preliminary Examination Report dated Mar. 1, 1995, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 5 pages (Robert Don Stron.).
International Preliminary Examination Report dated Apr. 10, 1995, received in International Application No. PCT/US1993/12637, which corresponds to U.S. Appl. No. 07/999,354, 7 pages (Alejandro Acero).
International Search Report dated Feb. 8, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 7 pages (Yen-Lu Chow).
International Preliminary Examination Report dated Feb. 28, 1996, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
Written Opinion dated Aug. 21, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
International Search Report dated Nov. 8, 1995, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 6 pages (Peter V. De Souza).
International Preliminary Examination Report dated Oct. 9, 1996, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 4 pages (Peter V. De Souza).
Alfred App, 2011, http://www.alfredapp.com/, 5 pages.
Ambite, JL., et al., “Design and Implementation of the CALO Query Manager,” Copyright © 2006, American Association for Artificial Intelligence, (www.aaai.org), 8 pages.
Ambite, JL., et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager,” 2005, The 4th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE), Agia Napa, Cyprus, ttp://www.isi.edu/people/ambite/publications/integration_heterogeneous_knowledge_sources_calo_query_manager, 18 pages.
Belvin, R. et al., “Development of the HRL Route Navigation Dialogue System,” 2001, In Proceedings of the First International Conference on Human Language Technology Research, Paper, Copyright © 2001 HRL Laboratories, LLC, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.6538, 5 pages.
Berry, P. M., et al. “PTIME: Personalized Assistance for Calendaring,” ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Publication date: Jul. 2011, 40:1-22, 22 pages.
Butcher, M., “EVI arrives in town to go toe-to-toe with Siri,” Jan. 23, 2012, http://techcrunch.com/2012/01/23/evi-arrives-in-town-to-go-toe-to-toe-with-siri/, 2 pages.
Chen, Y., “Multimedia Siri Finds and Plays Whatever You Ask For,” Feb. 9, 2012, http://www.psfk.com/2012/02/multimedia-siri.html, 9 pages.
Cheyer, A. et al., “Spoken Language and Multimodal Applications for Electronic Realties,” © Springer-Verlag London Ltd, Virtual Reality 1999, 3:1-15, 15 pages.
Cutkosky, M. R. et al., “PACT: An Experiment in Integrating Concurrent Engineering Systems,” Journal, Computer, vol. 26 Issue 1, Jan. 1993, IEEE Computer Society Press Los Alamitos, CA, USA, http://dl.acm.org/citation.cfm?id=165320, 14 pages.
Elio, R. et al., “On Abstract Task Models and Conversation Policies,” May 1999, http://webdocs.cs.ualberta.ca/˜ree/publications/papers2/ATS.AA99.pdf, 10 pages.
Ericsson, S. et al., “Software illustrating a unified approach to multimodaiity and multilinguality in the in-home domain,” Dec. 22, 2006, Talk and Look: Tools for Amhient Linguistic Knowledge, http://www.talk-project.eurice.eu/fileadmin/talk/publications_public/deliverables_public/D1_6.pdf, 127 pages.
Evi, “Meet Evi: the one mobile app that provides solutions for your everyday problems.” Feb. 8, 2012, http://www.evi.com/, 3 pages.
Feigenbaum, E., et al., “Computer-assisted Semantie Annotation of Scientific Life Works,” 2007, http://tomgruber.org/writing/stanford-cs300.pdf, 22 pages.
Gannes, L., “Alfred App Gives Personalized Restaurant Recommendations,” allthingsd.com. Jul. 18, 2011, http://allthingsd.com/20110718/alfred-app-gives-personalized restaurant-recommendations/, 3 pages.
Gautier, P. O., et al. “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering,” 1993, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8394, 9 pages.
Gervasio, M. T., et al., Active Preference Learning for Personalized Calendar Scheduling Assistancae, Copyright © 2005, http://www.ai.sri.com/˜gervasio/pubs/gervasio-iui05.pdf, 8 pages.
Glass, A., “Explaining Preference Learning,” 2006, http://cs229.stanford.edu/proj2006/Glass-ExplainingPreferenceLearning.pdf, 5 pages.
Glass, J., et al., “Multilingual Spoken-Language Understanding in the MIT Voyager System,” Aug. 1995, http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf, 29 pages.
Goddeau, D., et al., “A Form-Based Dialogue Manager for Spoken Language Applications,” Oct. 1996, http://phasedance.com/pdf/icslp96.pdf, 4 pages.
Goddeau, D., et al., “Galaxy: A Human-Language Interface to On-Line Travel Information,” 1994 International Conference on Spoken Language Processing, Sep. 18-22, 1994, Pacific Convention Plaza Yokohama, Japan, 6 pages.
Gruber, T. R., et al., “An Ontology for Engineering Mathematics,” In Jon Doyne, Piero Torasso, & Erik Sandewall, Eds., Fourth International Conference on Principles of Knowledge Representation and Reasoning, Gustav Stresemann Institut, Bonn, Germany, Morgan Kaufmann, 1994, http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html, 22 pages.
Gruber, T. R., “A Translation Approach to Portable Ontology Specifications,” Knowledge Systems Laboratory, Stanford University, Sep. 1992, Technical Report KSL 92-71, Revised Apr. 1993, 27 pages.
Gruber, T. R., “Automated Knowledge Acquisition for Strategic Knowledge,” Knowledge Systems Laboratory, Machine Learning, 4, 293-336 (1989), 44 pages.
Gruber, T. R., “(Avoiding) the Travesty of the Commons,” Presentation at NPUC 2006, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006. http://tomgruber.org/writing/avoiding-travestry.htm, 52 pages.
Gruber, T. R., “Big Think Small Screen: How semantic computing in the cloud will revolutionize the consumer experience on the phone,” Keynote presentation at Web 3.0 conference, Jan. 27, 2010, http://tomgruber.org/writing/web30jan2010.htm, 41 pages.
Gruber, T. R., “Collaborating around Shared Content on the WWW,” W3C Workshop on WWW and Collaboration, Cambridge, MA, Sep. 11, 1995, http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html, 1 page.
Gruber, T. R., “Collective Knowledge Systems: Where the Social Web meets the Semantic Web,” Web Semantics: Science, Services and Agents on the World Wide Web (2007), doi:10.1016/j.websem.2007.11.011, keynote presentation given at the 5th International Semantic Web Conference, Nov. 7, 2006, 19 pages.
Gruber, T. R., “Where the Social Web meets the Semantic Web,” Presentation at the 5th International Semantic Web Conference, Nov. 7, 2006, 38 pages.
Gruber, T. R., “Despite our Best Efforts, Ontologies are not the Problem,” AAAI Spring Symposium, Mar. 2008, http://tomgruber.org/writing/aaai-ss08.htm, 40 pages.
Gruber, T. R., “Enterprise Collaboration Management with Intraspect,” Intraspect Software, Inc., Instraspect Technical White Paper Jul. 2001, 24 pages.
Gruber, T. R., “Every ontology is a treaty—a social agreement—among people with some common motive in sharing,” Interview by Dr. Miltiadis D. Lytras, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, Issue 3, 2004, http://www.sigsemis.org 1, 5 pages.
Gruber, T. R., et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm,” Knowledge Systems Laboratory, Stanford University, Dec. 1991, Technical Report KSL 92-59, Updated Feb. 1993, 24 pages.
Gruber, T. R., “Helping Organizations Collaborate, Communicate, and Learn,” Presentation to NASA Ames Research, Mountain View, CA, Mar. 2003, http://tomgruber.org/writing/organizational-intelligence-talk.htm, 30 pages.
Gruber, T. R., “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience,” Presentation at Semantic Technologies conference (SemTech08), May 20, 2008, http://tomgruber.org/writing.htm, 40 pages.
Gruber, T. R., Interactive Acquisition of Justifications: Learning “Why” by Being Told “What” Knowledge Systems Laboratory, Stanford University, Oct. 1990, Technical Report KSL 91-17, Revised Feb. 1991, 24 pages.
Gruber, T. R., “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing,” (c) 2000, 2003, http://www.cidoc-crm.org/docs/symposium_presentations/gruber_cidoc-ontology-2003.pdf, 21 pages.
Gruber, T. R., et al., “Machine-generated Explanations of Engineering Models: A Compositional Modeling Approach,” (1993) In Proc. International Joint Conference on Artificial Intelligence, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.930, 7 pages.
Gruber, T. R., “2021: Mass Collaboration and the Really New Economy,” TNTY Futures, the newsletter of the Next Twenty Years series, vol. 1, Issue 6, Aug. 2001, http://www.tnty.com/newsletter/futures/archive/v01-05business.html, 5 pages.
Gruber, T. R., et al.,“NIKE: A National Infrastructure for Knowledge Exchange,” Oct. 1994, http://www.eit.com/papers/nike/nike.html and nike.ps, 10 pages.
Gruber, T. R., “Ontologies, Web 2.0 and Beyond,” Apr. 24, 2007, Ontology Summit 2007, http://tomgruber.org/writing/ontolog-social-web-keynote.pdf, 17 pages.
Gruber, T. R., “Ontology of Folksonomy: A Mash-up of Apples and Oranges,” Originally published to the web in 2005, Int'l Journal on Semantic Web & Information Systems, 3(2), 2007, 7 pages.
Gruber, T. R., “Siri, a Virtual Personal Assistant—Bringing Intelligence to the Interface,” Jun. 16, 2009, Keynote presentation at Semantic Technologies conference, Jun. 2009. http://tomgruber.org/writing/semtech09.htm, 22 pages.
Gruber, T. R., “TagOntology,” Presentation to Tag Camp, www.tagcamp.org, Oct. 29, 2005, 20 pages.
Gruber, T. R., et al., “Toward a Knowledge Medium for Collaborative Product Development,” In Artificial Intelligence in Design 1992, from Proceedings of the Second International Conference on Artificial Intelligence in Design, Pittsburgh, USA, Jun. 22-25, 1992, 19 pages.
Gruber, T. R., “Toward Principles for the Design of Ontologies Used for Knowledge Sharing,” In International Journal Human-Computer Studies 43, p. 907-928, substantial revision of paper presented at the International Workshop on Formal Ontology, Mar. 1993, Padova, Italy, available as Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford University, further revised Aug. 23, 1993, 23 pages.
Guzzoni, D., et al., “Active, A Platform for Building Intelligent Operating Rooms,” Surgetica 2007 Computer-Aided Medical Interventions: tools and applications, pp. 191-198, Paris, 2007, Sauramps Médical, http://lsro.epfl.ch/page-68384-en.html, 8 pages.
Guzzoni, D., et al., “Active, A Tool for Building Intelligent User Interfaces,” ASC 2007, Palma de Mallorca, http://lsro.epfl.ch/page-34241.html, 6 pages.
Guzzoni, D., et al., “Modeling Human-Agent Interaction with Active Ontologies,” 2007, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 8 pages.
Hardawar, D., “Driving app Waze builds its own Siri for hands-free voice control,” Feb. 9, 2012, http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/, 4 pages.
Intraspect Software, “The Intraspect Knowledge Management Solution Technical Overview,” http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf, 18 pages.
Julia, L., et al., Un éditeur interactif de tableaux dessinés à main levée (An Interactive Editor for Hand-Sketched Tables), Traitement du Signal 1995, vol. 12, No. 6, 8 pages. No English Translation Available.
Karp, P. D., “A Generic Knowledge-Base Access Protocol,” May 12, 1994, http://lecture.cs.buu.ac.th/˜f50353/Document/gfp.pdf, 66 pages.
Lemon, O., et al., “Multithreaded Context for Robust Conversational Interfaces: Context-Sensitive Speech Recognition and Interpretation of Corrective Fragments,” Sep. 2004, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, 27 pages.
Leong, L., et al., “CASIS: A Context-Aware Speech Interface System,” IUI'05, Jan. 9-12, 2005, Proceedings of the 10th international conference on Intelligent user interfaces, San Diego, California, USA, 8 pages.
Lieberman, H., et al., “Out of context: Computer systems that adapt to, and learn from, context,” 2000, IBM Systems Journal, vol. 39, Nos. 3/4, 2000, 16 pages.
Lin, B., et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History,” 1999, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272, 4 pages.
Martin, D., et al., “The Open Agent Architecture: A Framework for building distributed software systems,” Jan.-Mar. 1999, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, http://adam.cheyer.com/papers/oaa.pdf, 38 pages.
McGuire, J., et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering,” 1993, Journal of Concurrent Engineering: Applications and Research (CERA), 18 pages.
Meng, H., et al., “Wheels: A Conversational System in the Automobile Classified Domain,” Oct. 1996, httphttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3022, 4 pages.
Milward, D., et al., “D2.2: Dynamic Multimodal Interface Reconfiguration,” Talk and Look: Tools for Ambient Linguistic Knowledge, Aug. 8, 2006, http://www.ihmc.us/users/nblaylock/Pubs/Files/talk_d2.2.pdf, 69 pages.
Mitre, P., et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies,” 2000, http://ilpubs.stanford.edu:8090/442/1/2000-20.pdf, 15 pages.
Moran, D. B., et al., “Multimodal User Interfaces in the Open Agent Architecture,” Proc. of the 1997 International Conference on Intelligent User Interfaces (IUI97), 8 pages.
Mozer, M., “An Intelligent Environment Must be Adaptive,” Mar./Apr. 1999, IEEE Intelligent Systems, 3 pages.
Mühlhäuser, M., “Context Aware Voice User Interfaces for Workflow Support,” Darmstadt 2007, http://tuprints.ulb.tu-darmstadt.de/876/1/PhD.pdf, 254 pages.
Naone, E., “TR10: Intelligent Software Assistant,” Mar.-Apr. 2009, Technology Review, http://www.technologyreview.com/printer_friendly_article.aspx?id=22117, 2 pages.
Neches, R., “Enabling Technology for Knowledge Sharing,” Fall 1991, AI Magazine, pp. 37-56, (21 pages).
Nöth, E., et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, 14 pages.
Phoenix Solutions, Inc. v. West Interactive Corp., Document 40, Declaration of Christopher Schmandt Regarding the MIT Galaxy System dated Jul. 2, 2010, 162 pages.
Rice, J., et al., “Monthly Program: Nov. 14, 1995,” The San Francisco Bay Area Chapter of ACM SIGCHI, http://www.baychi.org/calendar/19951114/, 2 pages.
Rice, J., et al., “Using the Web Instead of a Window System,” Knowledge Systems Laboratory, Stanford University, (http://tomgruber.org/writing/ksl-95-69.pdf, Sep. 1995.) CHI '96 Proceedings: Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, Vancouver, BC, Canada, 14 pages.
Rivlin, Z., et al., “Maestro: Conductor of Multimedia Analysis Technologies,” 1999 SRI International, Communications of the Association for Computing Machinery (CACM), 7 pages.
Roddy, D., et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces,” VerticalNet Solutions, white paper, Jun. 15, 2000, 23 pages.
Seneff, S., et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains,” Oct. 1996, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16 . . . rep . . . , 4 pages.
Sheth, A., et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships,” Oct. 13, 2002, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, SpringerVerlag, 38 pages.
Simonite, T., “One Easy Way to Make Siri Smarter,” Oct. 18, 2011, Technology Review, http:// www.technologyreview.com/printer_friendly_article.aspx?id=38915, 2 pages.
Stent, A., et al., “The CommandTalk Spoken Dialogue System,” 1999, http://acl.ldc.upenn.edu/P/P99/P99-1024.pdf, 8 pages.
Tofel, K., et al., “SpeakTolt: A personal assistant for older iPhones, iPads,” Feb. 9, 2012, http://gigaom.com/apple/speaktoit-siri-for-older-iphones-ipads/, 7 pages.
Tucker, J., “Too lazy to grab your TV remote? Use Siri instead,” Nov. 30, 2011, http://www.engadget.com/2011/11/30/too-lazy-to-grab-your-tv-remote-use-siri-instead/, 8 pages.
Tur, G., et al., “The CALO Meeting Speech Recognition and Understanding System,” 2008, Proc. IEEE Spoken Language Technology Workshop, 4 pages.
Tur, G., et al., “The-CALO-Meeting-Assistant System,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 6, Aug. 2010, 11 pages.
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar,” 2:38 minute video uploaded to YouTube by Vlingo Voice on Oct. 6, 2010, http://www.youtube.com/watch?v=Vqs8XfXxgz4, 2 pages.
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store,” Vlingo press release dated Dec. 3, 2008, 2 pages.
YouTube, “Knowledge Navigator,” 5:34 minute video uploaded to YouTube by Knownav on Apr. 29, 2008, http://www.youtube.com/watch?v=QRH8eimU_20, 1 page.
YouTube,“Send Text, Listen to and Send E-Mail ‘By Voice’ www.voiceassist.com,” 2:11 minute video uploaded to YouTube by VoiceAssist on Jul 30, 2009, http://www.youtube.com/watch?v=0tEU61nHHA4, 1 page.
YouTube,“Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!,” 1:57 minute video uploaded to YouTube by TextnDrive on Apr 27, 2010, http://www.youtube.com/watch?v=WaGfzoHsAMw, 1 page.
YouTube, “Voice on the Go (BlackBerry),” 2:51 minute video uploaded to YouTube by VoiceOnTheGo on Jul. 27, 2009, http://www.youtube.com/watch?v=pJqpWgQS98w, 1 page.
Zue, V., “Conversational Interfaces: Advances and Challenges,” Sep. 1997, http://www.cs.cmu.edu/˜dod/papers/zue97.pdf, 10 pages.
Zue, V. W., “Toward Systems that Understand Spoken Language,” Feb. 1994, ARPA Strategic Computing Institute, ©1994 IEEE, 9 pages.
International Search Report and Written Opinion dated Nov. 29, 2011, received in International Application No. PCT/US2011/20861, which corresponds to U.S. Appl. No. 12/987,982, 15 pages (Thomas Robert Gruber).
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/044834, dated Dec. 9, 2014, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044834, dated Dec. 20, 2013, 13 pages.
Related Publications (1)
Number Date Country
20130332162 A1 Dec 2013 US
Provisional Applications (1)
Number Date Country
61657723 Jun 2012 US