Systems and methods for remotely controlling a media server via a network

Information

  • Patent Grant
  • 9178923
  • Patent Number
    9,178,923
  • Date Filed
    Wednesday, December 23, 2009
    14 years ago
  • Date Issued
    Tuesday, November 3, 2015
    8 years ago
Abstract
Systems and methods are described for remotely controlling a personal or digital video recorder (PVR/DVR), a set top box (STB), a placeshifting device, or any other media server. A communications session is established between a server host and the media server in response to a connection request received from the client. Information about the content processed at the media server is received via the session and provided to the client. In response to subsequent instructions received from the client, the media server can be controlled, or other actions can be taken, by providing directions to the media server from the host via the communications session. Additional or alternate features may be provided as desired.
Description
TECHNICAL FIELD

The present disclosure generally relates to systems and methods for controlling a media recorder, server and/or other device over a network. Such systems and techniques may be useful, for example, in remotely controlling set-top boxes, digital video recorders (DVRs), placeshifting devices and/or other types of media devices.


BACKGROUND

The Internet and other digital communications networks continue to have significant effects on every aspect of personal and professional life. Network communications are becoming increasingly ubiquitous due to the reduced cost and increased capability of portable computing devices, as well as the increasing prevalence and capability of mobile telephony and other wireless communications technologies. Additionally, more and more devices, including set top boxes (STBs), television receivers, personal or digital video recorders (DVRs), placeshifting devices and the like are becoming enabled for communications over digital networks. Consumers are therefore expecting convenient control of their media content from a wide range of locations and settings.


A challenge often arises, however, in remotely controlling network-enabled media devices such as STBs, DVRs, placeshifting devices, and the like. Firewalls and other security mechanisms, for example, can limit direct access to consumer devices that are located on a home network. As a result, difficulties can arise in contacting the device to record or view programming, to change settings on the device, to view content available via the device, or to perform other tasks. Although some have attempted to establish communications with media devices over the Internet or other networks, these limited solutions have typically relied upon periodic polling by the device to obtain any commands from a remote server. These polling schemes are prone to processing delays, as well as a lack of convenient feedback or confirmation when a user requests an action. Further, the types of actions that are available through polling schemes have, in practice, been severely limited.


As a result, it is now desirable to create systems and methods for controlling a DVR, STB, placeshifting device or other network-enabled media server device. Such systems and methods would ideally provide a rich set of control options that would be available from a wide array of client devices. These and other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and this background section.


BRIEF SUMMARY

According to various exemplary embodiments, systems and methods are described for remotely controlling a personal or digital video recorder (PVR/DVR), a set top box (STB), a placeshifting device or system that communicates with a PVR/DVR or the like, and/or another media server. In some embodiments, a real-time, semi-real-time or other communications session is established between a server host and the media server in response to a connection request received from the client. Information about the content processed at the media server is received via the session and provided to the client. In response to subsequent instructions received from the client, the media server can be controlled and/or other actions can be taken using the session. Programs stored on the media server may be deleted, for example, or additional programs can be recorded. Other embodiments may provide control instructions to change channels, to fast forward or rewind content, to adjust user preferences, and/or to take any other actions as desired.


Other embodiments relate to host systems that communicate via a network with a client and a media server having stored programming content. The system suitably comprises a message server configured to communicate with the media server via the network using a pre-existing connection, and a guide server. The guide server is appropriately configured to receive a request for a connection to the media server from the client via the network, to direct the message server to contact the media server in response to the request, to establish a session via the network with the media server, to receive information about the media content stored at the media server via the session, to provide the information about the media content to the client, to receive an instruction from the client to control the media server, and, in response to the instruction received from the client, and to direct the media server via the session to execute the instruction.


Still other embodiments provide a method executable by a guide server or other host communicating via a network with a client and with a media recorder having stored media content. A first message is received from the client at the host via the network, wherein the first message identifies the media recorder. In response to the first message, a second message is transmitted to a message server having a pre-existing connection with the identified media recorder. In response to a third message received from the media recorder, a session is created between the media recorder and the host via the network. Program guide information is provided from the host to the client via the network, and an instruction to record a program identified in the program guide information is received from the client at the host. In response to receiving the instruction, the media recorder is directed via the session to record the identified program.


Various other embodiments, aspects and features are described in more detail below.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

Exemplary embodiments will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and



FIG. 1 is a block diagram of an exemplary guide server host system;



FIG. 2. is a diagram showing an exemplary processes for controlling a remote media server;



FIG. 3 shows one example of an interface with guide data and a media player that could be presented by a client in some embodiments;



FIG. 4 shows one example of an interface that could be used to remotely manage programs stored on a DVR or other media server in some embodiments; and



FIG. 5 shows one example of an interface window that could be used to resolve program recording conflicts in some embodiments.





DETAILED DESCRIPTION

The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.


According to various embodiments, a guide server or other host is able to establish a real-time session with a set top box (STB), television receiver, personal or digital video recorder (DVR), placeshifting device, file server or other media server that allows for direct and convenient control of the device using web or other network-based features. The networked host may be used in some embodiments to set preferences, to choose programs to be recorded by the server, to manage programs previously stored, and/or any other functions as appropriate. For example, in some embodiments the host is able to retrieve real-time (or near real-time) information about media content stored on the media server, thereby allowing for convenient search and management of the stored files, as well as the ability to direct new recordings of future programming, and/or to take other actions as desired. The host may also provide searching or other features; in some embodiments, searching may consider programming stored on the media server as well as program guide information, information about on-demand content and/or any other available information to create a very powerful search experience.


Unlike techniques that rely upon intermittent polling by the remote device to obtain instructions or other information, various embodiments are able to establish real-time connections with the remote media device through the use of a messaging server that maintains a pre-existing connection with the media server. When a user wants to open a control or other session with the remote media server, the pre-existing connection can be used to establish a relatively immediate session with the online host, thereby allowing commands and other messages to be “pushed” to the media server in real-time (or near real time) rather than waiting for the media server to “pull” the information from the host.


This relative immediacy provides a greatly improved user experience, as well as access to a much wider array of features. By providing direct, real-time access to the media server device, for example, some implementations of the host are able to provide access to most, if not all, of the functionality that would be available from a directly-connected client application, but in a convenient web interface. Various embodiments therefore provide a relatively robust set of functions and features to the viewer that can be conveniently accessed using conventional web or similar features. Other embodiments may provide alternate or additional features, as desired.


Turning now to the drawing figures and with initial reference to FIG. 1, an exemplary system 100 for remotely controlling a media server 104 suitably includes a client 102 that gains to access a guide server or other host 116 via a network no. The client 102 may interact with the guide server host 116 using a conventional web browser 103 in some embodiments. Upon receiving a request from a client 102, host 116 is able to establish a session with the media server 104 to obtain information about programming or other media content 105 available to the server 104. This information may be appropriately processed and/or formatted (e.g., as a web page or the like) and provided to client 102 via network no. Other information (e.g., program guide information 115) may also be provided to the client 102. In various embodiments, a user of client 102 provides an instruction to record an upcoming program, to delete a stored program, and/or to otherwise change the content 105 that is forwarded to host 116. Upon receipt of such an instruction from client 102, host 116 appropriately directs the server 104 to execute the instruction.


Other embodiments may provide other functions or features. Some implementations may provide robust searching of content 105, for example. Such searching may consider program guide information 115, information 112 about on-demand programming, and/or other information as desired in addition to information obtained from media server 104. Other embodiments may additionally or alternately provide the ability to change preferences or other settings on media server 104, to view media content 105 in a web browser or other window, and/or to take any other actions as may be desired.


Client 102 may be any device, component, module, hardware, software application and/or the like that is capable of communicating over network 110. To that end, many different types of clients 102 may be implemented with any sort of general or special purpose hardware, software and/or firmware. In some embodiments, client 102 may be a conventional personal computer, portable computer, workstation and/or other computing system. In still other embodiments, some types of clients 102 may include personal digital assistants, video game players, mobile telephones, network appliances, network-enabled remote controls and/or any other devices capable of communicating on network no.


In the embodiment shown in FIG. 1, client 102 executes any sort of conventional browser application 103 that is compatible with standard Internet, world wide web (WWW) and/or other formats. Conventional web browsers available for a number of different computing platforms include the INTERNET EXPLORER, MOZILLA FIREFOX, SAFARI, CHROME, and OPERA browsers, as well as many others. Such browsers 103 are typically capable of displaying active or other documents formatted in accordance with published protocols (e.g., hypertext markup language (HTML), extensible markup language (XML), and/or the like). Many browsers 103 are also capable of executing “plugin” applications, applets or the like. Such plugins may be formatted in accordance with ActiveX, JAVA and/or any number of other formats.


In some embodiments, client 102 includes a media application 107. This application 107 may be a standalone media player that executes separately from browser 103 so that browser 103 may not be needed. In other embodiments, the media application 107 could be implemented as a plugin or other applet that runs within browser 103 as desired. In some embodiments, media application 107 is initially obtained from a networked host, such as host 116. The application may be retrieved on an as-needed basis in some embodiments, or may be stored at client 102 for subsequent execution. Some embodiments may not provide media viewing on client 102; such clients 102 may nevertheless be able to interact with host 116 to select programs to record, to change preferences, to control the operations of media server 104, and/or to take other actions related to media server 104.


Network no is any digital or other communications network capable of transmitting messages between senders (e.g., media server 104) and receivers (e.g., media server 104). In various embodiments, network no includes any number of public or private data connections, links or networks supporting any number of communications protocols. Network no may include the Internet, for example, or any other network. Such networks may be based upon TCP/IP or other conventional protocols, although other embodiments may use any type of alternate or successor protocols, as desired. In various embodiments, network no may also incorporate a wireless and/or wired telephone network, such as a cellular communications network for communicating with mobile phones, personal digital assistants, and/or the like. Various embodiments of network no may also incorporate any sort of wireless or wired local area networks, such as one or more IEEE 802.3 and/or IEEE 802.11 networks.


Media server 104 is any device or system communicating on network 110 that is capable of receiving, recording, placeshifting and/or otherwise processing media content 105. In various embodiments, media server 104 includes a personal or digital video recorder (DVR) feature that allows the server 104 to record received programming for later viewing. A DVR may a standalone device, or may be integrated within any sort of receiver (e.g., a cable, direct broadcast satellite (DBS) or other set top box (STB)) that is capable of receiving and demodulating programming signals. Other embodiments of media server 104 may include any sort of standalone or hybrid media players, file servers and/or the like that are capable of receiving, storing or otherwise processing streaming or file-based content 105 of any sort. Still other embodiments of media server 104 could implement a networked gaming server or other media service as desired.


Content 105 is any sort of file-based programming or other content that is accessible to media server 104. In various embodiments, content 105 represents stored programming that is received from an internal or external television receiver. Content 105 may also represent programming received from a camera, network server and/or other source, as desired. Content may be stored in any media, including in memory, on a hard disk, on a networked server, and/or in any other digital, optical or other available storage medium. Content 105 may be stored in any sort of compressed or uncompressed format, as desired, and may be encoded or transcoded as desired for effective receipt, storage, retrieval and playing.


Some embodiments of system 100 may simply use host 116 to provide control of media server 104 for recording programs, to deleting stored content 105, changing settings or parameters, and/or performing any other desired tasks. Other embodiments, however, may allow for streaming or other playing of media content 105 from server 104 to client 102. To that end, various embodiments of media server 104 may incorporate placeshifting functionality to support viewing of content 105 over network 110 (e.g., by client 102). In some embodiments, media server 104 includes a separate placeshifting device that works in conjunction with a STB, receiver, DVR, media player or other device to shift the viewing experience from a home television to a viewing display that is accessed via network 110. Examples of placeshifting devices that may be used in some embodiments of media server 104 could include any of the various SLINGBOX products available from Sling Media of Foster City, Calif., although other products or servers 104 could be used in other embodiments. Many different types of placeshifting devices are generally capable of receiving media content from an external source, such as any sort of DVR or STB, cable or satellite programming source, DVD player, and/or the like. In other embodiments, placeshifting features are incorporated within the same device that provides content-receiving or other capabilities. Server 104 may be a hybrid DVR and/or receiver, for example, that also provides transcoding and placeshifting features. Examples of conventional placeshifting functions, features, systems and structures are described in United States Patent Publication No. 2006/0095471, although the features described herein could be equivalently applied with any number of other techniques and structures in addition to those described in that particular publication.


Host 116 is any server or other network host capable of interacting with one or more clients 102 to provide instructions to one or more servers 104. In various embodiments, host 116 is a program guide server that also allows integration of program guide information 115 and/or information about available on-demand programming 112 or the like with information about content 105, as described more fully below.



FIG. 1 shows one example of a host 116 that could be used to provide a guide server that interacts with any number of clients 102 and servers 104. To that end, each host 116 within system 100 may be implemented with a server computer system or service that is based upon any processor, architecture and/or operating system. Each host 116 will typically by implemented using any sort of conventional processing hardware 122, memory 124 and input/output features 125. Various embodiments may be implemented using dedicated or shared hardware servers; other implementations may make use of virtual server features as part of a “cloud computing” service, such as any of the cloud computing services provided by AMAZON, GOOGLE, MICROSOFT, IBM, UBUNTU, SUN MICROSYSTEMS and/or any number of other providers.


Although FIG. 1 shows a single host 116 for convenience, many practical embodiments may provide a cluster or other collection of multiple hosts 116 to support any desired number of simultaneous connections. This cluster may also incorporate appropriate routing, load balancing, access and security mechanisms and or any number of other features. In various embodiments, each host 116 is an actual or virtual computer system executing an operating system 126 such as any version of LINUX, UNIX, SOLARIS, NETWARE, WINDOWS, OS/X, AIX and/or the like. The various UNIX/LINUX operating systems typically provide a computing core that is capable of executing a guide server application 128, as well as any number of daemons, processes, applications or other instance modules as desired. For example, a guide server application 128 could execute as a daemon on host 116, with connections to separate clients 102 being managed as separate processes or instances that communicate with server application 128 using features provided by operating system 126.


Guide server application 128 is typically initiated when host 116 is booted or otherwise initialized. In various embodiments, application 128 suitably registers with any appropriate load balancers or other routers so that connections with clients 102 can be appropriately distributed. Application 128 then processes connection requests from clients 102 as appropriate. In the embodiment shown in FIG. 2, guide server application 128 contains control logic 132 for controlling remotely-located servers 104 and a web server or other presentation logic 136 for providing information to client 102 in a web-based or other format that can be conveniently presented to the user. Various embodiments may also provide search engine logic 134 as desired; this search engine may perform an integrated search of information about content 105 that is stored with the remote media server 104, as well as any program guide information 115 and/or information about on-demand programming 112 as desired. Such information 112, 115 may be obtained from any database or other source available to host 116, including any database executing on a separate server or the like.


Control module 132 contains any appropriate programming logic to establish sessions over network no with one or more media servers 104 in response to requests received from clients 102. Such sessions can be used to retrieve information from the media server 104 and/or to provide instructions to the media server as desired. As described below, sessions with media servers 104 may be initiated by through one or more message servers 114 that have pre-established connections with the particular message server 114 to be contacted.


Interactions between host 116 and client 102 may be managed in any manner. In various embodiments, client 102 interacts with host 116 using a conventional web browser 107 that can receive information from a conventional web server module 136 at host 116. Such information may be provide as part of dynamic or active web content (e.g., using ASP, JAVASCRIPT, Cold Fusion, PHP and/or other content, or using JAVA, ACTIVEX and/or other plugins), and/or as static content (e.g., using HTML, XML or similar constructs). In various embodiments, presentation module 136 provides a conventional web page or similar document with embedded active content that allows the user to interact with a program guide or other information using conventional graphical user interface (GUI) constructs. The web page(s) provided from presentation module 136 may also provide a media player application 107, or may simply accommodate and interact with a media player application 107 that resides on client 102.


Guide server application 128 may provide any alternate and/or additional functions and features as desired. Generally, guide server application 128 is at least partially implemented using conventional compiled object code derived from source code in any programming language (e.g., C, C++ or the like). Other embodiments may make use of an interpreted or other abstracted environment, such as the JAVA environment available from Sun Microsystems of Sunnyvale, Calif. or the .NET environment available from Microsoft Corporation of Redmond, Wash. Other embodiments may implement the various components of guide server application 128 using any other programs, programming languages, scripting languages, development or execution environments, and/or the like. Such programming may be stored in source or object code form on any digital storage medium (e.g., memory 124, mass storage, removable media, or any other medium) that is accessible to guide server application 128.


As noted above, directly connecting to a media server 104 from a network service 116 or client 102 may not always be convenient due to the presence of one or more firewalls or other security mechanisms within network 110, or any number of other factors. Various embodiments therefore provide any number of message servers 114 that are each capable of maintaining pre-existing connections with one or more network server 104. Each message server 114 is implemented using conventional computer server hardware, software and/or services, such as any of the hardware or software features described above in connection with host 116.


Message server 114 suitably receives requests for connections from one or more servers 104 to initiate persistent connections with the servers 104 in any manner. In various embodiments, server 104 maintains a relatively constant connection with a messaging server 114 at a uniform resource locator (URL) or other network address that can be readily contacted on network no. Messaging server 114 may simply be a TCP server, for example, that is automatically accessed when server 104 starts up, reboots, or otherwise initiates activity on network 110. In such cases, server 104 contacts the messaging server 114 (with the assistance of an appropriate routing or load balancing features), establishes a TCP or similar connection, and then awaits further action. This connection may be kept alive using relatively low bandwidth “keep alive” features that are part of the TCP protocol. By pre-establishing the connection from the server 104 to the messaging server 114, a pre-existing connection is maintained that can be used to send instructions or requests to the media server 104, even though the server is behind a firewall or other security mechanism. This is because many routers used in conventional firewalls will allow outgoing TCP connections that are originated within the trusted space while disallowing incoming TCP (and other) connections. After establishing a TCP or other connection from the server 104 to message server 114, that pre-existing connection can be used to transmit an instruction to server 104 to establish a separate session with the host 116. This second session can be established as another outgoing TCP (or other protocol) communication from media server 104 that is not likely to be blocked by the firewall. That is, message server 114 can transmit an instruction over the pre-existing channel that directs server 104 to separately contact host 116 and to establish an appropriate communications session between host 116 and media server 104. This instruction may optionally include information about the host 116 or other party that is requesting the connection, although this information need not be present in all embodiments. When instructed to do so, server 104 suitably establishes a TCP or other session with the host 116 that can be used to exchange data and instructions, or to perform other tasks as described more fully below.


Moreover, messages sent from message server 114 can be provided to the media server 104 on a relatively immediate basis in some embodiments. That is, if a server 116 wishes to contact a particular media server 104, the server 116 need not wait until the media server 104 polls the server 116, but rather can provide a message over network 110 in real-time, or near real-time. “Real time” in this context refers to a communication or other action that occurs in response to a stimulus (e.g., a user input, network request or the like) without substantial delay between the stimulus and the action. “Real time” communications, while typically occurring on a generally immediate basis, may nevertheless encounter and account for network and processing delays and other delays that are inherent in practical data communications systems.


System 100 therefore allows host 116 to establish a real-time session with server 104 in response to requests received from clients 102. The user of client 102 contacts host 116 by directing a browser 103 or similar program to a URL or other address associated with host 116. Upon receiving a request from client 102, host 116 suitably contacts the appropriate media server 104 via message server 114. In various embodiments, message server 114 transmits a message to the media server 104 over a pre-established connection that directs the media server 104 to contact host 116 to establish a communications session. After the communication session is established, host 116 can obtain information about programming 105 available to media server 104, and to provide any instructions to media server 104 as desired. In various embodiments, host 116 is able to interact with client 102 using web constructs or the like to provide searching of content, remote control of server 104, viewing of programming stored at server 104, and/or any other features as desired.


Turning now to FIG. 2, an exemplary process 200 for establishing a control session between a client 102 and a media server 104 using host 116 over network 110 is shown. Generally speaking, process 200 involves establishing a session 212 between host 106 and media server 104 in response to a request 204 received from a client 102. The session 212 can be used to obtain information 213 from the media server 104, to provide instructions 216 that control the operations of media server 104, and/or for any other purpose. Host 116 also interacts with client 102 as desired to provide information, to receive instructions, and/or for any other purpose. Further embodiments may also provide streaming 218 or other sharing of media content from media server 104 to client 102, as appropriate.


Typically, media server 104 initially contacts a message server 114 at startup or any other initializing state to establish a pre-existing connection 202. As noted above, media server 104 may initialize a connection 202 with a message server 114 at startup, in response to a prior connection being dropped or reset, in response to a hard or soft re-boot of the media server 104, and/or at any other appropriate time. The connection 202 then persists as the media server 104 remains connected to network 110 to allow for subsequent real-time communications. As noted above, connection 202 may be useful in circumventing a router or other security mechanism that may prevent conventional communications between host 116 and a media server 104 that may be located on a home, office, campus or other network.


Client 102 provides an initial request 204 for an interactive session in any manner. In various embodiments, a user of client 102 activates a web browser application 103, a standalone media application and/or the like and provides a known URL or other address that is associated with the host 106. The client application then formats a hypertext transport protocol (HTTP) or other query that can be transported across network 110 for receipt and processing by host 116. Other embodiments may use other protocols or formats other than HTTP or other conventional web formats. In some embodiments, request 204 (and/or other communications between client 102 and host 116) contains an identifier that can be used to authenticate the user and/or to determine a particular media server 104 to be contacted. This identifier may directly identify the media server 104 in some embodiments, although other embodiments may instead identify a user or user's account based upon userid/password combinations, digital signatures or other credentials. Media servers 104 associated with the identified user or user account may be selected, as desired, for further activity. To that end, host 116 may provide any sort of authentication of client 102 or its users in some embodiments, or any other mechanisms for selecting particular media servers 104 for further activity. Such authentication and selection may be provided using any number of messages or other interactions between host 116 and client 102, as appropriate. Host 116 may further interact with a security database, authentication server and/or any other resources to identify and authenticate the user, as desired.


Host 116 processes the received request 204 to establish a session 212 with the remotely-located media server 104. In the example process 200 shown in FIG. 2, host 116 suitably directs a message server 114 to contact the appropriate media server 104 using the pre-existing connection 202. To that end, host 116 provides a request 206 to the message server 114 or its associated load balancer, which appropriately forwards the request 206 to server 114 for further processing. Message server 114 then provides a request 208 to the media server 104 via the pre-existing connection 202 that directs the media server 104 to respond to the requesting host 116. The media server 104 appropriately responds 210 to the requesting host 116, and the media server 104 and host 116 then establish a session 212 with each other over network 110. Session 212 may be a conventional TCP session, for example, that allows for bi-directional data transfers in any convenient manner. Other embodiments may provide different types of sessions 212, including any sort of stateful or non-stateful bi-directional interchanges according to any protocols or other formats. In various embodiments, session 212 is a permanent or semi-permanent bi-directional interchange that is established in response to request 208 and that persists throughout the period of time that client 102 continues to provide instructions for control of media server 104. To that end, various embodiments may allow multiple commands, responses and/or other messages to be exchanged between host 116 and server 104 using a single, common session 212.


After session 212 is established between host 116 and the media server 104, information and commands may be exchanged in any manner. Media server 104 may provide information 213 about content 105 to host 116, for example, to allow for searching or other processing of the transferred information. In various embodiments, host 116 requests a listing of the media content 105 stored at the media server 104, as well as any metadata or other descriptive information (e.g., time of broadcast, program guide information, current preferences or other settings and/or the like) about the stored content 105 that may be available. Such information 213 may then be processed at host 116 and/or relayed to client 102, as desired.


Host 106 also interacts with client 102 to provide relevant information 215 and/or to obtain instructions 216 from the user as appropriate. To that end, information 213 may be filtered or otherwise processed at host 116 for delivery as information 215 and eventual display by client 102. In various embodiments, interaction 214 between client 102 and host 116 is implemented within the context of a conventional web session that allows active and/or passive web content to be displayed from presentation module 136 to browser 103; other embodiments may use different structures or techniques as desired.


The particular processing performed by host 106 may vary from embodiment to embodiment. In some implementations, a search engine 134 or other module is able to search and/or filter information 213 received from media server 104. Various embodiments may further obtain and process program guide information 115, information 112 about on-demand programming, and/or any other information as appropriate to provide a hybrid search feature. For example, some embodiments could allow a user to search for a particular program to obtain combined search results identifying the particular program in content 105 stored on the media server, in an upcoming broadcast, and/or in on-demand content. Hence, the flexibility and power of the search can be greatly enhanced by providing a combined search tool that accounts for different types of data, including information 213 obtained from the user's unique media server 104.


Other embodiments provide some or all of the information 213 about content 105 to client 102 to allow the client 102 to perform any desired actions. In various embodiments, client 102 provides instructions 216 to host 116 that identify desired actions to be performed by the remotely-located media server 104. Such actions may include, for example, recording a particular program, deleting a particular program, updating a setting or preference, controlling the playback of live or pre-recorded programming, and/or the like. Various embodiments may also facilitate streaming or other viewing of content 105 stored with media server 104 on client 102. In such embodiments, host 116 suitably receives the media stream 218 from media server 104 and relays the stream 218 to client 102. Other embodiments may provide streaming in any other manner.


Instructions 216 may be received at host 116 via interaction 214 in any manner. Commands 217 are then provided from host 116 to the remote server 104 via session 212 or the like to control the operation and/or media processing functions of media server 104. Various interactions between client 102, host 116 and media server 104 that make use of commands 217 are described below with respect to interfaces 300, 400 and 500. Generally speaking, the various tasks shown in connection with process 200 may be carried out with any sort of hardware, software and/or firmware logic within system 100. In various embodiments, the various steps of process 200 are carried out in response to software or firmware instructions stored in a memory, or on a disk drive and/or other storage associated with host 116, message server 114, client 102 and/or media server 104 as shown. Such instructions may be executed by any processor and/or other processing features within host 116, message server 114, media server 104, client 102 and/or the like as indicated in FIG. 2. The particular means used to implement each of the various functions shown in FIG. 2, then, could be any sort of processing hardware executing conventional software logic in any format that implements the various algorithms and techniques described herein. Each of the messages shown in FIG. 2 may be formatted using any conventional or proprietary formats compatible with network 110, such as any sort of TCP/IP compatible formats or protocols, although other protocols could be used in other embodiments.



FIGS. 3-5 show exemplary interfaces 300, 400 and 500 illustrating various features that may be provided in some embodiments. The actual features implemented may vary from embodiment to embodiment, however, and the graphical or other interface elements used to implement these features may similarly vary significantly. The graphical and spatial layout of the interfaces 300, 400 and 500, then, are purely exemplary. Each of the interfaces 300, 400, 500 may be generated in any manner. In various embodiments, some or all of interfaces 300, 400 and 500 are presented by browser 103 or another application on a suitable display that is associated with client 102. Such interfaces may include active and/or static content that is provided by presentation module 135 or the like.



FIG. 3 shows an exemplary interface 300 that may be used to provide guide information 115 to client 102, and to allow interactions with remote media server 104 based upon the guide information 115. As shown in FIG. 3, the exemplary interface 300 includes a media player 302, a guide window 308, a window 304 displaying information about the currently-viewed program, and/or any other interface features as desired.


Guide window 308 provides information about programming that is available from one or more sources. Such information may be obtained via interaction 214 with host 116, and may include program guide information 115 about upcoming broadcast programs, information about content 105 stored with media server 104, information 112 about on-demand programming, and any other information as desired. FIG. 3, for example, shows program guide information 115 for programming that can be received by an STB or other receiver associated with media server 104. In various embodiments, the viewer can simply select a currently-broadcast program to direct the remote server 104 to tune to the particular program and provide the program in a media stream 218 to client 102. In other embodiments, clicking on or otherwise selecting a program in window 308 could result in additional information about the program being displayed (e.g., in window 304), or any other actions as desired. The exemplary embodiment shown in FIG. 3 provides a “new” label on each of the programs that are believed to be first run (as opposed to re-runs) for viewer convenience. Other embodiments may not provide this feature, however, or the label may be activated/deactivated in response to a viewer preference, as appropriate.


Although the particular view of window 308 illustrated in FIG. 3 shows program guide information corresponding to a broadcast source, other views of window 308 may show information about stored programming 105 available to media server 104, on-demand content 112 available from a website or other source, and/or other content from any other source. Guide window 308 could equivalently display search results or any other listings of available programming, as desired. The different guide views may be selected using, for example, buttons 314, 316, 318 or the like. One or more scrolling buttons, sliders or other navigation features 312 may also be provided to allow viewing of additional information as desired.


In some implementations, information presented in window 308 may be selected and/or filtered in any manner. Filtering feature 322, for example, could allow a viewer to set a content filter that would prevent certain programming from being displayed in window 308 and/or viewed by media player 302. Filtering may be useful in establishing parental controls, for example, or other filters based upon content ratings, other guide data, or the like. Filters could be applied to block any programming that meets certain criteria (e.g., adult or violent content during certain hours). Other filters may be affirmatively applied such that only programming that meets certain criteria (e.g., only children's programming during certain hours) is displayed or viewed. Such filters may be established and/or modified using any sort of convenient interface. Further, filtering 322 may not be limited to viewing of programs on client 102; to the contrary, any filters established using client 102 may be provided to media server 104 via session 212 and applied across other displays, as desired.


Interface 300 could also be used to set or change any settings or other preferences 320 associated with client 102 or media server 104. Such settings may allow the viewer to select, for example, preferences for particular programming genres, sports, networks, channels, actors/actresses or other viewing choices. Such information may be used to optimize (or at least improve) search results, or for any other purpose. Preferences may be set using any interface feature 320 or the like.


As noted above, searching may be provided through a search feature 324 or the like. In such embodiments, the viewer enters a keyword, title or other search term. Client 102 suitably forwards the search terms to host 116 via interaction 214, and host 116 processes the search (e.g., using search engine 134) to identify available programming that meets the search criteria. In various embodiments, host 116 is able to search for programming from multiple sources so that a complete result can be provided to client 102. For example, if the viewer searches for a particular program, host 116 may be able to identify one or more episodes of the program in stored content 105, in upcoming broadcasts (as identified by program guide information 115), in on-demand programming, and/or in any other available sources. These results can be returned from host 116 to client 102 for display in window 308 or elsewhere to allow the viewer to take any desired action. If the program is identified in a future broadcast, for example, the viewer may opt to direct the media server 104 to record the upcoming showing. If the program is available in content 105 from media server 104 and/or any other on-demand source, then the viewer may select the program for immediate viewing. These results may be inter-combined in any manner. For example, a search result could indicate that certain episodes of a program are stored on media server 104, that other episodes are available from an on-demand source for free or fee-based viewing, and/or that other episodes will be available to media server 104 in an upcoming broadcast. Other embodiments may provide different results or features, as desired.


Media player window 302 may correspond to media player 107 described above. In such embodiments, media player 107 renders and presents a media stream to the viewer based upon selected content. Content may be selected from programs listed in window 308, if such programs are currently available from media server 104 or another source. As noted above, various embodiments allow the viewer to select programs from guide window 308. The client 102 then provides an instruction 216 to host 116 via session 212 to appropriately direct media server 104 to begin streaming the selected programming or to take any other appropriate action. Media player 302 may also provide navigation controls 303 to rewind, stop, play, fast forward or otherwise modify the playback of the media stream 218. User commands received with respect to navigation controls 303 may be similarly relayed to media server 104 via host 116 and session 212, as appropriate.


Window 304, as shown in FIG. 3, presents information about the currently-selected content. The currently-selected program may correspond to content currently viewed in media player window 302, if the selected program is immediately available. Alternately, the currently-selected program could correspond to an upcoming program shown in a program guide, an on-demand program, or any other content within window 308 or elsewhere. In the example shown in FIG. 3, the currently-selected program is currently received at media server 104 and streamed to client 102 for immediate viewing. If the viewer wanted to record the program, a record button 306 is provided that would allow an instruction 216 to be sent to host 116, which in turn would direct media server 104 to record the program. Upcoming programs could be similarly recorded by simply selecting the upcoming program in a guide window 308, search result or the like, and then activating a record button 306 or other record feature within interface 300. Because such directions 217 could be provided to media server 104 in real-time across the current session 212, recording could be initiated on a relatively immediate basis in some embodiments.



FIG. 4 shows an exemplary interface 400 that could be used in some implementations to manage the content 105 stored with media server 104. Interface 400, as illustrated in FIG. 4, includes a listing 408 of programming content 105 stored on media server 104, as well as an information window 404 that provides a current status of a disk, solid state drive and/or other data storage medium associated with media server 104. In the particular example shown in FIG. 4, programs are grouped by program title, with the number of available episodes 414 indicated as well. Other embodiments may organize and present programming listing 408 in any desired manner. A search feature 324 as described above may also be provided, as may any number of other additional or alternate features.


Interface 400 allows the viewer to manage the contents of the DVR or other repository of content 105 from client 102. Particular programs may be played from server 104, for example, by selecting a “play” feature 412 in interface 400. Selecting such a feature would result in an instruction 216 being sent to host 116, which in turn would send an appropriate message 217 via session 212 to direct the remote media server 104 to begin streaming the selected program. Messages 217 could also be generated using “erase” features 410, which would result in an instruction 216 to be provided to host 116, which in turn would direct media server 104 to erase the indicated program. Media server 104 may then provide updated information 213 in some embodiments so that listing 408 and information 404 remain accurate. Still other instructions 216 may be used, in some embodiments, to control the operation of media server 104. A mobile phone, computer or network-enabled remote control, for example, could interact with host 116 to select programming, to play, pause, record, forward/rewind or to perform other control functions as desired. Other features and functions may be provided in any number of alternate embodiments.



FIG. 5 shows an exemplary interface 500 that allows a user to select from conflicting recordings. In various embodiments, the media server 104 may be able to record only a limited number of simultaneous programs. Many conventional STBs, for example, may have tuner capabilities to receive and record two simultaneous programs, but not a third. Hence, if an instruction is received to record a third program, the viewer may be requested to select which program would not be recorded. Interface 500 shows one example of a window that could be provided that would allow the viewer to select which of program would not be recorded by activating an appropriate feature 502, 504, 506 that corresponds to the program to be skipped. Identification of recording conflicts could occur in any manner. In various embodiments, media server 104 provides a listing of currently-planned recordings as part of information 213. Such information may be provided in response to a request by host 116, or may be automatically provided as desired. In such embodiments, host 116 identifies when conflicting recordings are requested in instructions 216 from client 102, and provides interface 500 or the like in response. In other embodiments, interface 500 is generated in response to a message from media server 104 indicating that a recording conflict exists, and providing sufficient information for the viewer to resolve the conflict. Other processes and techniques may be formulated in any number of alternate embodiments.



FIGS. 1-5 therefore illustrate at least one example of a system 100 that could be used to remotely control a DVR, STB or other receiver, placeshifting device, file server or other media server 104 via a network 110. In some embodiments, the media server 104 is contacted using a persistent connection that the media server 104 previously established with a messaging server 114 to create a network session 212 with host 116; because this session allows for real-time (or near real-time) interaction between the host 116 and server 104, any number of commands 217 can be provided from host 116 to be executed on media server 104. Such commands 217 can be provided in response to user inputs at a client 102 using, for example, conventional active or static interface techniques implemented within a web browser 103 or the like. Various embodiments could use commands 217 to direct the recording, erasing, playing or other processing of programming content 105 stored at the media server 104. Other embodiments may use commands 217 to update settings or preferences, to control the operation of media server 104, and/or to take any other actions as desired.


While several exemplary embodiments have been presented in the foregoing detailed description, it should be appreciated that a vast number of alternate but equivalent variations exist, and the examples presented herein are not intended to limit the scope, applicability, or configuration of the invention in any way. To the contrary, various changes may be made in the function and arrangement of elements described without departing from the scope of the claims and their legal equivalents. The term “exemplary” is used herein to represent one example, instance or illustration that may have any number of alternates. Any implementation described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other implementations.

Claims
  • 1. A method executable by a host communicating via a network with a client and with a media server that is configured to process media content, the method comprising: receiving a first message from the client at the host via the network;in response to the first message, establishing a session between the host and the media server via the network, wherein the session is initiated by the host contacting the media server via a message server that maintains a persistent connection to the media server that was previously established prior to the host receiving the first message from the client, and wherein the media server responds to a message received from the message server via the previously-established persistent connection by establishing the session as an outgoing connection from the media server to the host;receiving information from the media server via the session, wherein the information describes media content processed at the media server;providing the information about the media content processed at the media server from the host to the client via the network;receiving an instruction from the client at the host to control the media server; anddirecting the media server from the host to execute the instruction received from the client via the session established as an outgoing connection from the media server to the host.
  • 2. The method of claim 1 wherein the media server comprises a digital video recorder, and wherein the instruction directs the digital video recorder to record a program.
  • 3. The method of claim 1 wherein the media server comprises a digital video recorder and wherein the instruction directs the digital video recorder to delete a program from the digital video recorder.
  • 4. The method of claim 1 further comprising providing program guide information from the host to the client via the network, wherein the program guide information describes programming content available to the media server.
  • 5. The method of claim 4 wherein the media server comprises a digital video recorder, and wherein the instruction to change the media content comprises an instruction to record a program identified in the program guide information using a digital video recorder.
  • 6. The method of claim 1 wherein the establishing comprises the host initially transmitting a request to the message server having the persistent connection previously established via the network with the media server, and wherein the request sent from the host to the message server initiates a message from the message server to the media server via the persistent connection.
  • 7. The method of claim 1 wherein the session established as an outgoing connection from the media server to the host is a real-time communications session.
  • 8. The method of claim 1 wherein the providing comprises the host forming a web page with the information and transmitting the web page to an application executing on the client.
  • 9. The method of claim 8 wherein the web page is formed to accommodate a media player application.
  • 10. The method of claim 9 further comprising directing the media server to provide at least some of the media content stored on the media server to the media player application.
  • 11. A system that communicates via a network with a client and with a media server that is configured to process media content, the system comprising: a message server configured to communicate with the media server via the network using a pre-existing persistent connection that was established as an outgoing connection from the media server to the message server; anda guide server that is separate from the message server, wherein the guide server is configured to receive a request for a connection to the media server from the client via the network, to direct the message server to contact the media server via the pre-existing persistent connection in response to the request so that the media server is directed to establish an outgoing session from the media server to the guide server via the network, to receive information about the media content via the session, to provide the information about the media content to the client, to receive an instruction from the client to control the media server, and, in response to the instruction received from the client, to direct the media server via the session to execute the instruction, wherein the media server establishes the pre-existing persistent connection to the message server before the guide server receives the request from the client and wherein the outgoing session from the media server to the guide server is established in response to the request received from the client.
  • 12. The system of claim 11 wherein the outgoing session is a real-time communications session.
  • 13. The system of claim 11 wherein the guide server comprises a web server configured to provide the information about the media content stored at the media server in a web-compatible format.
  • 14. The system of claim 11 further comprising a first database comprising program guide information, wherein the guide server is configured to receive the program guide information from the first database and to provide the program guide information to the client via the network, and wherein the instruction comprises an instruction to record a program identified in the program guide information that is provided to the client.
  • 15. The system of claim 14 wherein the guide server is further configured to receive an instruction from the client to search for a particular program, to search for the particular program in both the information about the media content stored at the media server and the program guide information, and to provide a combined search result to the client.
  • 16. The system of claim 14 wherein the media server is a placeshifting device, wherein the content stored at the media server comprises programs recorded by a user, and wherein the instruction is an instruction to record one of the programs recorded by the user that is provided in response to an input provided to the client by the user.
  • 17. The system of claim 16 wherein the media server is further configured to authenticate the user prior to establishing the session with the media server.
  • 18. A method executable by a host communicating via a network with a client and with a media recorder having stored media content, wherein the media recorder is separated from the client and the host by a firewall, the method comprising: receiving a first message from the client at the host via the network, wherein the first message identifies the media recorder;in response to the first message, transmitting a second message from the host to a message server having a pre-existing connection with the identified media recorder via the network, the pre-existing connection being established as an outgoing connection through the firewall from the identified media recorder to the message server before the host receives the first message from the client that persists over time, the second message initiating an instruction to the media recorder to establish a session with the host via the network, wherein the session is established as an outgoing session from the media recorder to the host through the firewall;providing program guide information from the host to the client via the network;receiving an instruction to record a program identified in the program guide information from the client at the host; andin response to receiving the instruction at the host, directing the media recorder to record the identified program via the session established from the media recorder to the host through the firewall.
  • 19. The method of claim 18 wherein the session is a real-time communications session, and wherein the method comprises receiving a list of currently-planned recordings from the media recorder via the real-time communications session.
  • 20. The method of claim 19 further comprising identifying a conflict between the instruction received from the client and the list of currently-planned recordings and, if the conflict exists, receiving a second instruction from the client that resolves the conflict and directing the media recorder via the real-time communications session to resolve the conflict in accordance with the second instruction.
US Referenced Citations (368)
Number Name Date Kind
3416043 Jorgensen Dec 1968 A
4254303 Takizawa Mar 1981 A
5161021 Tsai Nov 1992 A
5237648 Mills et al. Aug 1993 A
5386493 Degen et al. Jan 1995 A
5434590 Dinwiddie, Jr. et al. Jul 1995 A
5493638 Hooper et al. Feb 1996 A
5602589 Vishwanath et al. Feb 1997 A
5661516 Carles Aug 1997 A
5666426 Helms Sep 1997 A
5682195 Hendricks et al. Oct 1997 A
5706290 Shaw et al. Jan 1998 A
5708961 Hylton et al. Jan 1998 A
5710605 Nelson Jan 1998 A
5722041 Freadman Feb 1998 A
5757416 Birch et al. May 1998 A
5774170 Hite et al. Jun 1998 A
5778077 Davidson Jul 1998 A
5794116 Matsuda et al. Aug 1998 A
5822537 Katseff et al. Oct 1998 A
5831664 Wharton et al. Nov 1998 A
5850482 Meany et al. Dec 1998 A
5852437 Wugofski et al. Dec 1998 A
5880721 Yen Mar 1999 A
5898679 Brederveld et al. Apr 1999 A
5909518 Chui Jun 1999 A
5911582 Redford et al. Jun 1999 A
5922072 Hutchinson et al. Jul 1999 A
5936968 Lyons Aug 1999 A
5968132 Tokunaga Oct 1999 A
5987501 Hamilton et al. Nov 1999 A
6002450 Darbee et al. Dec 1999 A
6008777 Yiu Dec 1999 A
6014694 Aharoni et al. Jan 2000 A
6020880 Naimpally Feb 2000 A
6031940 Chui et al. Feb 2000 A
6036601 Heckel Mar 2000 A
6040829 Croy et al. Mar 2000 A
6043837 Driscoll, Jr. et al. Mar 2000 A
6049671 Slivka et al. Apr 2000 A
6075906 Fenwick et al. Jun 2000 A
6088777 Sorber Jul 2000 A
6097441 Allport Aug 2000 A
6104334 Allport Aug 2000 A
6108041 Faroudja et al. Aug 2000 A
6115420 Wang Sep 2000 A
6117126 Appelbaum et al. Sep 2000 A
6141059 Boyce et al. Oct 2000 A
6141447 Linzer et al. Oct 2000 A
6160544 Hayashi et al. Dec 2000 A
6201536 Hendricks et al. Mar 2001 B1
6212282 Mershon Apr 2001 B1
6222885 Chaddha et al. Apr 2001 B1
6223211 Hamilton et al. Apr 2001 B1
6240459 Roberts et al. May 2001 B1
6240531 Spilo et al. May 2001 B1
6243596 Kikinis Jun 2001 B1
6256019 Allport Jul 2001 B1
6263503 Margulis Jul 2001 B1
6279029 Sampat et al. Aug 2001 B1
6282714 Ghori et al. Aug 2001 B1
6286142 Ehreth Sep 2001 B1
6310886 Barton Oct 2001 B1
6317780 Cohn et al. Nov 2001 B1
6340994 Margulis et al. Jan 2002 B1
6353885 Herzi et al. Mar 2002 B1
6356945 Shaw et al. Mar 2002 B1
6357021 Kitagawa et al. Mar 2002 B1
6370688 Hejna, Jr. Apr 2002 B1
6389467 Eyal May 2002 B1
6421429 Merritt et al. Jul 2002 B1
6434113 Gubbi Aug 2002 B1
6442067 Chawla et al. Aug 2002 B1
6456340 Margulis Sep 2002 B1
6466623 Youn et al. Oct 2002 B1
6470378 Tracton et al. Oct 2002 B1
6476826 Plotkin et al. Nov 2002 B1
6487319 Chai Nov 2002 B1
6493874 Humpleman Dec 2002 B2
6496122 Sampsell Dec 2002 B2
6505169 Bhagavath et al. Jan 2003 B1
6510177 De Bonet et al. Jan 2003 B1
6529506 Yamamoto et al. Mar 2003 B1
6553147 Chai et al. Apr 2003 B2
6557031 Mimura et al. Apr 2003 B1
6564004 Kadono May 2003 B1
6567984 Allport May 2003 B1
6584201 Konstantinou et al. Jun 2003 B1
6584559 Huh et al. Jun 2003 B1
6587125 Paroz Jul 2003 B1
6597375 Yawitz Jul 2003 B1
6598159 McAlister et al. Jul 2003 B1
6600838 Chui Jul 2003 B2
6609253 Swix et al. Aug 2003 B1
6611530 Apostolopoulos Aug 2003 B1
6628716 Tan et al. Sep 2003 B1
6642939 Vallone et al. Nov 2003 B1
6647015 Malkemes et al. Nov 2003 B2
6658019 Chen et al. Dec 2003 B1
6665751 Chen et al. Dec 2003 B1
6665813 Forsman et al. Dec 2003 B1
6697356 Kretschmer et al. Feb 2004 B1
6701380 Schneider et al. Mar 2004 B2
6704678 Minke et al. Mar 2004 B2
6704847 Six et al. Mar 2004 B1
6708231 Kitagawa Mar 2004 B1
6718551 Swix et al. Apr 2004 B1
6732158 Hesselink et al. May 2004 B1
6754266 Bahl et al. Jun 2004 B2
6754439 Hensley et al. Jun 2004 B1
6757851 Park et al. Jun 2004 B1
6757906 Look et al. Jun 2004 B1
6766376 Price Jul 2004 B2
6768775 Wen et al. Jul 2004 B1
6771828 Malvar Aug 2004 B1
6774912 Ahmed et al. Aug 2004 B1
6781601 Cheung Aug 2004 B2
6785700 Masud et al. Aug 2004 B2
6795638 Skelley, Jr. Sep 2004 B1
6798838 Ngo Sep 2004 B1
6806909 Radha et al. Oct 2004 B1
6807308 Chui et al. Oct 2004 B2
6816194 Zhang et al. Nov 2004 B2
6816858 Coden et al. Nov 2004 B1
6826242 Ojard et al. Nov 2004 B2
6834123 Acharya et al. Dec 2004 B2
6839079 Barlow et al. Jan 2005 B2
6847468 Ferriere Jan 2005 B2
6850571 Tardif Feb 2005 B2
6850649 Malvar Feb 2005 B1
6868083 Apostolopoulos et al. Mar 2005 B2
6889385 Rakib et al. May 2005 B1
6892359 Nason et al. May 2005 B1
6898583 Rising, III May 2005 B1
6907602 Tsai et al. Jun 2005 B2
6927685 Wathen Aug 2005 B2
6930661 Uchida et al. Aug 2005 B2
6941575 Allen Sep 2005 B2
6944880 Allen Sep 2005 B1
6952595 Ikedo et al. Oct 2005 B2
6981050 Tobias et al. Dec 2005 B1
7016337 Wu et al. Mar 2006 B1
7020892 Levesque et al. Mar 2006 B2
7032000 Tripp Apr 2006 B2
7047305 Brooks et al. May 2006 B1
7110558 Elliott Sep 2006 B1
7124366 Foreman et al. Oct 2006 B2
7127507 Clark et al. Oct 2006 B1
7151575 Landry et al. Dec 2006 B1
7155734 Shimomura et al. Dec 2006 B1
7155735 Ngo et al. Dec 2006 B1
7184433 Oz Feb 2007 B1
7224323 Uchida et al. May 2007 B2
7239800 Bilbrey Jul 2007 B2
7260312 Srinivasan et al. Aug 2007 B2
7272300 Srinivasan et al. Sep 2007 B2
7344084 DaCosta Mar 2008 B2
7366403 Muguruma et al. Apr 2008 B2
7392281 Kanojia et al. Jun 2008 B1
7430686 Wang et al. Sep 2008 B1
7464396 Hejna, Jr. Dec 2008 B2
7478164 Lango et al. Jan 2009 B1
7478166 Agnoli et al. Jan 2009 B2
7502733 Andrsen et al. Mar 2009 B2
7505480 Zhang et al. Mar 2009 B1
7516136 Lee et al. Apr 2009 B2
7536433 Reilly May 2009 B2
7549160 Podar et al. Jun 2009 B1
7558862 Tyukasz et al. Jul 2009 B1
7565681 Ngo et al. Jul 2009 B2
7577336 Srinivasan et al. Aug 2009 B2
7594218 Lozben Sep 2009 B1
7620713 Tokuhashi et al. Nov 2009 B2
7631088 Logan et al. Dec 2009 B2
7647430 Ng et al. Jan 2010 B2
7676590 Silverman et al. Mar 2010 B2
7706358 Kitada Apr 2010 B2
7721300 Tipton et al. May 2010 B2
7721315 Brown et al. May 2010 B2
7895275 Evans et al. Feb 2011 B1
7917602 Sweatt, III et al. Mar 2011 B2
7921150 Schwartz Apr 2011 B1
7945688 Lango et al. May 2011 B1
7962370 Rodriguez et al. Jun 2011 B2
7975047 Dongre Jul 2011 B2
8001471 Shaver et al. Aug 2011 B2
8082545 Prakash Dec 2011 B2
8171148 Lucas et al. May 2012 B2
8194681 Kaarela et al. Jun 2012 B2
8209623 Barletta et al. Jun 2012 B2
20010021998 Margulis Sep 2001 A1
20010025308 Jinushi et al. Sep 2001 A1
20020004839 Wine et al. Jan 2002 A1
20020010925 Kikinis Jan 2002 A1
20020012530 Bruls Jan 2002 A1
20020031333 Mano et al. Mar 2002 A1
20020042921 Ellis Apr 2002 A1
20020046404 Mizutani Apr 2002 A1
20020053053 Nagai et al. May 2002 A1
20020080753 Lee Jun 2002 A1
20020090029 Kim Jul 2002 A1
20020105529 Bowser et al. Aug 2002 A1
20020112247 Horner et al. Aug 2002 A1
20020122137 Chen et al. Sep 2002 A1
20020131497 Jang Sep 2002 A1
20020138843 Samaan et al. Sep 2002 A1
20020143972 Christopoulos et al. Oct 2002 A1
20020143973 Price Oct 2002 A1
20020147634 Jacoby et al. Oct 2002 A1
20020147687 Breiter et al. Oct 2002 A1
20020167458 Baudisch et al. Nov 2002 A1
20020188818 Nimura et al. Dec 2002 A1
20020191575 Kalavade et al. Dec 2002 A1
20030001880 Holtz et al. Jan 2003 A1
20030028873 Lemmons Feb 2003 A1
20030065915 Yu et al. Apr 2003 A1
20030074660 McCormack et al. Apr 2003 A1
20030093260 Dagtas et al. May 2003 A1
20030095791 Barton et al. May 2003 A1
20030115167 Sharif et al. Jun 2003 A1
20030159143 Chan Aug 2003 A1
20030187657 Erhart et al. Oct 2003 A1
20030192054 Birks et al. Oct 2003 A1
20030198243 Yamada Oct 2003 A1
20030208612 Harris et al. Nov 2003 A1
20030231621 Gubbi et al. Dec 2003 A1
20040003406 Billmaier Jan 2004 A1
20040052216 Roh Mar 2004 A1
20040068334 Tsai et al. Apr 2004 A1
20040083301 Murase et al. Apr 2004 A1
20040100486 Flamini et al. May 2004 A1
20040103340 Sundareson et al. May 2004 A1
20040139047 Rechsteiner et al. Jul 2004 A1
20040162845 Kim et al. Aug 2004 A1
20040162903 Oh Aug 2004 A1
20040172410 Shimojima et al. Sep 2004 A1
20040177151 Kryeziu Sep 2004 A1
20040194141 Sanders Sep 2004 A1
20040199657 Eyal et al. Oct 2004 A1
20040205830 Kaneko Oct 2004 A1
20040212640 Mann et al. Oct 2004 A1
20040216173 Horoszowski et al. Oct 2004 A1
20040221029 Jenkins et al. Nov 2004 A1
20040236844 Kocherlakota Nov 2004 A1
20040255249 Chang et al. Dec 2004 A1
20050021398 McCleskey et al. Jan 2005 A1
20050027821 Alexander et al. Feb 2005 A1
20050038981 Connor et al. Feb 2005 A1
20050044058 Matthews et al. Feb 2005 A1
20050050462 Whittle et al. Mar 2005 A1
20050053356 Mate et al. Mar 2005 A1
20050055595 Frazer et al. Mar 2005 A1
20050060759 Rowe et al. Mar 2005 A1
20050097542 Lee May 2005 A1
20050114852 Chen et al. May 2005 A1
20050132351 Randall et al. Jun 2005 A1
20050138560 Lee et al. Jun 2005 A1
20050155077 Lawrence et al. Jul 2005 A1
20050198584 Matthews et al. Sep 2005 A1
20050204046 Watanabe Sep 2005 A1
20050216851 Hull et al. Sep 2005 A1
20050227621 Katoh Oct 2005 A1
20050229118 Chiu et al. Oct 2005 A1
20050246369 Oreizy et al. Nov 2005 A1
20050251833 Schedivy Nov 2005 A1
20050283791 McCarthy et al. Dec 2005 A1
20050288999 Lerner et al. Dec 2005 A1
20060011371 Fahey Jan 2006 A1
20060031381 Van Luijt et al. Feb 2006 A1
20060050970 Gunatilake Mar 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060053378 Fano et al. Mar 2006 A1
20060064307 Pakkala Mar 2006 A1
20060095401 Krikorian et al. May 2006 A1
20060095471 Krikorian et al. May 2006 A1
20060095472 Krikorian et al. May 2006 A1
20060095942 van Beek May 2006 A1
20060095943 Demircin et al. May 2006 A1
20060107226 Matthews et al. May 2006 A1
20060117371 Margulis Jun 2006 A1
20060146174 Hagino Jul 2006 A1
20060171395 Deshpande Aug 2006 A1
20060179118 Stirbu Aug 2006 A1
20060190616 Mayerhofer et al. Aug 2006 A1
20060206526 Sitomer Sep 2006 A1
20060230345 Weng et al. Oct 2006 A1
20060280157 Karaoguz et al. Dec 2006 A1
20060280177 Gupta et al. Dec 2006 A1
20060294183 Agnoli et al. Dec 2006 A1
20070003224 Krikorian et al. Jan 2007 A1
20070005783 Saint-Hillaire et al. Jan 2007 A1
20070019545 Alt et al. Jan 2007 A1
20070022328 Tarra et al. Jan 2007 A1
20070043792 O'Brien Feb 2007 A1
20070055728 Shea et al. Mar 2007 A1
20070067390 Agnoli et al. Mar 2007 A1
20070073767 Springer, Jr. et al. Mar 2007 A1
20070074115 Patten et al. Mar 2007 A1
20070076604 Litwack Apr 2007 A1
20070107019 Romano et al. May 2007 A1
20070136445 Sweatt et al. Jun 2007 A1
20070136778 Birger et al. Jun 2007 A1
20070147263 Liao et al. Jun 2007 A1
20070168543 Krikorian et al. Jul 2007 A1
20070180485 Dua Aug 2007 A1
20070183436 Hunter Aug 2007 A1
20070198532 Krikorian et al. Aug 2007 A1
20070217407 Yuan et al. Sep 2007 A1
20070234213 Krikorian et al. Oct 2007 A1
20070286596 Lonn Dec 2007 A1
20070288550 Ise et al. Dec 2007 A1
20080007651 Bennett Jan 2008 A1
20080019276 Takatsuji et al. Jan 2008 A1
20080037573 Cohen Feb 2008 A1
20080059533 Krikorian Mar 2008 A1
20080060035 Tsang et al. Mar 2008 A1
20080134267 Moghe et al. Jun 2008 A1
20080168359 Flick et al. Jul 2008 A1
20080195698 Stefanovic et al. Aug 2008 A1
20080195744 Bowra et al. Aug 2008 A1
20080199150 Candelore Aug 2008 A1
20080200154 Maharajh et al. Aug 2008 A1
20080207137 Maharajh et al. Aug 2008 A1
20080209487 Osann et al. Aug 2008 A1
20080215392 Rajan Sep 2008 A1
20080229404 Siegrist et al. Sep 2008 A1
20080294759 Biswas et al. Nov 2008 A1
20080301233 Choi Dec 2008 A1
20080307456 Beetcher et al. Dec 2008 A1
20080307462 Beetcher et al. Dec 2008 A1
20080307463 Beetcher et al. Dec 2008 A1
20090007198 Lavender et al. Jan 2009 A1
20090074380 Boston et al. Mar 2009 A1
20090103607 Bajpai et al. Apr 2009 A1
20090133088 Kim et al. May 2009 A1
20090146779 Kumar et al. Jun 2009 A1
20090157777 Golwalkar et al. Jun 2009 A1
20090199248 Ngo et al. Aug 2009 A1
20090254672 Zhang Oct 2009 A1
20090268740 Sindhu et al. Oct 2009 A1
20090282445 Yang et al. Nov 2009 A1
20100005483 Rao Jan 2010 A1
20100023642 Ladd et al. Jan 2010 A1
20100030880 Joshi et al. Feb 2010 A1
20100046513 Park et al. Feb 2010 A1
20100061708 Barton Mar 2010 A1
20100070925 Einaudi et al. Mar 2010 A1
20100077438 Ansari Mar 2010 A1
20100100898 Pfleging et al. Apr 2010 A1
20100100915 Krikorian et al. Apr 2010 A1
20100169477 Stienhans et al. Jul 2010 A1
20100226444 Thevathasan et al. Sep 2010 A1
20100269144 Forsman et al. Oct 2010 A1
20100281042 Windes et al. Nov 2010 A1
20100309916 Oskouy et al. Dec 2010 A1
20100333162 Lloyd et al. Dec 2010 A1
20110002381 Yang et al. Jan 2011 A1
20110047079 Du et al. Feb 2011 A1
20110050908 Nam Mar 2011 A1
20110060994 Maxwell et al. Mar 2011 A1
20110125861 Evans et al. May 2011 A1
20110307608 Chang et al. Dec 2011 A1
20110321079 Lankford Dec 2011 A1
20120039580 Sweatt et al. Feb 2012 A1
20120066586 Shemesh Mar 2012 A1
20120166669 Price Jun 2012 A1
20120166965 Nathan et al. Jun 2012 A1
20120219001 Sindhu et al. Aug 2012 A1
Foreign Referenced Citations (42)
Number Date Country
1981496 Nov 1927 CN
1464685 Dec 2003 CN
4407319 Sep 1994 DE
0838945 Apr 1998 EP
1077407 Feb 2001 EP
1255395 Nov 2002 EP
1443766 Aug 2004 EP
1691550 Aug 2006 EP
1830558 Sep 2007 EP
2071839 Jun 2009 EP
2307151 May 1997 GB
2001211416 Aug 2001 JP
2001345766 Dec 2001 JP
2003304231 Oct 2003 JP
2005229152 Aug 2005 JP
200654535 Feb 2006 JP
2006295909 Oct 2006 JP
2007181123 Jul 2007 JP
2008172621 Jul 2008 JP
2009009582 Jan 2009 JP
2009077212 Apr 2009 JP
2009118032 May 2009 JP
19990082855 Nov 1999 KR
20010211410 Aug 2001 KR
0133839 May 2001 WO
0147248 Jun 2001 WO
0193161 Dec 2001 WO
03026232 Mar 2003 WO
03052552 Jun 2003 WO
03098897 Nov 2003 WO
2004032511 Apr 2004 WO
2005050898 Jun 2005 WO
2006064454 Jun 2006 WO
2006074110 Jul 2006 WO
2007027891 Mar 2007 WO
2007051156 May 2007 WO
2007096001 Aug 2007 WO
2007141555 Dec 2007 WO
2007149466 Dec 2007 WO
2008024723 Feb 2008 WO
2009073828 Jun 2009 WO
2009073830 Jun 2009 WO
Non-Patent Literature Citations (190)
Entry
European Patent Office, European Search Report for European Application No. EP 08 16 7880, mailed Mar. 4, 2009.
Mythtv Wiki, “MythTV User Manual” [Online], Aug. 27, 2007, XP002515046; retrieved from the Internet: <URL: http://www.mythtv.org/wiki?title=User—Manual:Introduction&oldid=25549>.
International Searching Authority, Written Opinion and International Search Report for International Application No. PCT/US2008/077733, mailed Mar. 18, 2009.
International Searching Authority, Written Opinion and International Search Report for International Application No. PCT/US20081087005, mailed Mar. 20, 2009.
Watanabe Y. et al., “Multimedia Database System for TV Newscasts and Newspapers”; Lecture Notes in Computer Science, Springer Verlag, Berlin, Germany; vol. 1554, Nov. 1, 1998, pp. 208-220, XP002402824, ISSN: 0302-9743.
Yasuhiko Watanabe et al., “Aligning Articles in TV Newscasts and Newspapers”; Proceedings of the International Conference on Computationallinguistics, XX, XX, Jan. 1, 1998, pp. 1381-1387, XP002402825.
Sodergard C. et al., “Integrated Multimedia Publishing: Combining TV and Newspaper Content on Personal Channels”; Computer Networks, Elsevier Science Publishers B.V., Amsterdam, Netherlands; vol. 31, No. 11-16, May 17, 1999, pp. 1111-1128, XP004304543, ISSN: 1389-1286.
Ariki Y. et al., “Automatic Classification of TV News Articles Based on Telop Character Recognition”; Multimedia Computing and Systems, 1999; IEEE International Conference on Florence, Italy, Jun. 7-11, 1999, Los Alamitos, California, USA, IEEE Comput. Soc. US; vol. 2, Jun. 7, 1999, pp. 148-152, XP010519373, ISBN: 978-0-7695-0253-3; abstract, paragraph [03.1], paragraph [052], figures 1,2.
USPTO, Non-Final Office Action mailed Dec. 17, 2004; U.S. Appl. No. 09/809,868, filed Mar. 15, 2001.
USPTO, Final Office Action mailed Jul. 28, 2005; U.S. Appl. No. 09/809,868, filed Mar. 15, 2001.
USPTO, Non-Final Office Action mailed Jan. 30, 2006; U.S. Appl. No. 09/809,868, filed Mar. 15, 2001.
USPTO, Final Office Action mailed Aug. 10, 2006; U.S. Appl. No. 09/809,868, filed Mar. 15, 2001.
USPTO, Non-Final Office Action mailed Jun. 19, 2007; U.S. Appl. No. 09/809,868, filed Mar. 15, 2001.
USPTO, Non-Final Office Action mailed Apr. 16, 2008; U.S. Appl. No. 09/809,868, filed Mar. 15, 2001.
USPTO, Final Office Action mailed Sep. 18, 2008; U.S. Appl. No. 09/809,868, filed Mar. 15, 2001.
USPTO, Non-Final Office Action mailed Mar. 31, 2009; U.S. Appl. No. 09/809,868, filed Mar. 15, 2001.
USPTO, Non-Final Office Action mailed May 1, 2008; U.S. Appl. No. 11/111,265, filed Apr. 21, 2005.
USPTO, Final Office Action mailed Dec. 29, 2008; U.S. Appl. No. 11/111,265, filed Apr. 21, 2005.
USPTO, Non-Final Office Action mailed Jun. 8, 2009; U.S. Appl. No. 11/111,265, filed Apr. 21, 2005.
USPTO, Non-Final Office Action mailed Jun. 26, 2008; U.S. Appl. No. 11/620,707, filed Jan. 7, 2007.
USPTO, Final Office Action mailed Oct. 21, 2008; U.S. Appl. No. 11/620,707, filed Jan. 7, 2007.
USPTO, Non-Final Office Action mailed Mar. 25, 2009; U.S. Appl. No. 11/620,707, filed Jan. 7, 2007.
USPTO, Non-Final Office Action mailed Aug. 7, 2008; U.S. Appl. No. 11/620,711, filed Jan. 7, 2007.
USPTO, Final Office Action mailed Feb. 9, 2009; U.S. Appl. No. 11/620,711, filed Jan. 7, 2007.
USPTO, Non-Final Office Action mailed Feb. 25, 2009; U.S. Appl. No. 11/683,862, filed Mar. 8, 2007.
USPTO, Non-Final Office Action mailed Dec. 24, 2008; U.S. Appl. No. 11/147,985, filed Jun. 7, 2005.
USPTO, Non-Final Office Action mailed Jun. 25, 2008; U.S. Appl. No. 11/428,254, filed Jun. 30, 2006.
USPTO, Final Office Action mailed Feb. 6, 2009; U.S. Appl. No. 11/428,25, filed Jun. 30, 2006.
USPTO, Non-Final Office Action mailed May 15, 2009; U.S. Appl. No. 11/147,664, filed Jun. 7, 2005.
Sonic Blue “ReplayTV 5000 User's Guide,” 2002, entire document.
Bluetooth-News; Main Future User Models Document Verification & Qualification: Bluetooth Technical Background, Apr. 21, 1999; pp. 1 of 7 and 2 of 7; http://www.bluetooth.com/v2/news/show.asp 1-2.
Microsoft Corporation; Harman/Kardon “Master Your Universe” 1999.
Matsushita Electric Corporation of America MicroCast : Wireless PC Multimedia Transceiver System, Nov. 1998.
“Wireless Local Area Networks: Issues in Technology and Standards” Jan. 6, 1999.
USPTO, Final Office Action mailed Jun. 25, 2009; U.S. Appl. No. 11/147,985, filed Jun. 7, 2005.
International Search Report and Written Opinion for International Application No. PCT/US2006/025911, mailed Jan. 3, 2007.
International Search Report for International Application No. PCT/US2007/063599, mailed Dec. 12, 2007.
International Search Report for International Application No. PCT/US2007/076337, mailed Oct. 20, 2008.
International Search Report and Written Opinion for International Application No. PCT/US2006/025912, mailed Jul. 17, 2008.
International Search Report for International Application No. PCT/US2008/059613, mailed Jul. 21, 2008.
International Search Report and Written Opinion for International Application No. PCT/US2008/080910, mailed Feb. 16, 2009.
Wikipedia “Slingbox” [Online], Oct. 21, 2007, XP002512399; retrieved from the Internet: <URL:http://en.wikipedia.org/w/index.php?title=Slingbox&oldid=166080570>; retrieved on Jan. 28, 2009.
Wikipedia “LocationFree Player” [Online], Sep. 22, 2007, XP002512400; retrieved from the Internet: <URL: http://en.wikipedia.org/w/index.php?title=LocationFree—Player&oldid=159683564>; retrieved on Jan. 28, 2009.
Capable Networks LLC “Keyspan Remote Control—Controlling Your Computer With a Remote” [Online], Feb. 21, 2006, XP002512495; retrieved from the Internet: <URL:http://www.slingcommunity.com/article/11791/Keyspan-Remote-Control---Controlling-Your-Computer-With-a-Remote/?highlight=remote+control>; retrieved on Jan. 28, 2009.
Sling Media Inc. “Slingbox User Guide” [Online] 2006, XP002512553; retrieved from the Internet: <URL:http://www.slingmedia.hk/attach/en-US—Slingbox—User—Guide—v12.pdf>; retrieved on Jan. 29, 2009.
Sony Corporation “LocationFree TV” [Online], 2004, SP002512410; retrieved from the Internet: <URL:http://www.docs.sony.com/release/LFX1—X5revision.pdf>; retrieved on Jan. 28, 2009 [note—document uploaded in two parts as file exceeds the 25MB size limit].
Sony Corporation “LocationFree Player Pak—LocationFree Base Station—LocationFree Player” [Online] 2005, XP002512401; retrieved from the Internet: <URL:http://www.docs.sony.com/release/LFPK1.pdf>; retrieved on Jan. 28, 2009.
Krikorian, Jason, U.S. Appl. No. 11/734277, filed Apr. 12, 2007.
Tarra, Raghuveer et al., U.S. Appl. No. 60/975239, filed Sep. 26, 2007.
Williams, George Edward, U.S. Appl. No. 12/167,041, filed Jul. 2, 2008.
Rao, Padmanabha R., U.S. Appl. No. 12/166039, filed Jul. 1, 2008.
International Search Report and Written Opinion, PCT/US2005/020105, Feb. 15, 2007, 6 pages.
International Search Report and Written Opinion for PCT/US2006/04382, mailed Apr. 27, 2007.
Archive of “TV Brick Home Server,” www.tvbrick.com, [online] [Archived by http://archive.org on Jun. 3, 2004; Retrieved on Apr. 12, 2006] retrieved from the Internet <URL:http://web.archive.org/web/20041107111024/www.tvbrick.com/en/affiliate/tvbs/tvbrick/document18/print>.
Faucon, B. “TV ‘Brick’ Opens up Copyright Can of Worms,” Financial Review, Jul. 1, 2003, [online [Retrieved on Apr. 12, 2006] Retrieved from the Internet, URL:http://afr.com/cgi-bin/newtextversions.pl?storyid+1056825330084&3ate+2003/07/01&pagetype+printer&section+1053801318705&path+articles/2003/06/30/0156825330084.html].
Balster, Eric J., “Video Compression and Rate Control Methods Based on the Wavelet Transform,” The Ohio State University 2004, pp. 1-24.
Kulapala et al., “Comparison of Traffic and Quality Characteristics of Rate-Controlled Wavelet and DCT Video,” Arizona State University, Oct. 11, 2004.
Skodras et al., “JPEG2000: The Upcoming Still Image Compression Standard,” May 11, 2000, 14 pages.
Taubman et al., “Embedded Block Coding in JPEG2000,” Feb. 23, 2001, pp. 1-8 of 36.
Kessler, Gary C., An Overview of TCP/IP Protocols and the Internet; Jan. 16, 2007, retrieved from the Internet on Jun. 12, 2008 at http://www.garykessler.net/library/tcpip.html; originally submitted to the InterNIC and posted on their Gopher site on Aug. 5, 1994.
Roe, Kevin, “Third-Party Observation Under EPC Article 115 on the Patentability of an Invention,” Dec. 21, 2007.
Roe, Kevin, Third-Party Submission for Published Application Under CFR §1.99, Mar. 26, 2008.
Bajpai, Parimal et al. “Systems and Methods of Controlling the Encoding of a Media Stream,” U.S. Appl. No. 12/339,878, filed Dec. 19, 2008.
Malone, Edward D. et al. “Systems and Methods for Controlling Media Devices,” U.S. Appl. No. 12/256,344, filed Oct. 22, 2008.
Banger, Shashidhar et al. “Systems and Methods for Determining Attributes of Media Items Accessed via a Personal Media Broadcaster,” U.S. Appl. No. 12/334,959, filed Dec. 15, 2008.
Kulkarni, Anant Madhava “Systems and Methods for Creating Logical Media Streams for Media Storage and Playback,” U.S. Appl. No. 12/323,907, filed Nov. 26, 2008.
Rao, Padmanabha R. “Systems and Methods for Linking Media Content,” U.S. Appl. No. 12/359,784, filed Jan. 26, 2009.
Krikorian, Blake Gary et al. “Systems and Methods for Presenting Media Content Obtained From Multiple Sources,” U.S. Appl. No. 12/408,456, filed Mar. 20, 2009.
Krikorian, Blake Gary et al. “Systems and Methods for Projecting Images From a Computer System,” U.S. Appl. No. 12/408,460, filed Mar. 20, 2009.
China State Intellectual Property Office “First Office Action,” issued Jul. 31, 2009, for Application No. 200580026825.X.
USPTO, Non-Final Office Action, mailed Aug. 4, 2009; U.S. Appl. No. 11/734,277, filed Apr. 12, 2007.
USPTO, Final Office Action, mailed Jul. 31, 2009; U.S Appl. No. 11/683,862, filed Mar. 8, 2007.
USPTO, Non-Final Office Action, mailed Aug. 5, 2009; U.S. Appl. No. 11/147,663, filed Jun. 7, 2005.
USPTO, Non-Final Office Action, mailed Sep. 3, 2009; U.S. Appl. No. 11/620,711, filed Jan. 7, 2007.
Einaudi, Andrew E. et al. “Systems and Methods for Selecting Media Content Obtained from Multiple Sources,” U.S. Appl. No. 12/543,278, filed Aug. 18, 2009.
Malode, Deepak Ravi “Remote Control and Method for Automatically Adjusting the Volume Output of an Audio Device,” U.S. Appl. No. 12/550,145, filed Aug. 28, 2009.
Akella, Aparna Sarma “Systems and Methods for Event Programming via a Remote Media Player,” U.S. Appl. No. 12/537,057, filed Aug. 6, 2009.
Shah, Bhupendra Natwerlan et al. “Systems and Methods for Transcoding and Place Shifting Media Content,” U.S. Appl. No. 12/548,130, filed Aug. 26, 2009.
Banger, Shashidhar et al. “Systems and Methods for Automatically Controlling the Resolution of Streaming Video Content,” U.S. Appl. No. 12/537,785, filed Aug. 7, 2009.
Panigrahi, Biswaranjan “Home Media Aggregator System and Method,” U.S. Appl. No. 12/538,681, filed Aug. 10, 2009.
Nandury, Venkata Kishore “Adaptive Gain Control for Digital Audio Samples in a Media Stream,” U.S. Appl. No. 12/507,971, filed Jul. 23, 2009.
Shirali, Amey “Systems and Methods for Providing Programming Content,” U.S. Appl. No. 12/538,676, filed Aug. 10, 2009.
Thiyagarajan, Venkatesan “Systems and Methods for Virtual Remote Control of Streamed Media,” U.S. Appl. No. 12/538,664, filed Aug. 10, 2009.
Thiyagarajan, Venkatesan et al. “Localization Systems and Method,” U.S. Appl. No. 12/538,783, filed Aug. 10, 2009.
Shirali, Amey et al. “Methods and Apparatus for Seeking Within a Media Stream Using Scene Detection,” U.S. Appl. No. 12/538,784, filed Aug. 10, 2009.
Thiyagarajan, Venkatesan “Systems and Methods for Updating Firmware Over a Network,” U.S. Appl. No. 12/538,661, filed Aug. 10, 2009.
Iyer, Satish “Methods and Apparatus for Fast Seeking Within a Media Stream Buffer,” U.S. Appl. No. 12/538,659, filed Aug. 10, 2009.
European Patent Office, International Searching Authority, “International Search Report,” for International Application No. PCT/US2009/049006, mailed Sep. 11, 2009.
Conway, Frank et al. “Systems and Methods for Creating Variable Length Clips from a Media Stream,” U.S. Appl. No. 12/347,465, filed Dec. 31, 2008.
Lucas, Brian et al., “Systems and Methods for Establishing Connections Between Devices Communicating Over a Network,” U.S. Appl. No. 12/426,103, filed Apr. 17, 2009.
USPTO, Final Office Action, mailed Nov. 6, 2009; U.S. Appl. No. 09/809,868, filed Mar. 15, 2001.
Thiyagarajan, Venkatesan et al. “Always-On-Top Media Player Launched From a Web Browser,” U.S. Appl. No. 12/617,271, filed Nov. 12, 2009.
Newton's Telecom Dictionary, 21st ed., Mar. 2005.
European Patent Office, European Search Report, mailed Sep. 28, 2009 for European Application No. EP 06 78 6175.
Paul, John Michael et al. “Systems and Methods for Delivering Messages Over a Network,” U.S. Appl. No. 12/619,192, filed Nov. 16, 2009.
USPTO, Final Office Action mailed Nov. 12, 2009; U.S. Appl. No. 11/620,707, filed Jan. 7, 2007.
USPTO, Non-Final Office Action mailed Nov. 23, 2009; U.S. Appl. No. 11/683,862, filed Mar. 8, 2007.
International Search Report for PCT/US2008/069914 mailed Dec. 19, 2008.
Ditze M. et all “Resource Adaptation for Audio-Visual Devices in the UPnP QoS Architecture,” Advanced Networking and Applications, 2006; AINA, 2006; 20% H International conference on Vienna, Austria Apr. 18-20, 2006.
Joonbok, Lee et al. “Compressed High Definition Television (HDTV) Over IPv6,” Applications and the Internet Workshops, 2006; Saint Workshops, 2006; International Symposium, Phoenix, AZ, USA, Jan. 23-27, 2006.
Lowekamp, B. et al. “A Hierarchy of Network Performance Characteristics for Grid Applications and Services,” GGF Network Measurements Working Group, pp. 1-29, May 24, 2004.
USPTO, Non-Final Office Action mailed Oct. 1, 2009; U.S. Appl. No. 11/778,287, filed Jul. 16, 2007.
Rao, Padmanabha R. et al. “Methods and Apparatus for Establishing Network Connections Using an Inter-Mediating Device,” U.S. Appl. No. 12/642,368, filed Dec. 18, 2009.
Dham, Vikram et al. “Systems and Methods for Establishing Network Connections Using Local Mediation Services,” U.S. Appl. No. 12/644,918, filed Dec. 22, 2009.
Australian Government “Office Action,” Australian Patent Application No. 2006240518, mailed Nov. 12, 2009.
USPTO Final Office Action mailed Dec. 30, 2009; U.S. Appl. No. 11/147,664, filed Jun. 7, 2005.
Meyer, Derrick “MyReplayTV™ Creates First-Ever Online Portal to Personal TI! Service; Gives Viewers Whole New Way to Interact With Programming,” http://web.archive.org/web/20000815052751/http://www.myreplaytv.com/, Aug. 15, 2000.
Sling Media “Sling Media Unveils Top-of-Line Slingbox PRO-HD” [online], Jan. 4, 2008, XP002560049; retrieved from the Internet: URL:www.slingmedia.com/get/pr-slingbox-pro-hd.html; retrieved on Oct. 12, 2009.
PCT Partial International Search, PCT/US2009/054893, mailed Dec. 23, 2009.
Bajpal, Parimal et al. “Method and Node for Transmitting Data Over a Communication Network using Negative Ackhowledgement,” U.S. Appl. No. 12/404,920, filed Mar. 16, 2009.
Bajpal, Parimal et al. “Method and Note for Employing Network connections Over a Connectinoless Transport Layer Protocol,” U.S Appl. No. 12/405,062, filed Mar. 16, 2009.
Asnis, Ilya et al. “Mediated Network address Translation Traversal” U.S. Appl. No. 12/405,039, filed Mar. 16, 2009.
Srisuresh, P. et al. “Traditional IP Network Address Translator (Traditional NAT),” Network Working Group, The Internet Society, Jan. 2001.
Gangotri, Arun L. et al. “Systems, Methods, and Program Applications for Selectively Restricting the Placeshifting Protected Digital Media Content,” U.S. Appl. No. 12/623,955, filed Nov. 23, 2009.
Paul, John et al. “Systems and Methods for Searching Media Content,” U.S. Appl. No. 12/648,024, filed Dec. 28, 2009.
European Patent Office, International Searching Authority, “International Search Report,” mailed Dec. 13, 2010; International Application No. PCT/US2010/029062 filed Mar. 29, 2010.
USPTO “Notice of Allowance” mailed Jan. 10, 2012; U.S. Appl. No. 12/426,103, filed Apr. 17, 2009.
China State Intellectual Property Office “First Office Action,” issued Jan. 8, 2010, for Application No. 200810126554.0.
USPTO Final Office action mailed Jan. 25, 2010; U.S. Appl. No. 11/734,277, filed Apr. 12, 2007.
Gurzhi, Alexander et al. “Systems and Methods for Emulation Network-Enabled Media Components,” U.S. Appl. No. 12/711,830, filed Feb. 24, 2010.
Jain, Vikal Kumar “Systems and Methods for Coordinating Data Communication Between Two Device,” U.S. Appl. No. 12/699,280, filed Feb. 3, 2010.
“The Authoritative Dictionary of IEEE Standard Terms,” 7th ed. 2000.
Newton's Telcom Dictionary, 20th ed., Mar. 2004.
USPTO Final Office Action mailed Mar. 3, 2010; U.S. Appl. No. 11/111,265, filed Apr. 21, 2005.
USPTO Final Office Action mailed Mar. 12, 2010; U.S. Appl. No. 11/620,711, filed Jan. 7, 2007.
European Patent Office, International Searching Authority, “International Search Report,” mailed Mar. 30, 2010; International Application PCT/US2009/068468 filed Dec. 27, 2009.
USPTO Non-Final Office Action mailed Mar. 19, 2010; U.S. Appl. No. 11/147,664, filed Jun. 7, 2005.
USPTO Non-Final Office Action mailed Mar. 31, 2010; U.S. Appl. No. 11/620,707, filed Jan. 7, 2007.
USPTO Non-Final Office Action mailed Apr. 1, 2010; U.S. Appl. No. 12/237,103, filed Sep. 24, 2008.
Qiong, Liu et al. “Digital Rights Management for Content Distribution,” Proceedings of the Australasian Information Security Workshop Conference on ACSW Frontiers 2003, vol. 21, 2003, XP002571073, Adelaide, Australia, ISSN: 1445-1336, ISBN: 1-920682-00-7, sections 2 and 2.1.1.
USPTO “Non-Final Office Action” mailed Mar. 21, 2011; U.S. Appl. No. 12/426,103, filed Apr. 17, 2009.
European Patent Office, International Searching Authority, “International Search Report” mailed Mar. 18, 2011; International Appln. No. PCT/US2010/060797, filed Dec. 16, 2010.
China State Intellectual Property Office “Office Action” issued Mar. 18, 2010 for Application No. 200680022520.6.
China State Intellectual Property Office “Office Action” issued Apr. 13, 2010 for Application No. 200580026825.X.
Canadian Intellectual Property Office “Office Action” mailed Feb. 18, 2010 for Application No. 2569610.
European Patent Office “European Search Report,” mailed May 7, 2010 for Application No. 06786174.0.
Margulis, Neal “Apparatus and Method for Effectively Implementing a Wireless Television System,” U.S. Appl. No. 12/758,193, filed Apr. 12, 2010.
Margulis, Neal “Apparatus and Method for Effectively Implementing a Wireless Television System,” U.S. Appl. No. 12/758,194, filed Apr. 12, 2010.
Margulis, Neal “Apparatus and Method for Effectively Implementing a Wireless Television System,” U.S. Appl. No. 12/758,196, filed Apr. 12, 2010.
Kirkorian, Jason Gary et al. “Personal Media Broadcasting System with Output Buffer,” U.S. Appl. No. 12/757,697, filed Apr. 9, 2010.
Tarra, Raghuveer et al. “Firmware Update for Consumer Electronic Device,” U.S. Appl. No. 12/757,714, filed Apr. 9, 2010.
USPTO “Non-Final Office Action” mailed Apr. 27, 2012; U.S. Appl. No. 12/821,983, filed Jun. 23, 2010.
Lee, M. et al. “Video Frame Rate Control for Non-Guaranteed Network Services with Explicit Rate Feedback,” Globecom'00, 2000 IEEE Global Telecommunications conference, San Francisco, CA, Nov. 27-Dec. 1, 2000; [IEEE Global Telecommunications Conference], New York, NY; IEEE, US, vol. 1,Nov. 27, 2000, pp. 293-297, XP001195580; ISBN: 978-0-7803-6452-3, lines 15-20 of sec. II on p. 293, fig. 1.
European Patent Office, International Searching Authority, “International Search Report and Written Opinion,” mailed Jun. 4, 2010 for International Application No. PCT/IN2009/000728, filed Dec. 18, 2009.
USPTO Non-Final Office Action mailed Jun. 23, 2010; U.S. Appl. No. 11/933,969, filed Nov. 1, 2007.
Korean Intellectual Property Office “Official Notice of Preliminary Rejection,” issued Jun. 18, 2010; Korean Patent Application No. 10-2008-7021254.
USPTO “Non-Final Office Action” mailed Jun. 27, 2012 for U.S. Appl. No. 13/458,852, filed Apr. 27, 2012.
USPTO “Final Office Action” mailed Aug. 7, 2012 for U.S. Appl. No. 12/821,983, filed Jun. 23, 2010.
USPTO “Non-Final Office Action” mailed Jul. 19, 2012 for U.S. Appl. No. 12/619,192, filed Nov. 16, 2009.
USPTO “Final Office Action” mailed Oct. 17, 2011; U.S. Appl. No. 12/426,103, filed Apr. 17, 2009.
European Patent Office, International Searching Authority, “International Search Report” mailed Nov. 16, 2011; International Patent Appln. No. PCT/US2011/039937, filed Jun. 10, 2011.
Canadian Intellectual Property Office, “Office Action” mailed May 17, 2013 for Canadian Patent Application No. 2,758,791.
Intellectual Property Office of Singapore, “Search Report and Written Opinion,” mailed May 30, 2013 for Singapore Patent Application No. 201204603-3.
Intellectual Property Office, “Office Action” mailed Apr. 26, 2013 for Taiwan Patent Application No. 099111307.
USPTO “Non-Final Office Action” mailed Feb. 25, 2013 for U.S. Appl. No. 13/458,852.
USPTO “Non-Final Office Action” mailed Apr. 1, 2013 for U.S. Appl. No. 13/098,198.
USPTO “Non-Final Office Action” mailed Sep. 14, 2012 for U.S. Appl. No. 12/635,138, filed Dec. 10, 2009.
USPTO “Final Office Action” mailed Feb. 21, 2013 for U.S. Appl. No. 12/619,192, filed Nov. 16, 2009.
USPTO “Non-Final Office Action” mailed Dec. 21, 2012 for U.S. Appl. No. 12/648,024, filed Dec. 28, 2009.
Intellectual Property Office of Singapore “Search Report and Written Opinion” dated Nov. 8, 2012 for Singapore Appln. No. 201107539-7.
Intellectual Property Office “Office Action” issued May 20, 2013 for Taiwan Patent Appln. No. 099144605.
USPTO “Notice of Allowance” mailed Jun. 24, 2013 for U.S. Appl. No. 12/635,138.
Japan Patent Office “Notice of Rejection Ground” dated Mar. 26, 2013 for Japanese Patent Appln. No. 2012-506055.
Australian Government “Patent Examination Report No. 1” dated Apr. 5, 2013 for Australian Patent Appln. No. 2010236888.
Japan Patent Office, Notice of Rejection Grounds mailed Jan. 21, 2014 for Japanese Patent Application No. 2013-516600.
Hungarian Intellectual Property Office As Examiner According to the Memorandum of Understanding Between Intellectual Property Office of Singapore and the Hungarian Intellectual Property Office, Examination Report mailed Jan. 16, 2014 for Singapore Patent Application No. 201204603-3.
Canadian Intellectual Property Office, Official Action, mailed Jan. 23, 2014 for Canadian Patent Application No. 2,803,796.
USPTO “Final Office Action” dated Nov. 5, 2013 for U.S. Appl. No. 13/098,198.
USPTO “Final Office Action” dated Jul. 26, 2013 for U.S. Appl. No. 13/098,198.
USPTO “Non-Final Office Action” dated Oct. 17, 2013 for U.S. Appl. No. 12/648,024.
USPTO “Final Office Action” dated Nov. 18, 2013 for U.S. Appl. No. 13/458,852.
Australian Government, Patent Examination Report No. 1, dated Nov. 15, 2013 for Australian Patent Application No. 2011271358.
China State Intellectual Property Office, First Office Action, dated Nov. 8, 2013 for China Patent Application No. 201080016835.6.
Japan Patent Office, Notice of Rejection Ground mailed Oct. 29, 2013 for Japanese Patent Application No. 2012-546061.
Japan Patent Office, Notice of Rejection Grounds, dated Dec. 3, 2013 for Japanese Patent Application No. 2012-506055.
Intellectual Property Office of Singapore, Search and Examination Report, dated Aug. 30, 2013 for Singapore Patent Application No. 201107539-7.
Intellectual Property Office, Office Action, dated Dec. 30, 2013 for Taiwan Patent Application No. 099144605.
Canadian Intellectual Property Office, Notice of Allowance, dated Jun. 30, 2014 for Canadian Patent Application No. 2,758,791.
Australian Government, Notice of Acceptance, dated Jul. 16, 2014 for Australian Patent Application No. 2010236888.
USPTO, Non-Final Office Action, dated Jul. 16, 2014 for U.S. Appl. No. 13/098,198.
Proxy server. The Free On-line Dictionary of Computing. Denis Howe. May 26, 2014. <Dictionary.com http://dictionary.reference.com/browse/proxy server>.
Fielding et al. Hypertext Transfer Protocol—HTTP/1.1 RFC 2616—Section 8 Connections. available Jan. 27, 2001. retrieved from <http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html> via Internet Archive on <May 25, 2014>.
USPTO, Final Office Action, mailed Aug. 14, 2014 for U.S. Appl. No. 12/648,024.
China State Intellectual Property Office, Office Action, dated Aug. 27, 2014 for China Patent Application No. 201080016835.6.
Japan Patent Office, “Decision of Rejection” mailed Jun. 3, 2014 for Japanese Patent Application No. 2012-506055.
Japan Patent Office, “Decision of Dismissal of Amendment” mailed Jun. 3, 2014 for Japanese Patent Application No. 2012-506055.
Korean Intellectual Property Office, “Notice of Allowance” mailed Jun. 9, 2014 for Korean Patent Application No. 10-2013-7001665.
USPTO, “Non-Final Office Action” mailed Jun. 19, 2014 for U.S. Appl. No. 12/821,983.
U.S. Patent and Trademark Office, Notice of Allowance, mailed May 9, 2014 for U.S. Appl. No. 13/458,852.
Australian Government, Notice of Acceptance, dated May 29, 2014 for Australian Patent Application No. 2011271358.
Related Publications (1)
Number Date Country
20110150432 A1 Jun 2011 US