SYSTEMS AND METHODS FOR REDUNDANT DATA CENTERS

Information

  • Patent Application
  • 20200260616
  • Publication Number
    20200260616
  • Date Filed
    February 07, 2020
    6 years ago
  • Date Published
    August 13, 2020
    5 years ago
  • Inventors
    • Oxley; Mark Edward (Pompano Beach, FL, US)
  • Original Assignees
Abstract
This invention relates to systems and methods for redundant data center cooling and electrical systems.
Description
FIELD OF THE INVENTION

This invention relates to systems and methods for redundant data center cooling and electrical systems.


BACKGROUND OF THE INVENTION

Even the best public utility systems are inadequate to meet the needs of mission-critical applications. Mission-critical facilities within various organizations require power that is not subject to loss or substantial variations. Variations in power across a system may result in data loss and component failure. Data centers, for example, consist of several components, and each may be a potential point of failure, which can incur significant financial and data losses. Such components may include power sources, backup generators, uninterruptible power supplies (“UPS”), power distribution units (“PDU”), equipment power supplies (e.g., servers, routers, switches, etc.).


Many organizations, when faced with the likelihood of downtime, and data processing errors caused by utility power, choose to implement a UPS system between the public power distribution system and their mission-critical loads. The UPS system design configuration chosen for the application directly impacts the availability of the critical equipment it supports. There are many variables that affect a system's availability, including human error, reliability of components, maintenance schedules, and recovery time. The impact that each of these variables has on the overall system's availability is determined to a large degree, by the configuration chosen. Currently, several UPS solutions exist for supporting critical loads, including those systems known as “parallel redundant”, “isolated redundant”, “distributed redundant”, “multiple parallel bus”, “system plus system”, and “isolated parallel,” etc. (See McCarthy, et al. Comparing UPS System Design Configurations, available at: https://www.apc.com/salestools/SADE-5TPL8X/SADE-5TPL8X_R3_EN.pdf.)


Each type of UPS system configuration offers its own features and level of protection. Passive-standby systems, for example, are considered “off-line” systems and monitor incoming power and switch to a battery source when an interruption occurs. This transfer takes place in milliseconds and is acceptable for some applications. But the loss of power during the transfer can disrupt the operation of sensitive electronic equipment. These UPS also do not filter power-line noise or voltage spikes or sags. Because of these limitations, their use is limited largely to systems not performing critical tasks.


Line-interactive UPS systems, in contrast, include a transformer or an inductor between the power source and the connected equipment. Such systems further include a bank of batteries to condition and filter incoming power. These types of systems offer more protection than passive-standby configurations, but do not completely isolate the protected equipment from irregularities in the incoming power. These systems offer adequate protection for many facility applications, but not enough protection for mission-critical operations, such as data centers.


Double-conversion systems, however, eliminate the momentary loss of power found in the other two types of UPS in the transfer from incoming power to battery-supplied power by using a bank of batteries connected to the direct-current part of the system. These UPS fully isolate protected equipment from the power source, thereby eliminating most power disturbances.


Such UPS system topologies can become quite complex. For example, “distributed redundant” configurations, also known as tri-redundant, are commonly used in the large data center market, sometimes within financial organizations. The basis of this design uses three or more UPS modules with independent input and output feeders. The independent output buses are connected to the critical load via multiple PDUs.


“System plus system” configurations are often located in standalone, specially-designed buildings. It is not uncommon for the infrastructure support spaces (UPS, battery, cooling, generator, utility, and electrical distribution rooms) to be equal in size to the data center equipment space, or even larger.


From the utility service entrance to the UPS, a distributed redundant design and a system plus system design may be similar. Both provide for concurrent maintenance, and minimize single points of failure. The major difference is in the quantity of UPS modules that are required in order to provide redundant power paths to the critical load, and the organization of the distribution from the UPS to the critical load. As the load requirement, “N”, grows, the savings in quantity of UPS modules also increases.


Choosing a traditional UPS system to protect facilities and systems may be difficult, such system must be sized properly for the load it is designated to protect. Managers also need to properly size the batteries in the UPS to provide the desired runtime in the event of a power loss. For some applications, the UPS only needs to provide power long enough to allow an orderly shutdown of connected equipment. But in other applications, the batteries will need enough capacity to provide power for the duration of common power interruptions. The required battery capacity will depend on the nature of the functions performed by the protected load. But there is a need in the art to increase the reliability of these critical power components by implementing redundancy, in order to provide a high-availability environment.


Redundancy refers to a system design where a component is duplicated so that in the event of a component failure, IT equipment is not impacted. The main goal of redundancy is to ensure zero downtime. Active redundancy eliminates performance declines by monitoring the performance of individual devices, and this monitoring is used in voting logic. The voting logic is linked to switching that automatically reconfigures the components. Electrical power distribution provides an example of active redundancy.


Cooling is also a major cost factor in data centers. If cooling is implemented poorly, the power required to cool a data center can match or exceed the power used to run the IT equipment itself. Cooling also is often the limiting factor in data center capacity. In some cases, heat removal can be a bigger problem than getting power to the equipment.


SUMMARY OF THE INVENTION

In one form, the system of the invention comprises a data center system comprising at least three independent, shared-airspace cooling system modules, and at least three, fully-compartmentalized electrical or power system modules, in which the load is preferably spread near-evenly through the systems, and in which a failure or maintenance of any one of the cooling or electrical/power modules does not impact the critical load.


On the whole, the system will preferably maintain at least 51% utilization efficiency of capacity at full 100% critical load under normal operating conditions.


Some embodiments of the invention are not computer-controlled, but mechanically-controlled, so that hacking or failure of controller software is not potential a point of failure. And within the system, communication occurs only within subsystems, not between subsystems.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is disclosed with reference to the accompanying drawings, wherein:



FIG. 1 is a schematic view of a cooling system module according to one embodiment of the invention;



FIG. 2 is a schematic view of a cooling system module according to one embodiment of the invention;



FIG. 3 is a schematic view of a cooling system module according to one embodiment of the invention;



FIG. 4 is a schematic view of a cooling system module according to one embodiment of the invention;



FIG. 5 is a schematic view of a power system module according to one embodiment of the invention;



FIG. 6 is a schematic view of a power system module according to one embodiment of the invention;



FIG. 7 is a schematic view of a plurality of power system modules and paired cooling system modules according to one embodiment of the invention;



FIG. 8 is a schematic view of a plurality of power system modules and paired cooling system modules according to one embodiment of the invention;



FIG. 9 is a schematic view of a plurality of power system modules and paired cooling system modules according to one embodiment of the invention;



FIG. 10 is a schematic view of an exemplary load distribution across power system modules under normal operating conditions according to one embodiment of the invention;



FIG. 11 is a schematic view of an exemplary load distribution across power system modules under fault conditions according to one embodiment of the invention;



FIG. 12 is a schematic view of an exemplary load distribution across power system modules and cooling system modules under normal operating conditions according to one embodiment of the invention;



FIG. 13 is a schematic view of an exemplary load distribution across power system modules and cooling system modules under fault conditions according to one embodiment of the invention;



FIG. 14 is a schematic view of an exemplary load distribution across power system modules and cooling system modules under normal operating conditions according to one embodiment of the invention;



FIG. 15 is a schematic view of an exemplary load distribution across power system modules and cooling system modules under fault conditions according to one embodiment of the invention;



FIG. 16 is a diagram of a power system module according to one embodiment of the invention;



FIG. 17 is a diagram of a cooling system module according to one embodiment of the invention;



FIG. 18 is a diagram of an exemplary power system according to one embodiment of the invention; and



FIG. 19 is a diagram of an exemplary cooling system according to one embodiment of the invention.





Corresponding reference characters indicate corresponding parts throughout the several views. The example(s) set out herein illustrate several embodiments of the invention but should not be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION

Referring now to FIG. 1, there is shown a cooling system having at least three cooling system modules (groups of equipment) that share the same airspace. The method of cooling that is delivered into the data center processing space is refrigerant-based. Each cooling module comprises one or more cooling units, which each comprise an air handler/blower (including related components), a condenser or refrigerant distribution system, and a thermal sensor. Each cooling unit may contain additional auxiliary systems. For example, cooling system module A is shown as comprising “Unit 1,” a cooling unit, which in turn comprises an air handler, a condenser, and a temperature sensor. Cooling system module A may further comprise additional auxiliary components.


Turning to FIG. 2, cooling system module A may alternatively comprise several or multiple cooling units (e.g., “Unit 1” and “Unit 2”). Preferably, each of the at least three cooling system modules comprises at least three cooling units.


Turning to FIG. 3, each cooling system module may further alternatively comprise refrigerant distribution modules, external cooling loops and heat exchangers, e.g., infra-red heat exchangers, chillers, or hybrid cooling solutions.


Turning to FIG. 4, cooling system module A may further comprise a communications module for communicating data wired or wirelessly between Unit 1 and Unit 2.


Each cooling module preferably runs an average of no less than 51% of the critical load of the overall system under full normal operation when the load is near balance, and upon failure or maintenance, each cooling module will independently increase cooling, based on environmental inputs, to assume the critical load within ASHRAE Thermal Guidelines For Data Processing TC9.9 3rd Edition.


In one embodiment, there is no electronic communication between each cooling module, though communication (wired or wireless, including software-mediated communication) within a module (e.g., between or among cooling units) may occur.


Turning to FIG. 5, the electrical system of one embodiment of the invention is shown comprising at least two (2) compartmentalized electrical modules and pathways (referred to in the figures and herein as power system modules), with each module preferably individually utilizing at minimum 51% of its capacity when the critical load is at 100% and the load is near balance. The critical load may be divided near equally among each electrical module and pathway.


Each module and pathway is fully compartmentalized from each other until the point of demarcation. Compartmentalization requires a minimum level of dust, smoke, and splash resistance meeting NEMA TYPE 3; thirty (30) minutes of fire rating when tested to ASTM E814/UL 1479, and mostly non-shared airspace under normal operating conditions (sealed, but not necessarily hermetically sealed, from one another).


When one module fails or is taken offline for maintenance, the remaining modules automatically assume the deficit, maintaining the critical load without fault through an active-active (rather than active-passive) design. As a whole, the electrical design will preferably maintain at least 51% efficiency of total capacity at full 100% critical load under normal operating conditions. All modules preferably run in active-active state under normal operating conditions.


As shown in FIG. 5, each power system module preferably comprises a UPS with energy storage system (e.g., chemical battery, capacitor, mechanical centrifugal battery, gravity battery), PDS, independent HVAC cooling system, fire suppression/prevention system, and containment to provide compartmentalization in any combination, and may contain additional auxiliary systems.


Turning to FIG. 6, each power system module may optionally include more than one UPS, each with its own energy storage, PDU, and other auxiliary components such as capacitor banks or centrifugal batteries. The components within UPS subsystems within each power system module (or across power system modules) need not be identical.


Turning to FIG. 7, power system modules within a given system need not have identical power outputs, as shown. In this embodiment, three power system modules are provided, each comprising at least one UPS subsystem, containment to provide compartmentalization, and fire suppression subsystem. Each UPS subsystem comprises at least one energy storage unit and at least one PDU.


Power system module A, as shown in FIG. 7, has a 1 megawatt output capacity and comprises a centrifugal battery (with three minute charge) within its UPS subsystem. Power system module B, on other hand, has a 997 kilowatt output capacity, and comprises a capacitor bank (with ten minute charge) within its UPS subsystem. Power system module C has a 999 kilowatt output capacity, and comprises a chemical battery (with twenty minute charge) with its UPS subsystem.


Each power system module may be optionally fed by multiple power sources (utility, generator, renewable and alternative energy) but one of each source must be fully-independent to each module. Each power system module may have non-equal energy storage capacity (runtime) and equipment types (when compared to other power system modules in the system), so long as total output wattage of each module within a given system is near equal, as shown above with power system modules A, B, and C.


In an embodiment of the system of the invention shown in FIG. 8, no less than three cooling system modules A, B, and C are provided. Each module comprises cooling unit(s) 1, 2, and 3 (as shown, each cooling system module comprises three cooling units). Each cooling unit further comprises one or more refrigerant-based air handlers, preferably located inside a data center processing space.


Cooling system modules A, B, and C, as shown, do not communicate with one another via data-based (e.g., software-based or networked) communications, though they may communicate internally (i.e., within a module, from cooling unit-to-unit) via wire or wireless data-based communication system.


Each cooling system module uses a thermal temperature input to monitor and ultimately adjust the temperature as needed (as may be known to those of skill in the art) to maintain the load across the system.


Each cooling system module A, B, and C is paired to a corresponding power system module, identified as power system modules A, B, and C, such that for each power system module, there is one paired cooling system module.


The electrical system is composed of a minimum of three (3) compartmentalized power system modules and pathways (identified as power system modules A, B, and C) with each power system module preferably individually utilizing at minimum 51% of its capacity when the critical load is at 100%.


In some embodiments, the critical load may be preferably divided near-equally among each power system module and pathway. Each power system module is compartmentalized from each other, and each pathway is compartmentalized until its point of demarcation.


In some embodiments, when one power system module fails or is taken offline for maintenance, the remaining power system modules automatically assume the deficit, maintaining the critical load without fault.


In another embodiment, shown in FIG. 9, several cooling system modules are provided (identified as cooling system modules A, B, and C), each comprising three cooling units (identified as cooling units 1, 2, and 3). These cooling system modules and cooling units have the same features as described above, however in this embodiment, each cooling system module is paired (1:MANY) to all three of the power system modules. In other words, each power system module A, B, and C will supply a portion of the power required by each cooling system module A, B, and C. For example, as shown in FIG. 9, power system module A supplies the power required by each “Unit 1” of each of cooling system modules A, B, and C; power system module B supplies the power for each “Unit 2” of cooling system modules A, B, and C; and power system module C supplies the power for each “Unit 3” of cooling system modules A, B, and C.


In a further embodiment, a data center is provided that comprises no less than three (3) independent shared-airspace cooling system modules, and no less than four (4) fully-compartmentalized power system modules, in which the load is preferably spread near-evenly through the system, and in which a failure or maintenance of any one cooling system module or power system module does not impact the critical load.


Turning to FIG. 10, another example is shown where a data center IT load is 100%. The data center's power is supplied by four power system modules A, B, C, and D, and cooling needs are met by three cooling system modules A, B, and C.


Under normal operating conditions, each of the four power system modules is preferably operated at least 51% utilization, and in this example, at least 75% utilization. Each of the cooling system modules is preferably operated at 66.6% utilization and in no event less than 51% utilization. All of the power system modules and cooling system modules are active under normal operating conditions, i.e., none are in “stand-by” mode.


This configuration allows for one of each of the power system modules (A, B, C, or D) and cooling system modules (A, B, or C) to be removed from the system (due to fault, maintenance, etc.), while still maintaining 100% of the critical IT load, as shown in FIG. 11, where power system module A and cooling system module A are both taken offline. The 75% utilization of power system module A is then compensated for by power system modules B, C, and D, which operate at 100% utilization when power system module A is taken or goes offline. Similarly, the 66% utilization of cooling system module A is compensated for by splitting the utilization between cooling system modules B and C, which operate at 100% when cooling system module A is taken or goes offline. The total IT load of 100% remains unaffected by the loss power system module A and cooling system module A.


In an alternative embodiment, shown in FIG. 12, five pairs of 1:1 paired power system modules and cooling system modules (Pair A, B, C, D, and E) are provided. Each module is operated at 80% utilization to maintain 100% of the critical IT load.


This configuration allows for one pair of the power system modules and cooling system modules (A, B, C, D, or E) to be removed from the system (due to fault, maintenance, etc.), while still maintaining 100% of the critical IT load, as shown in FIG. 13, where pair power system module A and cooling system module A are both taken offline. The 80% utilization of each of power system module A and cooling system module A is then compensated for by the four other pairs of power system modules and cooling system modules B, C, D, and E, which operate at 100% utilization when pair of power system module A and cooling system module A is taken or goes offline. The total IT load of 100% remains unaffected by the loss of the pair of power system module A and cooling system module A.


In an alternative embodiment, shown in FIG. 14, five pairs of 1:1 paired power system modules and cooling system modules (Pair A, B, C, D, and E) are provided. Each module is preferably operated at 66.6% utilization to maintain 100% of the critical IT load.


This configuration allows for two pairs of the power system modules and cooling system modules (A, B, C, D, or E) to be removed from the system (due to fault, maintenance, etc.), while still maintaining 100% of the critical IT load, as shown in FIG. 15, where pair power system module A and cooling system module A are offline, and pair power system module B and cooling system module B are also offline. The 66.6% utilization of each of two pairs of power system modules and cooling system modules A and B is then compensated for by the three other pairs of power system modules and cooling system modules C, D, and E, which operate at 100% utilization. The total IT load of 100% remains unaffected by the loss of the two pairs of power system modules and cooling system modules A and B.


The total load that can be carried by a power system module depends in part on the rating of the facility's input. If the actual load exceeds the rating on the input for a sufficient period of time, the input breaker will trip, and power will be interrupted to everything that receives power from that input. To design a data center where power is not interrupted, the load for the equipment (e.g., “IT Load”) must be estimated by some means. There are various ways known in the art to estimate the power of an IT equipment deployment in a data center (e.g. faceplate rating, direct power measurement). The approach chosen depends on the goal of the end user. The actual power consumption for a server, for example, depends on many factors. First, and most obviously, server power depends heavily on the configuration. Even for similarly configured hardware, power consumption can vary from system to system. In view of the potential variability, any general power number that is used for capacity budgeting should be conservative. The consequence of under-provisioning power is increased downtime risk.


Turning now to FIGS. 16-19, an example of a system according to an embodiment of the invention is shown.


In FIG. 16, a power system module (identified as PSM) comprises several pieces of power generation, storage, and/or distribution equipment. Each sub-system is running to provide power downstream from the power generation source (PGS) to the load. In this example, the power generation source is a generator.


In the system, each power system module is separately contained and compartmentalized from other power system modules until the power reaches a point of demarcation/distribution (POD), for example, in a data center processing space, so the load is protected from a single fault or failure in one power system module.


Each power system module is fed power by power generation sources running in parallel in an active/passive state. In the example shown in FIG. 16, the power system module comprises a utility power generation source (active state) and a generator power generation source (passive state). The generator may be any suitable generator, for example, a Kohler KD Series Generator or the like. Each power source in the power system module is connected to a transfer switch (XFR) to switch between power sources in the event of a loss of utility power, maintenance, or the like.


In this example, downstream of the transfer switch are multiple parallel connected uninterruptable power supply (UPS) units. In one embodiment, the UPS units are APC Symmetra MW UPS units. The UPS units are configured to provide reliable power to the load when the transfer switch transfers between power sources (PGS). The UPS units are connected downstream to power distribution units (PDUs). The PDUs are configured to distribute power to the load.


In this example, the load represents any need for uninterrupted critical power, e.g., information technology (servers), cooling, or infrastructure. The load is preferably near-equally balanced between each power system module as an operational requirement under normal operating conditions. In this example, each power system module maintains a maximum aggregate average below 75% of the rated load capacity for available utilization under normal load conditions. Should a power system module have a fault or failure or need to be taken offline for maintenance (FFM), the net result will increase to a maximum aggregate average below 100% of the rated load capacity for available utilization under FFM load conditions across the remaining operational units.


Turning now to FIG. 17, an example cooling system module (CSM) is shown. The cooling system module comprises several pieces of cooling equipment that share the heat load of a common air space. Each cooling system module is directly connected to one and only one power system module.


In the example shown, each cooling system module is configured with two main loops as a hybrid system, interconnected with a heat exchanger. The internal cooling loop (ICL) is located, for example, inside a data center processing space, where a waterless system must be used to prevent threat to electrical systems. The internal cooling loop may use compressed liquid inert gas (refrigerant) for heat rejection. The compressed inert liquid reverts to a gas state at room temperature in the event of a leak. The internal cooling loop may further comprise a refrigerant delivery network (RDN), for example, available under the trade name Opticool, and an active heat exchanger (AHX). The internal cooling loop is interconnected to a refrigerant pump system (RPS)/heat exchanger in an external cooling loop (ECL).


The external cooling loop (ECL) may be housed outside the data center processing space, where the use of a water-based system does not impose a threat to critical electrical systems. The external cooling loop may use a water-based glycol unit for heat rejection. The external cooling loop for each cooling system module is compartmentalized to the chiller where it vents to atmosphere. The ECL may further comprise a refrigerant pump system (RPS), water piping and pump system (WPPS), and chiller system. The refrigerant delivery network pumps the compressed liquid inert gas, in a loop from the active heat exchanger (where heat is removed from the load) in the internal cooling loop to the refrigerant pump system in the external cooling loop where the heat is exchanged and pushed downstream in the external cooling loop to the chiller system and removed.


Each cooling system module may comprise several stand-alone internal- and external cooling loop coupled loops. Each cooling system module is only fed by one power system module. In the example shown in FIGS. 18-19, the cooling system module and power system modules are coupled PSM-A:CSM-aa, PSM-B:CSM-bb, PSM-C:CSM-cc, and PSM-D:CSM-dd.


The load is near equally balanced between each cooling system module as an operational requirement under normal operating conditions. Each cooling system module maintains a maximum aggregate average below 75% of the rated load capacity for available utilization under normal load conditions. If a cooling system module has a fault or failure or needs to be taken offline for maintenance (FFM), the net result will be to increase to a maximum aggregate average below 100% of the rated load capacity for available utilization under FFM load conditions across the remaining operational units.


As further shown in the example shown in FIGS. 18-19, each power system module/cooling system module combination is distributed to near equally balance the load. Each cooling system module is directly powered by only one power system module. Each cooling system module is further partially compartmentalized from each other cooling system module between the point of distribution (POD) in the shared airspace (e.g., in a data processing space) and the chiller, which vents to atmosphere. Each cooling system module supplies a number of active heat exchanger units along the refrigerant delivery network. In the example shown, an Opticool Cool Door System (CDS) is provided that comprises at least two active heat exchanger units, each individually fed from different CSM/PSM combinations. The CDS may comprise more active heat exchanger units if required. In this example, the CDS is a cabinet door replacement that attaches the cooling to an IT server cabinet.


Turning FIGS. 18-19, each power system module is configured to be in an active/active state to each other power system module. Likewise, each cooling system module is configured to be in an active/active state to each other cooling system module.


While the invention has been described with reference to particular embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope of the invention.


Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope and spirit of the appended claims.

Claims
  • 1. A data center system comprising: an electrical device comprising a load;a cooling system comprising at least three independent, shared-airspace cooling system modules operated in parallel, wherein each cooling system module comprises a system internal cooling loop and an external cooling loop connected to a heat exchanger, wherein the internal cooling loop is disposed in a data center processing space and comprises a refrigerant delivery network that uses compressed liquid inert gas for heat rejection, and is connected to a refrigerant pump system in the external cooling loop; andthe external cooling loop is disposed outside the data center processing space, comprises a water-based glycol unit for heat rejection, the refrigerant pump system, a water piping and pump system (WPPS), and a chiller system;a power system comprising at least three fully-compartmentalized power system modules operated in parallel to provide power to the load, wherein each power module comprises at least two power generation sources running in parallel in an active/passive state and at least one of the at least two power generation sources is a generator,each power generation source is connected to a transfer switch operable to switch between power generation sources,each transfer switch is connected downstream to an uninterruptable power supply, andeach uninterruptable power supply is connected downstream to a power distribution unit distributing power to the load;a mechanical system controller;a point of distribution disposed in the data center processing space;wherein the load is spread substantially evenly through the cooling system and the power system, and in which a failure of any one of the cooling system modules or power system modules does not impact load;wherein each cooling system module is coupled to one and only one power system module; andwherein each power system module operates in an active/active state to each other power system module and each cooling system module operates in an active/active state to each other cooling system module.
  • 2. A method of operating a data center comprising: providing an electrical device comprising a load;providing a cooling system comprising at least three independent, shared-airspace cooling system modules, wherein each cooling module comprises an internal cooling loop and an external cooling loop connected to a heat exchanger, wherein the internal cooling loop is disposed in a data center processing space and comprises a refrigerant delivery network that uses compressed liquid inert gas for heat rejection, and is connected to a refrigerant pump system in the external cooling loop; and the external cooling loop is disposed outside the data center processing space and comprises a water-based glycol unit for heat rejection, the refrigerant pump system, a water piping and pump system (WPPS), and a chiller system;operating the at least three independent, shared-airspace cooling system modules in parallel;providing a power system comprising at least three fully-compartmentalized power system modules to provide power to the load, wherein each power module comprises at least two power generation sources running in parallel in an active/passive state and at least one of the at least two power generation sources is a generator, each power generation source is connected to a transfer switch operable to switch between power generation sources, each transfer switch is connected downstream to an uninterruptable power supply, and each uninterruptable power supply is connected downstream to a power distribution unit distributing power to the load;operating the at least three fully-compartmentalized power system modules in parallel;pairing each cooling system module to one and only one power system module;operating each power system module in an active/active state to each other power system module;operating each cooling system module in an active/active state to each other cooling system module;spreading the load substantially evenly through the cooling system and the power system;maintaining a maximum aggregate average below 75% of rated load capacity for available utilization under normal load conditions; andin the event of a failure of any one of the cooling system modules or power system modules, increasing the maximum aggregate average below 100% of the rated load capacity for available utilization across remaining operational cooling system modules and power system modules.
  • 3. A data center system comprising: an electrical device comprising a load;a cooling system comprising at least three independent, shared-airspace cooling system modules operated in parallel, wherein each cooling system module comprises a direct expansion cooling system;a power system comprising at least three fully-compartmentalized power system modules operated in parallel to provide power to the load, wherein each power module comprises at least two power generation sources running in parallel in an active/passive state and at least one of the at least two power generation sources is a generator,each power generation source is connected to a transfer switch operable to switch between power generation sources,each transfer switch is connected downstream to an uninterruptable power supply, andeach uninterruptable power supply is connected downstream to a power distribution unit distributing power to the load;a mechanical system controller;a point of distribution disposed in the data center processing space;wherein the load is spread substantially evenly through the cooling system and the power system, and in which a failure of any one of the cooling system modules or power system modules does not impact load;wherein each cooling system module is coupled to one and only one power system module; andwherein each power system module operates in an active/active state to each other power system module and each cooling system module operates in an active/active state to each other cooling system module.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Patent Application Ser. No. 62/802,426, filed Feb. 7, 2019, which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
62802426 Feb 2019 US