This disclosure relates to remote biosignal monitoring of a subject, cardiac, and respiration monitoring being non-limiting examples. More particularly, the disclosure pertains to systems and methods for short-term and long-term patient screening with symptoms of a disease, bacterial or viral infections, cardiac related complications or respiratory related complications as examples. The disclosure further relates to using such systems to triage patients in order to determine the risk level and priority for further evaluation.
Traditionally, an office or clinic visit is required for monitoring, diagnosis and evaluation of patients who might present symptoms of infection, or cardio-respiratory complications. This process risks increased exposure of the public as well as the clinical team and may overload the in-patient hospital system capacity at times of crisis or pandemic in addition soldiers in the field may not have caregivers in the vicinity. Currently, there are too many patients that require monitoring for the existing healthcare infrastructure but there are no high volume accurate remote monitoring tools available that can be easily used or deployed without physical access to a caregiver. Unlike persistent condition, paroxysmal conditions with sudden or intermittent onset require an at home screening solution that can be used immediately and continuously.
Disclosed herein are systems that use optical, audio, radio, sensors such as accelerometer, gyroscope, pressure, load, weight, force, motion or vibration to capture the mechanical vibrations of the body as well as physiological movements of heart and lungs and translate that into biosignal information that can be used for screening and identifying disease conditions. The systems and methods presented here can be used by a subject when experiencing symptoms of a complication or condition, or can be used when instructed by a physician in a telehealth application.
The systems are used for short-term and long-term screening. Short-term screening systems can include cell phones, tablets, wearable watches or any accessory available to the patient that has one or more sensors that can capture the mechanical vibrations of the body, heart and lungs such as accelerometer, gyroscope, pressure, load, weight, force, motion or vibration. Such devices can be placed near the source of body's physiological sources such as heart and lung, including but not limited to placement on the chest, abdomen, side, back, or the like. Long-term screening systems can include installable sensors into the legs or under the legs of the bed, which can capture the mechanical vibrations of the body, heart and lungs such as accelerometer, gyroscope, pressure, load, weight, force, motion or vibration. Short-term screening is intended for limited duration tests (seconds to minutes) whereas long-term screening can be used continuously for any duration (seconds, minutes, days, months, etc). The short-term and long-term screening systems can work independently or can be synchronized and work in unison to exchange data, for example, subject's historical trend data or baseline data.
The systems can be used as a patient triage tool to help assess the degree of urgency. The systems can include a smart phone app installation to enable screening and evaluating the patient's status.
The disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.
Methods are disclosed to develop remote screening procedures and use sensor data from such systems to triage a subject's health status. In implementations, the systems can analyze cardiac information of the subject and determine cardiac rhythm, morphology, and rate information. The cardiac rhythm, morphology, and rate information can be used to identify the start or worsening of a cardiac condition such as atrial fibrillation, atrial flutter, ventricular fibrillation, ventricular flutter, bundle branch blocks, valve stenosis, myocardial ischemia, and supraventricular tachycardia. In implementations, the systems can analyze respiratory information of the subject and determine respiration rhythm and rate information. The respiration rhythm and rate information can be used to identify start or worsening of a respiratory condition such as shortness of breath, apnea or hypopnea. In implementations, the systems can analyze coughing information of the subject and determine coughing rhythm and rate information. The coughing rhythm and rate information can be used to identify the start or worsening of a coughing condition or breathing flow such as wheezing, rales, snoring and rhonchi. The systems can determine the severity of the condition, and/or changes and trends of the condition. The systems can generate remote screening reports. The systems can collect the data and the generated report can be stored, sent to a physician, be accessed by the physician for review, or analyzed using AI techniques.
In implementations, the screening system can be used to monitor the body's response to bacterial or viral infection. In particular, the sensors data can be used to monitor symptoms which may be directly or indirectly related to the increase in the body's temperature. Such symptoms can include changes in respiration flow and depth, respiration rate, heart rate, heart rate variability, movement and agitation, weight, and fluid retention. The system can further create a baseline for the patient, and continuously track and spot these changes over time, helping them become aware of their body's immune system response and enabling them, or a caregiver, to monitor their sickness.
In implementations, the screening system can be used in conjunction with a ventilator to remotely monitor the ventilator's efficacy. In addition, the system can be used with other sensors as a data hub to relay local data from pulse oximeters, thermometers, blood pressure or other sensors to a cloud enabling remote monitoring of these additional sensors for enhanced screening.
In implementations, the system will include bi-directional audio, text, and video to communicate with the patient.
In implementations, the screening system can also be used to screen for cardiovascular and autonomic indices. For example, the system can be used for in home stress testing where sensors data can be used to monitor indices of heart rate variability to quantify dynamic autonomic modulation or heart rate recovery.
In implementations, the system can be used to create events based on the vital's analysis. The event may be an audible tone or message sent to the cloud for a critical condition. In implementations, the system enables data convergence between the short-term and long-term monitoring systems such that, for example, one system can use the historical data collected by the other system to establish a baseline, or to use such information to determine the progression of a disease or worsening of a condition.
In implementations, additional bed-based sensor data can be combined to remove or cancel out common mode or other noise sources. Mobile data acquisition sensors can be used in conjunction with other monitoring systems that have a fixed location so that data from different sources of data monitoring may be combined to increase total monitoring coverage when someone is mobile.
A start of the screening can be triggered by the start of the symptoms of an illness or condition (for example, when the subject is not feeling well) or can be initiated per the physician's request (101). The subject will receive screening instructions (102). In implementations, this can be given by the physician. In implementations, the instructions can be provided by an app installed on the smartphone or other mobile device. Instructions are condition specific; therefore, the screening procedure for an infection may be different from the screening procedure for a cardiac condition.
A start of the screening can be triggered by the start of the symptoms of an illness or condition (for example, when the subject is not feeling well) or can be initiated per the physician's request (201). After the screening starts, sensor data is obtained from the sensors (202). The sensor data is analyzed (203). Subject's conditions are identified using the analyzed metrics (204). In implementations, to quantify a body's response to bacterial or viral infection, changes in respiration flow and depth, respiration rate, heart rate, heart rate variability, movement and agitation, weight, and fluid retention are analyzed. Values outside a normal range may define an out-of-the-norm condition or if the system has access to a baseline for the patient, abrupt changes compared to the baseline may be detected as an out-of-the-norm condition. In implementations, normal range or out-of-the norm condition can be relative to data representing a general population. Once a condition has been identified, a determination is made as to whether immediate action is needed (208). An immediate action is taken if necessary (209). In implementations, immediate action can be a notification to the patient, a notification to the patient's physician, a call to a health center, or the like. If no immediate action is required, a determination is made as to whether a follow-up test is required to confirm the results or to provide new insights (210). If a follow-up is needed, additional or new sensor data is collected and the process starts anew. Otherwise, the screening process is terminated (211). In implementations, the sensors data, analyzed data, and identified data can be stored locally in a local database 206 or in a cloud database 207 for future access (205).
Exchange data process 231 enables data exchange between the short-term and long-term screening, where trend data (i.e. subject's baseline data and historical data) can be accessed by either process. The exchange data process 231 also enables the long-term screening to have access to the short-term screening sensors data to be synchronized and added to the data stream sets for enhanced monitoring. In implementations, data from obtain sensor data 222, obtain sensor data 232, store data 226 including the local and cloud based storages, and store data 236 including the local and cloud based storages can be input into the exchange data process 231. In implementations, the exchange data process 231 outputs data to obtain trend data 224 and obtain trend data 234. That is, both initial and processed short-term data and long-term data can be exchanged between the short-term and long-term screening.
In implementations, the system 250, the sensors and the data processing, for example, can be as described in U.S. patent application Ser. No. 16/777,385, filed on Jan. 30, 2020, U.S. patent application Ser. No. 16/595,848, filed Oct. 8, 2019, and U.S. Provisional Application Patent Ser. No. 62/804,623, filed Feb. 12, 2019 (collectively the “Applications”) the entire disclosures of which are hereby incorporated by reference.
In implementations, the device 260 can include one or more sensors 261, a controller 262, a database 263, and a communications interface 264. In an implementation, the device 261 can include a classifier 265 for applicable and appropriate machine learning techniques as described herein. The one or more sensors 261 can detect and capture vibration, pressure, force, weight, presence, and motion sensor data related to a subject.
In implementations, the controller 262 can apply the processes and algorithms described herein with respect to
In implementations, the computing platform 270 can include a processor 271, a database 272, and a communication interface 273. In implementations, the computing platform 270 may include a classifier 274 for applicable and appropriate machine learning techniques as described herein. The processor 271 can obtain the sensor data from the sensors 261 or the controller 262 and can apply the processes and algorithms described herein with respect to
In an implementation, the machine learning training platform 280 can access and process sensor data to train and generate classifiers. The classifiers can be transmitted or sent to the classifier 265 or to the classifier 274.
In
In
Envelope detection is performed on the transformed sensor data, which takes a relatively high-frequency amplitude modulated signal as input and provides an output which is equivalent to the outline of the input data described by connecting all the local peaks in this signal (512). In implementations, envelope detection can use a low pass filter, a Hilbert transform or other envelope detection methods. Peak detection is performed to find local maximum and minimum points of the input signal (513). In implementations, peak detection can return all peaks, valleys or only the most dominant ones.
Correlation analysis is performed to measure the strength of relationship between different segments of the input signal using linear and nonlinear methods (504). The correlation analysis and peak locations can be used to identify individual beats in the input signal (505). The identified individual beats are enhanced (506). In implementations, this can include applying a window, a factor, or a transform to enhance specific characteristics of the signal. Time domain, frequency domain, or time frequency domain analysis can be performed to determine the heart rate using the enhanced individual beats (507). Time domain, frequency domain, or time frequency domain analysis can be performed to determine the heart rate variability metrics using the enhanced individual beats (508). In implementations, the heart rate variability metrics can include SDNN, RMSSD, PNN50, LF, HF and LF/HF indices. Time domain, frequency domain, or time frequency domain analysis can be performed to determine heartbeat components (509). For the cardiac signal, beat components can be P, Q, R, S and T waveforms, or atria/ventricular depolarization and repolarization. Irregular rate or rhythm can be detected in the cardiac data using the HR, HRV, beat components, and subject's trend data 510 (i.e. baseline and historical data) (511).
The processing order shown in
Correlation analysis measures the strength of relationship between different segments of the input signal using linear and nonlinear methods (604). The correlation analysis and peak locations can be used to identify individual breaths in the input signal (606). The identified individual beats are enhanced (607). In implementations, this can include applying a window, or a factor, or a transform to enhance specific characteristics of the signal.
Time domain, frequency domain, or time frequency domain analysis can be used to determine the respiration rate using the enhanced individual breaths (608). Time domain, frequency domain, or time frequency domain analysis can be used to determine the respiration rate variability metrics using the enhanced individual breaths (609). In implementation, the respiration rate variability metrics can include DNN, RMSSD, PNN50, LF, HF and LF/HF indices. Time domain, frequency domain, or time frequency domain analysis can be used to determine breath components (610). For a respiratory signal, breath components can be inhale (inspiration) and exhale (expiration). Irregular rate or rhythm can be identified in the respiration data using the RR, RRV, breath components and subject's trend data 611 (i.e. baseline and historical data) (612).
The processing order shown in
Variation analysis can be performed to measure the level of change in the data compared to be baseline (706). In implementations, this can be done by estimating a standard deviation, coefficient of variation, and the like. The variation analysis and cough signatures can be used to identify individual coughing episodes in the input signal (707). Time domain, frequency domain, or time frequency domain analysis can be used to determine the coughing rate (708). Time domain, frequency domain, or time frequency domain analysis can be used to determine the cough severity (709). Irregular coughs can be determined using the cough rate, cough severity, and subject's trend data 710 (i.e., baseline and historical data) (711).
The processing order shown in
The first set of devices 806 generate sensors data which are received (808) and stored (809) by the local database 802, and received by the cloud server 803. The cloud server 803 retrieves the sensor data (812) and the classifier factory 804 generates or retrains classifiers (814). The generated or retrained classifiers are stored by the classifier factory 804 (815). The generated or retrained classifiers are used by the classifier factory 804 to classify sensor data (816) and automatically detect different arrhythmias, diseases or out-of-the-norm conditions. The classified data is stored (813) and subjects trend data is stored (810). The configuration server 805 obtains the generated or retrained classifiers and generates an update for devices 801 (817). In implementations, the update can be an app update for the smart devices or a software update for remote devices. The configuration server 805 sends the update (818) to both the first set of devices 806 and to the second set of devices 807, where the second set of devices 807 may be new devices. The system can be used to provide new or updated classifiers to old devices (such as the first set of devices 806) as more data input is available from more devices. The system can also be used to provide software updates with improved accuracy and can also learn personalized patterns and increase personalization of classifiers or data.
The processing order shown in
In general, a system for at least short term screening and triage of a subject includes a smart device in the subject's possession; an application provisioned on the smart device, the application and the smart device configured to provide instructions to the subject to start a screening procedure, the application programmed with multiple screening procedures, record short term sensor data obtained from one or more sensors located in the smart device, and compare the short term data, trend data, and general population data for screening and triage of the subject.
In implementations, the application and the smart device further configured to analyze the short term sensor data, obtain trend data from long term screening, identify conditions based on analyzed short term sensor data and trend data, and perform an action responsive to the identified conditions. In implementations, the action includes one or more of: generating an audible tone for a critical condition, sending a message to a cloud entity for a critical condition, sending the sensor data and identified conditions to an entity not the subject. In implementations, the application and the smart device further configured to initiate a long term screening to generate the trend data responsive to the identified conditions, wherein a long term screening system includes one or more sensors installed proximate to a substrate on which the subject is positioned, each sensor configured to capture mechanical vibrations from actions of the subject relative to the substrate, the mechanical vibrations indicative of biosignal information of the subject. In implementations, the long term screening system further configured to access the short term sensor data and identified conditions. In implementations, the application and the smart device further configured to initiate further short term screening responsive to the identified conditions. In implementations, the application and the smart device further configured to analyze cardiac information of the subject, determine cardiac rhythm and rate information from the cardiac information, determine the subject's health status from the cardiac rhythm and rate information, and identify onset or progression of a cardiac condition. In implementations, the application and the smart device further configured to: analyze respiratory information of the subject, determine respiration rhythm and rate information from the respiratory information, determine the subject's health status from the respiration rhythm and rate information, and identify onset or progression of a respiratory condition. In implementations, the application and the smart device further configured to: analyze coughing information of the subject, determine coughing rhythm and rate information from the coughing information, determine the subject's health status from the coughing rhythm and rate information, and identify onset or progression of a coughing condition or breathing flow. In implementations, the application and the smart device further configured to the application and the smart device further configured to determine the severity or progression of the condition. In implementations, the smart device is one of a cell phone, tablet, smart watch or accessory that has one or more of an accelerometer, gyroscope, pressure sensor, load sensor, weight sensor, force sensor, motion sensor, microphone, or vibration sensor. In implementations, the screening procedure includes instructions for the subject to get in a position, stay in the position for a defined time, and place the smart device at one or more positions on a body of the subject.
In general, a system for screening and triage of a subject includes a smart device provisioned with an application, collectively configured to: instruct a subject to start a screening procedure, record short term sensor data obtained from at least one sensor located in the smart device, and identify a condition from the short term sensor data and obtained trend data, a substrate deployed with sensors, the sensors configured to capture mechanical vibrations from actions of the subject relative to the substrate, the mechanical vibrations indicative of biosignal information of the subject, and a processor connected to the sensors, the processor configured to: capture sensor data from the sensors responsive to a smart device identified condition, identify a condition from the sensor data captured from the sensors and obtained short term sensor data, and perform an action based on an identified condition.
In implementations, the application and the smart device further configured to: analyze the short term sensor data sensor data, obtain trend data from storage associated with the processor, and perform an action responsive to the smart device identified condition. In implementations, the application and the smart device further configured to: transmit the short term sensor data sensor data to an entity for analysis against trend data, obtain results of analysis, and perform an action responsive to an entity identified condition. In implementations, the action responsive to the smart device identified condition or the action responsive to an entity identified condition includes one or more of: generating an audible tone for a critical condition, sending a message to a cloud entity for a critical condition, sending the short term sensor data and identified conditions to an entity not the subject. In implementations, the application and the smart device further configured to initiate further smart device screening responsive to the smart device identified condition. In implementations, the application and the smart device further configured to perform at least one of: analyze cardiac information of the subject, determine cardiac rhythm and rate information from the cardiac information, determine the subject's health status from the cardiac rhythm and rate information, and identify onset or progression of a cardiac condition, or analyze respiratory information of the subject, determine respiration rhythm and rate information from the respiratory information, determine the subject's health status from the respiration rhythm and rate information, and identify onset or progression of a respiratory condition, or analyze coughing information of the subject, determine coughing rhythm and rate information from the coughing information, determine the subject's health status from the coughing rhythm and rate information, and identify onset or progression of a coughing condition or breathing flow.
In general, a method for at least short term screening and triaging of a subject, the method includes instructing a subject, via a smart device, to initiate a screening procedure, recording, by a sensor on the smart device, short term sensor data from the subject as he/she follows the screening procedure, analyzing the short term sensor data, obtaining trend data from a long term screening device, identifying a subject condition based on analyzed short term sensor data and the trend data, and performing an action responsive to an identified condition.
In implementations, the method includes initiating capturing of sensor data at the long term screening device responsive to an identified condition. In implementations, the method includes analyzing long term screening device sensor data, obtaining smart device data, identifying a subject condition based on analyzed long term screening device sensor data, general population data, and the short term sensor data, and performing an action responsive to a long term screening device identified condition. In implementations, the method includes sending short term sensor data, smart device identified condition, long term screening device sensor data, and long term screening device identified condition, respectively, to at least an entity not the subject. In implementations, the method includes initiating additional smart device screening responsive to the identified condition.
While the disclosure has been described in connection with certain embodiments, it is to be understood that the disclosure is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application is a continuation of U.S. application Ser. No. 17/112,074, filed Dec. 4, 2020, which claims priority to and the benefit of U.S. Provisional Application Patent Ser. No. 63/003,551, filed Apr. 1, 2020, the entire disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63003551 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17112074 | Dec 2020 | US |
Child | 18398611 | US |