The present disclosure relates generally to systems and methods for performing sidewall coring within a wellbore. More specifically, the present disclosure relates to using muleshoes or other coring cylinders (e.g., cylinders with cutting knife edge(s)) actuated by actuators to perform sidewall coring within a wellbore extending through an unconsolidated (or poorly consolidated or poorly cemented) formation.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present techniques, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as an admission of any kind.
The oil and gas industry includes a number of sub-industries, such as exploration, drilling, logging, extraction, transportation, refinement, retail, and so forth. During exploration and drilling, wellbores may be drilled into the ground for reasons that may include discovery, observation, and/or extraction of resources. These resources may include oil, gas, water, or any other combination of elements within the ground.
Wellbores or boreholes may be drilled to, for example, locate and produce hydrocarbons. During a well development operation, it may be desirable to evaluate and/or measure properties of encountered formations, formation fluids and/or formation gasses. Some formation evaluations may include extracting a core sample (e.g., a rock sample) from the sidewall of a wellbore. Core samples may be extracted using a coring tool coupled to a downhole tool that is lowered into the wellbore and positioned adjacent a formation. A hollow coring shaft or bit of the coring tool may be extended from the downhole tool and urged against the formation to penetrate the formation. A formation or core sample fills the hollow portion or cavity of the coring shaft and the coring shaft is removed from the formation retaining the sample within the cavity.
The sample obtained using the hollow coring bit (or bullet) is generally referred to as a “core sample” or “core plug.” Once the core sample has been transported to the surface, it may be analyzed to assess, among other things, the reservoir storage capacity (e.g., porosity) and the flow potential (e.g., permeability) of the material that makes up the formation; the chemical and mineral composition of the fluids and mineral composition of the rock, including deposits contained in the pores of the formation; and the irreducible water content of the formation material. The information obtained from analysis of a sample is used to design and implement well completion and production facilities.
A summary of certain embodiments described herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that these aspects are not intended to limit the scope of this disclosure.
The systems and methods presented herein include a method that includes deploying a sidewall coring tool into a wellbore extending through a subterranean (e.g., including offshore) formation. The method also includes rotating a coring cylinder of the sidewall coring tool back and forth less than a full rotation while pushing the coring cylinder of the sidewall coring tool against a bore wall of the wellbore. The method further includes pushing the coring cylinder of the sidewall coring tool into the subterranean formation to enable extraction of a core sample of the subterranean formation. In addition, the method includes retracting the coring cylinder to retrieve the core sample of the subterranean formation.
The systems and methods presented herein also include a sidewall coring tool includes a coring cylinder and one or more actuators. The one or more actuators are configured to rotate the coring cylinder back and forth less than a full rotation while pushing the coring cylinder against a bore wall of a wellbore. The one or more actuators are also configured to push the coring cylinder into the subterranean formation to enable extraction of a core sample of a subterranean (e.g., including offshore) formation.
The systems and methods presented herein further include a coring system includes a sidewall coring tool having a coring cylinder and one or more actuators configured to perform sidewall coring of a subterranean (e.g., including offshore) formation using a combination of rotary and percussive coring. The coring system also includes a surface unit configured to send control signals to the sidewall coring tool to control the sidewall coring of the subterranean formation.
Various refinements of the features noted above may be undertaken in relation to various aspects of the present disclosure. Further features may also be incorporated in these various aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to one or more of the illustrated embodiments may be incorporated into any of the above-described aspects of the present disclosure alone or in any combination. The brief summary presented above is intended to familiarize the reader with certain aspects and contexts of embodiments of the present disclosure without limitation to the claimed subject matter.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein.
One or more specific embodiments of the present disclosure will be described below. These described embodiments are only examples of the presently disclosed techniques. Additionally, in an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements; in other words, these terms are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . . ” Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Furthermore, the phrase “A based on B” is intended to mean that A is at least partially based on B. Moreover, unless expressly stated otherwise, the term “or” is intended to be inclusive (e.g., logical OR) and not exclusive (e.g., logical XOR). In other words, the phrase “A or B” is intended to mean A, B, or both A and B.
As used herein, the terms “connect,” “connection,” “connected,” “in connection with,” and “connecting” are used to mean “in direct connection with” or “in connection with via one or more elements”; and the term “set” is used to mean “one element” or “more than one element.” Further, the terms “couple,” “coupling,” “coupled,” “coupled together,” and “coupled with” are used to mean “directly coupled together” or “coupled together via one or more elements.” As used herein, the terms “up” and “down,” “upper” and “lower,” “upwardly” and “downwardly,” “upstream” and “downstream,” “uphole” and “downhole,” “above” and “below,” “top” and “bottom,” and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe some embodiments of the disclosure. Commonly, these terms relate to a reference point as the surface from which drilling operations are initiated as being the top (e.g., uphole or upper) point and the total depth along the drilling axis being the lowest (e.g., downhole or lower) point, whether the well (e.g., wellbore, borehole) is vertical, horizontal or slanted relative to the surface.
As described above, mechanical sidewall coring tools use a coring bit or cylinder to cut into an annular space in the wellbore to create a cylindrical core sample or plug that can be extracted to the surface. A plurality of core samples or plugs can be cut and stored (usually sequentially) and returned to the surface for analysis. The embodiments described herein relate to sidewall coring tools having coring bits or coring shafts that may be used to collect samples (e.g., rock samples, tar sand samples, etc.) from subterranean formations adjacent a borehole or a wellbore. The example coring shafts generally include a cylindrical body coupled to a coring bit having a leading edge (e.g., bit face) to contact and penetrate a subterranean formation to be sampled. The cylindrical body has an internal cavity defined at least in part by an inner surface of the cylindrical body to collect the samples.
Referring now to the drawings,
In certain embodiments, the sidewall coring tool 12 may be contained within an elongated housing suitable for being lowered into and retrieved from the wellbore 16. In certain embodiments, the sidewall coring tool 12 may include an electronic sonde 28, a mechanical sonde 30, and a core storage chamber 32. In general, the electronic sonde 28 includes electronics that enable the sidewall coring tool 12 to communicate with the surface unit 22 (e.g., though the cables 20) and to control coring operations of the sidewall coring tool 12 in accordance with such communication. In addition, the mechanical sonde 30 includes mechanical components that enable the sidewall coring tool 12 to retrieve core samples through the bore wall 18 of the wellbore 16, as described in greater detail, and to store the retrieved core samples (e.g., as sequentially retrieved) in the core storage chamber 32.
In particular, as described in greater detail herein, the mechanical sonde 30 may contain a coring assembly including at least one coring actuator 34 powered through the cables 20, a (generally cylindrical) coring cylinder 36 having a distal, open axial end 38 for cutting and receiving a core sample from a formation 14 into an internal cavity formed radially within the coring cylinder 36, and a mechanical linkage (not shown) for deploying and retracting the coring cylinder 36 relative to the sidewall coring tool 12, as described in greater detail herein.
The embodiments described herein provide systems and methods for improving the recovery and quality of subterranean sidewall core samples in unconsolidated formations 14 with relatively low Unconfined Compressive Strength (UCS) (e.g., less than 800 psi UCS). This is even more challenging in subterranean environments with relatively high pressure (e.g., greater than 25 ksi). For example, coring and recovery become even more challenging with increasing formation pore pressure and increasing mud weight and associated hydrostatic pressure.
As used herein, the term “unconsolidated” is intended to refer to formations 14 having uncemented to poorly cemented grains (regardless of the actual grain size, though it would be a fraction of the bit inner diameter). For coring planning purposes, the term “unconsolidated” may be used based on the measured or computed values of UCS in the following manner:
Traditionally, sidewall core samples are predominately extracted by one of two means—percussive sidewall coring or rotary sidewall coring. Rotary sidewall coring mainly uses a coring bit to drill out the core sample (e.g., like a hole saw). This method works very well for relatively hard rocks, but poorly for unconsolidated formations 14. In general, the drilling rotation causes vortexes with the cuttings and downhole fluids that destroy samples with relatively low UCS (e.g., 100-300 psi) or unconsolidated formations 14 (e.g., including sand, sandstone, shale, shaly sand, sandy shale, other low UCS rock types, and so forth). Additionally, with the downhole pressure, while drilling the differential pressure between the wellbore 16 and the formation 14 tries to pull back cuttings, causing the bit to stall. As such, the coring bit often needs to be pulled back several times to clear the cuttings to recover a single core. The rotation of the coring bit and these additional actions cause damage to the core sample, leading to poor quality that are often not recoverable. Percussive coring, on the other hand, uses shape charges that shoot cups (e.g., hollow bullets) into the rock that are tethered to the sidewall coring tool. Percussive coring is often better at capturing softer cores, but it generally tends to destroy the integrity of the core due to the relatively high shock.
The embodiments described herein combine both methods in a single sidewall coring tool 12. In particular, instead of using a rotating bit to drill into the formation 14 like as done on a rotary sidewall coring tool, the sidewall coring tool 12 described herein uses a coring cylinder 36 to cut and penetrate into the formation 14. Similarly to rotary sidewall coring, after being axially pushed against a surface of the formation 14, the sidewall coring tool 12 described herein is configured to rotate the coring cylinder 36 back and forth, but only less than a full rotation (e.g., 360 degrees), for example, less than ¾ turn (e.g., 270 degrees), less than ½ turn (e.g., 180 degrees), or approximately 90 degrees (e.g., within a range of between 85-95 degrees, between 86-94 degrees, between 87-93 degrees, between 88-92 degrees, between 89-91 degrees, and so forth) relative to a longitudinal axis of the coring cylinder 36, while applying axial force such that the rotation of the coring cylinder 36 begins forming the core sample, at each coring station. After initially forming a small portion of the core sample, similar to percussive sidewall coring, using hydraulics and a coring actuator 34, the rotating coring cylinder 36 is then pushed axially into the formation 14, thereby further forming the core sample.
The sidewall coring tool 12 may utilize various different types of coring actuators 34 to cause the rotation and the axial movement of the coring cylinder 36, as described in greater detail herein.
As illustrated in
It will be appreciated that the hydraulic piston 52A of the coring actuator 34A illustrated in
In contrast, as opposed to having a single hydraulic piston 52A that is configured to directly actuate the coring cylinder 36, in other embodiments, the coring actuator 34B illustrated in
It will be appreciated that the hydraulic pistons 52B, 52C of the coring actuator 34B illustrated in
In certain embodiments, after the core sample 66 has been formed, the process for rotating the coring cylinder 36 back and forth less than a full rotation (e.g., 360 degrees), for example, less than ¾ turn (e.g., 270 degrees), less than ½ turn (e.g., 180 degrees), or approximately 90 degrees (e.g., within a range of between 85-95 degrees, between 86-94 degrees, between 87-93 degrees, between 88-92 degrees, between 89-91 degrees, and so forth) relative to a longitudinal axis of the coring cylinder 36, may be performed by the coring actuator 34 to break any mud-seal formed between the coring cylinder 36 and the formation 14. In other embodiments, the mud-seal may be broken using relatively rapid axial movement of the coring cylinder 36 at a relatively small amplitude. Then, reverse axial motion of the coring cylinder 36 may be performed by the coring actuator 34, for example, by reversing the axial movement steps discussed with reference to
In certain embodiments, the coring cylinder 36 may take the form of a muleshoe, half muleshoe, or other muleshoe. As used herein, the term “muleshoe” is used to mean a relatively short length of cylindrical tubing having an axial end of the tubing angled (e.g., 45 degrees, between 40-50 degrees, between 35-55 degrees, between 30-60 degrees, and so forth) relative to its longitudinal axis. For example,
In addition, in other embodiments, the sidewall coring tool 12 described herein may instead utilize cylindrical coring tubing not having an angled axial end, such as the muleshoes 36 illustrated in
Returning now to
In addition,
In addition, as described in greater detail herein, the sidewall coring tool 12 includes a coring cylinder 36, and one or more coring actuators 34 configured to rotate the coring cylinder 36 less than a full rotation while pushing the coring cylinder 36 of the sidewall coring tool 12 against a bore wall 18 of a wellbore 16, and to push the coring cylinder 36 of the sidewall coring tool 12 into the subterranean formation 14 to enable extraction of the core sample 66 of the subterranean formation 14. In certain embodiments, the one or more coring actuators 34 are configured to rotate the coring cylinder 36 of the sidewall coring tool 12 back and forth relative to the longitudinal axis 50 less than 90 degrees while pushing the coring cylinder 36 of the sidewall coring tool 12 against the bore wall 18 of the wellbore 16.
In addition, in certain embodiments, the sidewall coring tool 12 includes a single coring actuator 34A coupled to the coring cylinder 36 and configured to directly rotate and push the coring cylinder 36 of the sidewall coring tool 12 into the subterranean formation 14. In other embodiments, the sidewall coring tool 12 includes two opposing coring actuators 34B, 34C configured to indirectly rotate and push the coring cylinder 36 of the sidewall coring tool 12 into the subterranean formation 14 via respective linkages 56B, 56C coupled to the coring actuators 34B, 34C and the coring cylinder 36 of the sidewall coring tool 12. In addition, in certain embodiments, the coring cylinder 36 includes a full muleshoe 36A, a half muleshoe 36B, or other partial muleshoe 36. In addition, in certain embodiments, the coring cylinder 36 includes a knife edge axial end 38C.
In addition, in certain embodiments, a coring system 10 includes a sidewall coring tool 12 having a coring cylinder and one or more coring actuators 34 configured to perform sidewall coring of a subterranean formation 14 using a combination of rotary and percussive coring. In addition, in certain embodiments, the coring system 10 includes a surface unit 22 configured to send control signals to the sidewall coring tool 12 to control the sidewall coring of the subterranean formation 14.
While the present disclosure may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the present disclosure is not intended to be limited to the particular forms disclosed. For example, while some embodiments described herein contain specific combinations of coring systems, other combinations may also be possible. Rather, the present disclosure is intended to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure as defined by the following appended claims. In particular, it will be appreciated that any and all combinations and sub-combinations of the various features described herein may be included or omitted from any particular embodiment.
The techniques presented and claimed herein are referenced and applied to material objects and concrete examples of a practical nature that demonstrably improve the present technical field and, as such, are not abstract, intangible or purely theoretical. Further, if any claims appended to the end of this specification contain one or more elements designated as “means for [perform]ing [a function] . . . ” or “step for [perform]ing [a function] . . . ,” it is intended that such elements are to be interpreted under 35 U.S.C. § 112(f). However, for any claims containing elements designated in any other manner, it is intended that such elements are not to be interpreted under 35 U.S.C. § 112(f).
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.