The present disclosure pertains generally to medical devices and methods of their use. More particularly, the present invention pertains to aspiration and thrombectomy devices and methods of use thereof.
Several devices and systems already exist to aid in the removal of thrombotic material. These include simple aspiration tube type devices using vacuum syringes to extract thrombus into the syringe, simple flush-and-aspirate devices, more complex devices with rotating components that pull in, macerate and transport thrombotic material away from the distal tip using a mechanical auger, systems that use very high pressure to macerate the thrombus and create a venturi effect to flush the macerated material away.
All of the devices described above have limitations as a result of individual design characteristics. For example, simple aspiration catheters offer ease of use and rapid deployment but may become blocked or otherwise inoperable when faced with older, more organized thrombotic material. Such devices must be removed and cleared outside the body and then re-inserted into the vasculature, which lengthens the time needed for the procedure and increases the opportunity to kink the catheter shaft. Such kinks may reduce performance by decreasing the cross-sectional area of the catheter or may render the device inoperable.
Mechanical rotary devices use an auger to grab and carry the thrombus away from the target area. Some create transport force via vacuum bottles while others create differential pressure at the distal tip of the device with the auger acting as a low-pressure pump. These devices typically work slowly and offer the physician no feedback as to when the device should be advanced further into the lesion.
Flushing type devices include manual flush type devices in which the physician manipulates a hand-driven pump to provide flowing saline at the tip of the device to break up and aspirate the thrombus material, which may introduce performance variations based on the ability of the physician to consistently pump the device over the duration of the procedure. Flushing devices also include high pressure flushing devices that macerate the thrombus and then, using a vortex created by the high pressure fluid, transport the emulsified thrombotic material to a collection bag. These devices are effective at removing all levels of thrombotic material, but the pressure created by the device is so great that its action against certain vessel walls may interrupt the heart muscle stimulation mechanism and create a bradycardia event in certain patients, sometimes requiring that a pacing lead be placed in the patient prior to use. Further, interacting with the thrombotic material outside of the catheter may allow loose material to escape the capture mechanism.
In one embodiment of the present invention, a system for aspirating thrombus includes an aspiration catheter having a supply lumen and an aspiration lumen, the supply lumen having a wall and a closed distal end, the aspiration lumen configured to couple to a vacuum source and having an interior wall surface, and an open distal end, an orifice in the wall of the supply lumen, in fluid communication with the interior of the aspiration lumen, the orifice located proximally of the open distal end of the aspiration lumen and adjacent the closed distal end of the supply lumen, wherein the orifice is configured to create a spray pattern when pressurized fluid is pumped through the supply lumen such that the spray pattern impinges on the interior wall surface of the aspiration lumen when a distal end of the aspiration catheter is immersed within an aqueous environment, and a disposable tubing set having a first conduit configured to couple to the supply lumen of the aspiration catheter to a fluid source, and a pump component associated with the first conduit and configured to detachably couple to a drive unit, such that motion from the drive unit is transferred to the pump component such that resultant motion of the pump component causes fluid from the fluid source to be injected through the supply lumen of the aspiration catheter, and through the orifice into the aspiration lumen.
In another embodiment of the present invention, a system for aspirating thrombus includes an aspiration catheter having a supply lumen and an aspiration lumen, the supply lumen having a distal end, the aspiration lumen configured to couple to a vacuum source and having an interior wall surface, and an open distal end, an orifice at or near the distal end of the supply lumen, in fluid communication with the interior of the aspiration lumen, the orifice located proximally of the open distal end of the aspiration lumen, wherein the orifice is configured to create a spray pattern when pressurized fluid is pumped through the supply lumen such that the spray pattern impinges on the interior wall surface of the aspiration lumen when a distal end of the aspiration catheter is immersed within an aqueous environment, and a disposable tubing set having a first conduit configured to couple the supply lumen of the aspiration catheter to a fluid source, and a pump component associated with the first conduit and configured to detachably couple to a drive unit, such that motion from the drive unit is transferred to the pump component such that resultant motion of the pump component causes fluid from the fluid source to be injected through the supply lumen of the aspiration catheter, and through the orifice into the aspiration lumen.
In another embodiment of the present invention, a method for delivery of a drug includes providing a catheter including a supply lumen and an aspiration lumen, the supply lumen having a distal end, the aspiration lumen configured to couple to a vacuum source and having an interior wall surface, and an open distal end, an orifice at or near the distal end of the supply lumen, in fluid communication with the interior of the aspiration lumen, the orifice located proximally of the open distal end of the aspiration lumen, wherein the orifice is configured to create a spray pattern when pressurized fluid is pumped through the supply lumen such that the spray pattern impinges on the interior wall surface of the aspiration lumen when a distal end of the aspiration catheter is immersed within an aqueous environment, providing a disposable tubing set having a first conduit configured to couple the supply lumen of the catheter to a fluid source, and a pump component associated with the first conduit and configured to detachably couple to a drive unit, such that motion from the drive unit is transferred to the pump component such that resultant motion of the pump component causes fluid from the fluid source to be injected through the supply lumen of the catheter, and through the orifice into the aspiration lumen, coupling the supply lumen of the catheter to a fluid source, wherein the fluid source contains at least a first drug for intravascular delivery, inserting the catheter within a blood vessel of a patient and advancing the catheter to a target site, coupling the pump component to a drive unit, and operating the drive unit to cause the pump component to inject at least some of the first drug in the region of the target site.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
An interface connector 18 joins the extension tubing 14 and the catheter 16 together. In one contemplated embodiment, the interface connector 18 may contain a filter assembly 8 between high pressure fluid injection lumen 2 of the extension tubing 14 and a high pressure injection lumen 36 of the catheter 16 (
Attached to the hand piece 12 are a fluid source 20 and a vacuum source 22. A standard hospital saline bag may be used as fluid source 20; such bags are readily available to the physician and provide the necessary volume to perform the procedure. Vacuum bottles may provide the vacuum source 22, or the vacuum source 22 may be provided by a syringe, a vacuum pump or other suitable vacuum sources.
In one contemplated embodiment, the catheter 16 has a variable stiffness ranging from stiffer at the proximal end to more flexible at the distal end. The variation in the stiffness of the catheter 16 may be achieved with a single tube with no radial bonds between two adjacent tubing pieces. For example, the shaft of the catheter 16 may be made from a single length of metal tube that has a spiral cut down the length of the tube to provide shaft flexibility. Variable stiffness may be created by varying the pitch of the spiral cut through different lengths of the metal tube. For example, the pitch of the spiral cut may be greater (where the turns of the spiral cut are closer together) at the distal end of the device to provide greater flexibility. Conversely, the pitch of the spiral cut at the proximal end may be lower (where the turns of the spiral cut are further apart) to provide increased stiffness. In some embodiments, a single jacket may cover the length of the metal tube to provide for a vacuum tight catheter shaft. Other features of catheter 16 are described with reference to
The operator control interface 6 is powered by a power system 48 (such as a battery or an electrical line), and may comprise an electronic control board 50, which may be operated by a user by use of one or more switches 52 and one or more indicator lamps 54. The control board 50 also monitors and controls several device safety functions, which include over pressure detection, air bubble detection, and vacuum charge. A pressure sensor 64 monitors pressure (i.e. injection pressure), and senses the presence of air bubbles. Alternatively, or in conjunction, an optical device 66 may be used to sense air bubbles. In one contemplated embodiment, the pump pressure is proportional to the electric current needed to produce that pressure. Consequently, if the electric current required by pump 26 exceeds a preset limit, the control board 50 will disable the pump 26 by cutting power to it. Air bubble detection may also be monitored by monitoring the electrical current required to drive the pump 26 at any particular moment. In order for a displacement pump 26 to reach high fluid pressures, there should be little or no air (which is highly compressible) present in the pump 26 or connecting system (including the catheter 16 and the extension tubing 14). The fluid volume is small enough that any air in the system will result in no pressure being generated at the pump head. The control board monitors the pump current for any abrupt downward change that may indicate that air has entered the system. If the rate of drop is faster than a preset limit, the control board 50 will disable the pump 26 by cutting power to it until the problem is corrected. Likewise, a block in the high pressure lumen 36 (
A vacuum line 56, connected to the vacuum source 22, may be connected to a pressure sensor 58. If the vacuum of the vacuum source 22 is low (i.e. the absolute value pressure has decreased) or if a leak is detected in the vacuum line 56, the control board 50 disables the pump 26 until the problem is corrected. The pressure sensor 58 may also be part of a safety circuit 60 that will not allow the pump 26 to run if a vacuum is not present. Thereby, a comprehensive safety system 62, including the safety circuit 60, the pressure sensor 64 and/or the optical device 66, and the pressure sensor 58, requires both pump pressure and vacuum pressure for the system to run. If a problem exists (for example, if there is either an unacceptably low pump pressure or an absence of significant vacuum), the control board 50 will not allow the user to operate the aspiration system 10 until all problems are corrected. This will keep air from being injected into a patient, and will assure that the aspiration system 10 is not operated at incorrect parameters. Alternatively, in lieu of a direct connection (e.g., electrical, optical), the pressure sensor 58 can be configured to send a wireless signal to the control board 50, or any other component (e.g., antenna) coupled to or in communication with the control board 50, to remotely control operation of the pump 26. The remote control may be possible, whether the pump is within the sterile field or outside the sterile field.
Turning to
The cassette 116, as seen in
Turning to
The axial center of the orifice 172 is about 0.3302 mm (0.013 inches) to about 0.4826 mm (0.019 inches) proximal to the most proximal portion of the open distal end 158, as illustrated by distance D in
The volume of injectate injected per cycle may range from about 0.02 ml to about 41 ml, or from about 0.04 ml to about 2.0 ml, or about 0.06 ml to about 0.08 ml, or about 0.07 ml. The usable volume (volume that can be injected) of the injection cylinder 254 may be configured to be less than the usable volume (volume that can be filled from) of the supply cylinder 252, in order to assure sufficient filling of the injection cylinder 254. For example, the usable volume of the injection cylinder 254 may be about 0.05 ml to about 0.12 ml, and the usable volume of the supply cylinder 252 may be about 0.07 ml to about 0.16 ml. A usable volume ratio RU of between about 1.15 and about 2.00, or between about 1.25 and about 1.85, or about 1.40 is contemplated, where:
RU=VSCU/VICU, wherein:
VSCU=Usable volume of the supply cylinder 252, and
VICU=Usable volume of the injection cylinder 254.
A mean flow rate of between about 5 ml/minute and about 100 ml/minute. In some embodiments for use in coronary applications, 20 ml/minute may be desired. In some embodiments for use in peripheral applications, 50 ml/minute may be desired.
The partially exploded pump base 200 in
The inner contour diameter of the cam 316 may be sized and/or shaped to control the stroke length of the piston 210 and the amount of pulsatility (i.e., the difference between the high and low pressure). In some cases, decreasing the stroke length decreases the amount of pulsatiliy. In applications within the heart, such as coronary artery applications, lowering the amount of pulsatility can reduce the incidence of bradycardia. To compensate for a lower stroke length, and to maintain a sufficient total flow rate, the speed of the rotation of the cam (i.e. rotations per minute), can be increased, for example by increasing motor output speed, either by gearing or by increased applied voltage.
Another embodiment of a system for aspirating thrombus 800 is illustrated in
Turning to
Returning to
In use, the pump base 200 resides outside the sterile field. Because operation of the pump base 200 may be controlled by the presence or absence of a pressure, a user who is working in the sterile field may turn the pump on or off without touching the non-sterile pump base 200. For example, the pump may be started by placing a vacuum on the system (e.g., pulling the plunger 867 of the syringe 849). The pump may in turn be stopped by removing the vacuum on the system (unlocking the plunger 867 of the syringe 849 and allowing to release, or opening the stopcock 847). The syringe 849 or the combination syringe 849 and stopcock 847 may act as a sterile on/off button of the pump vase 200. Alternatively, the aspiration catheter 818 may be initially used without the pump base 200, with only aspiration being applied to the aspiration lumen. If in certain cases, if the aspiration lumen becomes clogged, the distal end 820 of the aspiration catheter 818 may be backed off of the thrombus, and the pump base 200 and tubing set 803 may be coupled to the aspiration catheter 818, to then operate with forced saline injection, for increased aspiration, and clear the aspiration lumen. This will also help stop any thrombus that is blocking the aspiration lumen from being inadvertently delivered into the blood vessel of the patient.
As illustrated in
In use, a user attaches the disposable piston pump head 500 to the motor 502 of the saline pump drive unit 400 by bringing the motor plate 506 close to the motor shaft 504 so that a d-shaped hole 534 in the cam 520 can be pressed over the d-shaped motor shaft 504. Alternatively, the d-shapes may be other non-circular shapes, including, but not limited to elliptical, oval, or rectangular. In operation the motor 502 turns the motor shaft 504, which in turn turns the cam 520. The cam 520 turns, forcing the bushings 522, 524 to push the first and second follower plates 512, 514 back and forth in a first direction 536 and a second direction 538. A saddle 544 is carried on the second follower plate 514, and a piston 210 may be coupled to the saddle 544 in the same manner as described herein with other embodiments. A supply cylinder 552 and an injection cylinder 554 in the main body 508 are analogous to the supply cylinder 252 and injection cylinder 254 of the cassette 116 of the system 100. The piston 210 of the cassette 116 may be used in the disposable piston pump head 500. The labelled components related to the piston 210 in
As previously described, the systems according to any of the embodiments of the present invention may be configured such that active flow of saline (or other) injectate is not possible without concurrent vacuum being applied for aspiration. Also, the systems may be configured such aspiration is not possible without saline (or other) injectate flow. The systems according to any of the embodiments of the present invention may be configured such that current driving the pump (for example the current driving the motor 302, 502) is monitored, or by any alternative monitoring method, such that when a change in condition occurs, for example, air in the injection system, or clogs in any of the catheter lumens or extension tubes, or leaks within the system, the system shuts down, in order to avoid events such as injection of air into the blood vessels, or catheter or system failure.
Some of the drugs 730 which may be delivered include thrombolytic agents (clot busting drugs), such as streptokinase, tissue plasminogen activator (t-PA), recombinant or genetically-engineered tissue plasminogen activator, tenecteplase (TNK), urokinase, staphylokinase, and reteplase. Alternatively, stem cells or “cocktails” containing stem cells may be delivered. In some cases, glycoprotein inhibitors (GPI's) may be injected through the supply lumen 708 of the aspiration catheter 700. Saline or other aqueous solutions may be delivered alone for selective dilution of blood at the target site 732. In some applications, a solution may be used which is capable of exhibiting a phase change, for example, when its pressure or temperature is changed. In these applications, a liquid may be injected that becomes a gas when exiting from a small orifice, for example at the open end 718 of the supply lumen 708. Alternatively, a gas may be injected that becomes a liquid when being force through a small orifice, such as the open end 718 of the supply lumen 708. In any of the applications in which drugs 730 or other materials are injected intravascularly through the catheter 700, the injection of the drugs 730 or other materials may occur before, during, after, or instead of an aspiration procedure. Returning to the aspiration catheter 818 of
In the embodiments described herein, a sterile fluid path is provided extending all the way from the fluid source 20 to the distal opening 40/open distal end 158 of the catheter 16, 118. In both the embodiments of the system 100 of
In some cases, parts or all of the devices described herein may be doped with, made of, coated with, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. One or more hydrophilic or hydrophobic lubricious coatings may be used in order to improve trackability of the aspiration catheter 118 through the blood vessels.
In some instances, a degree of MRI compatibility may be imparted into parts of the devices described herein. For example, to enhance compatibility with Magnetic Resonance Imaging (MRI) machines, it may be desirable to make various portions of the devices described herein from materials that do not substantially distort MRI images or cause substantial artifacts (gaps in the images). Some ferromagnetic materials, for example, may not be suitable as they may create artifacts in an MRI image. In some cases, the devices described herein may include materials that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.
In some instances, some of the devices described herein may include a coating such as a lubricious coating or a hydrophilic coating. Hydrophobic coatings such as fluoropolymers provide a dry lubricity. Lubricious coatings improve steerability and improve lesion crossing capability. Suitable lubricious polymers are well known in the art and may include silicone and the like, hydrophilic polymers such as high-density polyethylene (HDPE), polytetrafluoroethylene (PTFE), polyarylene oxides, polyvinylpyrrolidones, polyvinylalcohols, hydroxy alkyl cellulosics, algins, saccharides, caprolactones, and the like, and mixtures and combinations thereof. Hydrophilic polymers may be blended among themselves or with formulated amounts of water insoluble compounds (including some polymers) to yield coatings with suitable lubricity, bonding, and solubility.
In one embodiment of the present invention, a system for aspirating thrombus includes an aspiration catheter having a high pressure supply lumen and an aspiration lumen, the supply lumen having a proximal end configured to attach to a piston pump and a closed distal end, the aspiration lumen having a proximal end configured to attach to a vacuum source and an open distal end; a first orifice in a side wall of the supply lumen which communicates directly with the interior of the aspiration lumen, the first orifice located proximal to the open distal end of the aspiration lumen and adjacent the closed distal end of the supply lumen; the piston pump configured to generate a cyclic pressure cycle when attached to the supply lumen, wherein the first orifice creates a spray pattern at least in conjunction with a peak of the piston pump pressure cycle such that the spray pattern impinges on an interior wall of the aspiration lumen when a distal end of the aspiration catheter is immersed within an environment having a temperature of between about 36° C. and 38° C., such that the spray is at an angle of between about 20° in each direction of the vertical midline of the aspiration lumen.
In another embodiment of the present invention, a system for aspirating thrombus includes an aspiration catheter having a high pressure supply lumen and an aspiration lumen, the supply lumen having a proximal end configured to attach to a piston pump and a closed distal end, the aspiration lumen having a proximal end configured to attach to a vacuum source and an open distal end; a first orifice in a side wall of the supply lumen which communicates directly with the interior of the aspiration lumen, the first orifice located proximal to the open distal end of the aspiration lumen and adjacent the closed distal end of the supply lumen; the piston pump configured to generate a cyclic pressure cycle when attached to the supply lumen, wherein the first orifice creates a spray pattern at least in conjunction with a peak of the piston pump pressure cycle such that the spray pattern impinges on an interior wall of the aspiration lumen when a distal end of the aspiration catheter is immersed within an environment having a temperature of between about 36° C. and 38° C.; a disposable cassette having a supply cylinder, an injection cylinder and a piston, the disposable cassette configured to releasably couple to at least a motor of the piston pump, the piston configured to actuate into the supply cylinder while actuating out of the injection cylinder, causing the injection cylinder to increase its volume of a liquid injectate, the piston further configured to actuate into the injection cylinder while actuating out of the supply cylinder, causing the injection cylinder to decrease its volume by injecting the liquid injectate, and causing the liquid injectate to travel through the supply lumen of the aspiration catheter.
In another embodiment of the present invention, a system for aspirating thrombus includes an aspiration catheter having a high pressure supply lumen and an aspiration lumen, the supply lumen having a proximal end configured to attach to a piston pump and a closed distal end, the aspiration lumen having a proximal end configured to attach to a vacuum source and an open distal end; a first orifice in a side wall of the supply lumen which communicates directly with the interior of the aspiration lumen, the first orifice located proximal to the open distal end of the aspiration lumen and adjacent the closed distal end of the supply lumen; the piston pump configured to generate a cyclic pressure cycle when attached to the supply lumen, wherein the first orifice creates a spray pattern at least in conjunction with a peak of the piston pump pressure cycle such that the spray pattern impinges on an interior wall of the aspiration lumen when a distal end of the aspiration catheter is immersed within an environment having a temperature of between about 36° C. and 38° C.; wherein the piston pump includes a supply cylinder, an injection cylinder and a piston, the piston configured to actuate into the supply cylinder while actuating out of the injection cylinder, causing the injection cylinder to increase its volume of a liquid injectate, the piston further configured to actuate into the injection cylinder while actuating out of the supply cylinder, causing the injection cylinder to decrease its volume by injecting the liquid injectate, and causing the liquid injectate to travel through the supply lumen of the aspiration catheter; wherein the piston is configured to engage with a saddle associated with the piston pump, the saddle configured for cyclic linear motion, wherein motion of the saddle in a first direction actuates the piston out of the supply cylinder and motion of the saddle in a second direction actuates the piston into the supply cylinder.
In another embodiment of the present invention, a system for aspirating thrombus includes an aspiration catheter having a high pressure supply lumen and an aspiration lumen, the supply lumen having a proximal end configured to attach to a piston pump and a closed distal end, the aspiration lumen having a proximal end configured to attach to a vacuum source and an open distal end; a first orifice in a side wall of the supply lumen which communicates directly with the interior of the aspiration lumen, the first orifice located proximal to the open distal end of the aspiration lumen and adjacent the closed distal end of the supply lumen; the piston pump configured to generate a cyclic pressure cycle when attached to the supply lumen, wherein the first orifice creates a spray pattern at least in conjunction with a peak of the piston pump pressure cycle such that the spray pattern includes a jet; wherein the piston pump includes a supply cylinder, an injection cylinder and a piston, the piston configured to actuate into the supply cylinder while actuating out of the injection cylinder, causing the injection cylinder to increase its volume of a liquid injectate, the piston further configured to actuate into the injection cylinder while actuating out of the supply cylinder, causing the injection cylinder to decrease its volume by injecting the liquid injectate, and causing the liquid injectate to travel through the supply lumen of the aspiration catheter; wherein a usable volume ratio RU between the supply cylinder and the invention cylinder is between about 1.15 and about 2.00. Additionally, the usable volume ratio RU may be between about 1.25 and about 1.85. Additionally, the usable volume ratio RU may be about 1.40.
In another embodiment of the present invention a method for delivery of a drug includes providing a catheter including a supply lumen and an aspiration lumen, the supply lumen having a distal end, the aspiration lumen configured to couple to a vacuum source and having an interior wall surface, and an open distal end, an orifice at or near the distal end of the supply lumen, in fluid communication with the interior of the aspiration lumen, the orifice located proximally of the open distal end of the aspiration lumen, wherein the orifice is configured to create a spray pattern when pressurized fluid is pumped through the supply lumen such that the spray pattern impinges on the interior wall surface of the aspiration lumen when a distal end of the aspiration catheter is immersed within an aqueous environment, providing a disposable tubing set having a first conduit configured to couple the supply lumen of the catheter to a fluid source, and a pump component associated with the first conduit and configured to detachably couple to a drive unit, such that motion from the drive unit is transferred to the pump component such that resultant motion of the pump component causes fluid from the fluid source to be injected through the supply lumen of the catheter, and through the orifice into the aspiration lumen, coupling the supply lumen of the catheter to a fluid source, wherein the fluid source contains at least a first drug for intravascular delivery, inserting the catheter within a blood vessel of a patient and advancing the catheter to a target site, coupling the pump component to a drive unit, and operating the drive unit to cause the pump component to inject at least some of the first drug in the region of the target site.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The scope of the invention is, of course, defined in the language in which the appended claims are expressed.
While embodiments of the present invention have been shown and described, various modifications may be made without departing from the scope of the present invention. The invention, therefore, should not be limited, except to the following claims, and their equivalents. Embodiments of the present invention are contemplated to have utility in a variety of blood vessels, including but not limited to coronary arteries, carotid arteries, intracranial/cerebral arteries, inferior and superior vena cavae and other veins (for example, in cases of deep venous thrombosis), peripheral arteries, shunts, grafts, vascular defects, and chambers of the heart. This includes, but is not limited to, any vessel having a diameter of about two mm or greater. An aspiration catheter 118 outer diameter of about seven French or less is contemplated for many of the applications, though in certain applications, it may be larger. In some embodiments, an aspiration catheter 118 diameter of about six French or less is contemplated. Embodiments of the present invention may even be used in non-vascular applications, for example body lumens or cavities having material accumulations that need to be macerated and/or removed.
It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication.
This application is a continuation of U.S. patent application Ser. No. 16/900,705 filed Jun. 12, 2020, which is a continuation of U.S. patent application Ser. No. 15/493,584, filed on Apr. 21, 2017, now U.S. Pat. No. 10,716,583, which is a continuation of U.S. patent application Ser. No. 14/715,451, filed on May 18, 2015, now U.S. Pat. No. 9,883,877, which claims the benefit of priority to U.S. Provisional Application No. 62/000,448, filed on May 19, 2014, all of which are incorporated by reference in their entirety herein for all purposes. Priority is claimed pursuant to 35 U.S.C. § 120 and 35 U.S.C. § 119.
Number | Name | Date | Kind |
---|---|---|---|
1114268 | Edmund | Oct 1914 | A |
1144268 | William | Jun 1915 | A |
1148093 | Edmund | Jul 1915 | A |
2804075 | Borden | Aug 1957 | A |
3429313 | Romanelli | Feb 1969 | A |
3494363 | Jackson | Feb 1970 | A |
3589363 | Banko et al. | Jun 1971 | A |
3620650 | Shaw | Nov 1971 | A |
3631847 | Hobbs | Jan 1972 | A |
3693613 | Kelman | Sep 1972 | A |
3707967 | Kitrilakis et al. | Jan 1973 | A |
3748435 | Reynolds | Jul 1973 | A |
3807401 | Bennett et al. | Apr 1974 | A |
3818913 | Wallach | Jun 1974 | A |
3847140 | Ayella | Nov 1974 | A |
3916892 | Hansen et al. | Nov 1975 | A |
3918453 | Leonard | Nov 1975 | A |
3930505 | Wallach | Jan 1976 | A |
3955573 | Hansen et al. | May 1976 | A |
4030503 | Clark, III | Jun 1977 | A |
4274411 | Dotson, Jr. | Jun 1981 | A |
4299221 | Phillips et al. | Nov 1981 | A |
4465470 | Kelman | Aug 1984 | A |
4573476 | Ruiz | Mar 1986 | A |
4574812 | Arkans | Mar 1986 | A |
4638539 | Palmer | Jan 1987 | A |
4690672 | Veltrup | Sep 1987 | A |
4700705 | Kensey et al. | Oct 1987 | A |
4702733 | Wright et al. | Oct 1987 | A |
4715853 | Prindle | Dec 1987 | A |
4728319 | Masch | Mar 1988 | A |
4740203 | Hoskins et al. | Apr 1988 | A |
4747821 | Kensey et al. | May 1988 | A |
4747834 | Prindle | May 1988 | A |
4770654 | Rogers et al. | Sep 1988 | A |
4784157 | Halls et al. | Nov 1988 | A |
4790813 | Kensey | Dec 1988 | A |
4832685 | Haines | May 1989 | A |
4842579 | Shiber | Jun 1989 | A |
4854325 | Stevens | Aug 1989 | A |
4857046 | Stevens et al. | Aug 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4883467 | Franetzki et al. | Nov 1989 | A |
4886490 | Shiber | Dec 1989 | A |
4886507 | Patton et al. | Dec 1989 | A |
4894051 | Shiber | Jan 1990 | A |
4898574 | Uchiyama et al. | Feb 1990 | A |
4957482 | Shiber | Sep 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4998919 | Schnepp-Pesch et al. | Mar 1991 | A |
5002553 | Shiber | Mar 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5011468 | Lundquist et al. | Apr 1991 | A |
5011488 | Ginsburg | Apr 1991 | A |
5024651 | Shiber | Jun 1991 | A |
5055109 | Gould et al. | Oct 1991 | A |
5057098 | Zelman | Oct 1991 | A |
5064428 | Cope et al. | Nov 1991 | A |
5073164 | Hollister et al. | Dec 1991 | A |
5073168 | Danforth | Dec 1991 | A |
5074841 | Ademovic et al. | Dec 1991 | A |
5078722 | Stevens | Jan 1992 | A |
5091656 | Gahn | Feb 1992 | A |
5125893 | Dryden | Jun 1992 | A |
5129887 | Euteneuer et al. | Jul 1992 | A |
5135482 | Neracher | Aug 1992 | A |
5135531 | Shiber | Aug 1992 | A |
5158564 | Schnepp-Pesch et al. | Oct 1992 | A |
5163433 | Kagawa et al. | Nov 1992 | A |
5195954 | Schnepp-Pesch et al. | Mar 1993 | A |
5197795 | Mudrovich | Mar 1993 | A |
5197951 | Mahurkar | Mar 1993 | A |
5234407 | Teirstein et al. | Aug 1993 | A |
5242404 | Conley et al. | Sep 1993 | A |
5243997 | Uflacker et al. | Sep 1993 | A |
5248297 | Takase | Sep 1993 | A |
5254085 | Cleveland | Oct 1993 | A |
5261877 | Fine et al. | Nov 1993 | A |
5284486 | Kotula et al. | Feb 1994 | A |
5290247 | Crittenden | Mar 1994 | A |
5306244 | Shiber | Apr 1994 | A |
5312427 | Shturman | May 1994 | A |
5318518 | Plechinger et al. | Jun 1994 | A |
5318529 | Kontos | Jun 1994 | A |
5320604 | Walker et al. | Jun 1994 | A |
5322504 | Doherty et al. | Jun 1994 | A |
5324263 | Kraus et al. | Jun 1994 | A |
5325868 | Kimmelstiel | Jul 1994 | A |
5327906 | Fideler | Jul 1994 | A |
5334211 | Shiber | Aug 1994 | A |
5342293 | Zanger | Aug 1994 | A |
5342306 | Don Michael | Aug 1994 | A |
5356375 | Higley | Oct 1994 | A |
5368555 | Sussman et al. | Nov 1994 | A |
5370609 | Drasler et al. | Dec 1994 | A |
5385562 | Adams et al. | Jan 1995 | A |
5389072 | Imran | Feb 1995 | A |
5392778 | Horzewski | Feb 1995 | A |
5395315 | Griep | Mar 1995 | A |
5403274 | Cannon | Apr 1995 | A |
5403276 | Schechter et al. | Apr 1995 | A |
5413561 | Fischell et al. | May 1995 | A |
5419772 | Teitz et al. | May 1995 | A |
5421826 | Crocker et al. | Jun 1995 | A |
5429601 | Conley et al. | Jul 1995 | A |
5443078 | Uflacker | Aug 1995 | A |
5443443 | Shiber | Aug 1995 | A |
5476450 | Ruggio | Dec 1995 | A |
5478331 | Heflin et al. | Dec 1995 | A |
5486183 | Middleman et al. | Jan 1996 | A |
5490837 | Blaeser et al. | Feb 1996 | A |
5496267 | Drasler et al. | Mar 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5524635 | Uflacker et al. | Jun 1996 | A |
5527274 | Zakko | Jun 1996 | A |
5536242 | Willard et al. | Jul 1996 | A |
5538002 | Boussignac et al. | Jul 1996 | A |
5562692 | Bair | Oct 1996 | A |
5569275 | Kotula et al. | Oct 1996 | A |
5577674 | Altonji et al. | Nov 1996 | A |
5605545 | Nowosielski et al. | Feb 1997 | A |
5606968 | Mang | Mar 1997 | A |
5624394 | Barnitz et al. | Apr 1997 | A |
5626563 | Dodge et al. | May 1997 | A |
5634475 | Wolvek | Jun 1997 | A |
5647847 | Lafontaine et al. | Jul 1997 | A |
5653696 | Shiber | Aug 1997 | A |
5660180 | Malinowski et al. | Aug 1997 | A |
5669876 | Schechter et al. | Sep 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5709661 | Van et al. | Jan 1998 | A |
5713849 | Bosma et al. | Feb 1998 | A |
5713851 | Boudewijn et al. | Feb 1998 | A |
5713878 | Moutafis et al. | Feb 1998 | A |
5730717 | Gelbfish | Mar 1998 | A |
5735535 | McCombs et al. | Apr 1998 | A |
5766191 | Trerotola | Jun 1998 | A |
5772674 | Nakhjavan | Jun 1998 | A |
5785685 | Kugler et al. | Jul 1998 | A |
5795322 | Boudewijn | Aug 1998 | A |
5795332 | Lucas et al. | Aug 1998 | A |
5810770 | Chin et al. | Sep 1998 | A |
5827229 | Auth et al. | Oct 1998 | A |
5827243 | Palestrant | Oct 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5843022 | Willard et al. | Dec 1998 | A |
5843051 | Adams et al. | Dec 1998 | A |
5853384 | Bair | Dec 1998 | A |
5855567 | Reesemann | Jan 1999 | A |
5868702 | Stevens et al. | Feb 1999 | A |
5871462 | Yoder et al. | Feb 1999 | A |
5876414 | Straub | Mar 1999 | A |
5885238 | Stevens et al. | Mar 1999 | A |
5885244 | Leone et al. | Mar 1999 | A |
5893857 | Shturman et al. | Apr 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5908395 | Stalker et al. | Jun 1999 | A |
5910252 | Truitt et al. | Jun 1999 | A |
5911722 | Adler et al. | Jun 1999 | A |
5916192 | Nita et al. | Jun 1999 | A |
5921958 | Ressemann et al. | Jul 1999 | A |
5938645 | Gordon | Aug 1999 | A |
5941871 | Adams et al. | Aug 1999 | A |
5944686 | Patterson et al. | Aug 1999 | A |
5957901 | Mottola et al. | Sep 1999 | A |
5989210 | Morris et al. | Nov 1999 | A |
5989271 | Bonnette et al. | Nov 1999 | A |
6001112 | Taylor | Dec 1999 | A |
6007513 | Anis et al. | Dec 1999 | A |
6019728 | Iwata et al. | Feb 2000 | A |
6022336 | Zadno-Azizi et al. | Feb 2000 | A |
6027460 | Shturman | Feb 2000 | A |
6039078 | Tamari | Mar 2000 | A |
6080170 | Nash et al. | Jun 2000 | A |
6090118 | McGuckin, Jr. | Jul 2000 | A |
6096001 | Drasler et al. | Aug 2000 | A |
6101406 | Hacker | Aug 2000 | A |
6126635 | Simpson et al. | Oct 2000 | A |
6129697 | Drasler et al. | Oct 2000 | A |
6129698 | Beck | Oct 2000 | A |
6146355 | Biggs | Nov 2000 | A |
6146396 | Konya et al. | Nov 2000 | A |
6152909 | Bagaoisan et al. | Nov 2000 | A |
6156046 | Passafaro et al. | Dec 2000 | A |
6159230 | Samuels | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6176844 | Lee | Jan 2001 | B1 |
6179809 | Khairkhahan et al. | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6183432 | Milo | Feb 2001 | B1 |
6190357 | Ferrari et al. | Feb 2001 | B1 |
6196989 | Padget et al. | Mar 2001 | B1 |
6206898 | Honeycutt et al. | Mar 2001 | B1 |
6216573 | Moutafis et al. | Apr 2001 | B1 |
6224570 | Le et al. | May 2001 | B1 |
6224585 | Pfeiffer | May 2001 | B1 |
6238405 | Findlay et al. | May 2001 | B1 |
6258061 | Drasler et al. | Jul 2001 | B1 |
6283719 | Frantz et al. | Sep 2001 | B1 |
6293960 | Ken | Sep 2001 | B1 |
6331171 | Cohen | Dec 2001 | B1 |
6348040 | Stalker et al. | Feb 2002 | B1 |
6375635 | Moutafis et al. | Apr 2002 | B1 |
6423032 | Parodi | Jul 2002 | B2 |
6440148 | Shiber | Aug 2002 | B1 |
6454741 | Muni et al. | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6471683 | Drasler et al. | Oct 2002 | B2 |
6481439 | Lewis et al. | Nov 2002 | B1 |
6488672 | Dance et al. | Dec 2002 | B1 |
6508823 | Gonon | Jan 2003 | B1 |
6511454 | Nakao | Jan 2003 | B1 |
6533772 | Sherts et al. | Mar 2003 | B1 |
6544209 | Drasler et al. | Apr 2003 | B1 |
6544231 | Palmer et al. | Apr 2003 | B1 |
6551302 | Rosinko et al. | Apr 2003 | B1 |
6554794 | Mueller et al. | Apr 2003 | B1 |
6554799 | Hatamura et al. | Apr 2003 | B1 |
6558366 | Drasler et al. | May 2003 | B1 |
6558401 | Azizi | May 2003 | B1 |
6569147 | Evans et al. | May 2003 | B1 |
6569148 | Bagaoisan et al. | May 2003 | B2 |
6572578 | Blanchard | Jun 2003 | B1 |
6579270 | Sussman et al. | Jun 2003 | B2 |
6585705 | Maginot et al. | Jul 2003 | B1 |
6599271 | Easley | Jul 2003 | B1 |
6615835 | Cise et al. | Sep 2003 | B1 |
6616679 | Khosravi et al. | Sep 2003 | B1 |
6622367 | Bolduc et al. | Sep 2003 | B1 |
6623495 | Findlay et al. | Sep 2003 | B2 |
6635034 | Cosmescu | Oct 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6638235 | Miller et al. | Oct 2003 | B2 |
6652546 | Nash et al. | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6663613 | Evans et al. | Dec 2003 | B1 |
6669710 | Moutafis et al. | Dec 2003 | B2 |
6676637 | Bonnette et al. | Jan 2004 | B1 |
6702830 | Demarais et al. | Mar 2004 | B1 |
6719717 | Johnson et al. | Apr 2004 | B1 |
6723081 | Hektner | Apr 2004 | B1 |
6726675 | Beyar | Apr 2004 | B1 |
6752800 | Winston et al. | Jun 2004 | B1 |
6755803 | Le et al. | Jun 2004 | B1 |
6755812 | Peterson et al. | Jun 2004 | B2 |
6790215 | Findlay et al. | Sep 2004 | B2 |
6805684 | Bonnette et al. | Oct 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6824545 | Sepetka et al. | Nov 2004 | B2 |
6824550 | Noriega et al. | Nov 2004 | B1 |
6830577 | Nash et al. | Dec 2004 | B2 |
6875193 | Bonnette et al. | Apr 2005 | B1 |
6899712 | Moutafis et al. | May 2005 | B2 |
6926726 | Drasler et al. | Aug 2005 | B2 |
6929633 | Evans et al. | Aug 2005 | B2 |
6936056 | Nash et al. | Aug 2005 | B2 |
6945977 | Demarais et al. | Sep 2005 | B2 |
6958059 | Zadno-Azizi | Oct 2005 | B2 |
6984239 | Drasler et al. | Jan 2006 | B1 |
6986778 | Zadno-Azizi | Jan 2006 | B2 |
6991625 | Gately et al. | Jan 2006 | B1 |
7008434 | Kurz et al. | Mar 2006 | B2 |
7044958 | Douk et al. | May 2006 | B2 |
7108704 | Trerotola | Sep 2006 | B2 |
7122017 | Moutafis et al. | Oct 2006 | B2 |
7220269 | Ansel et al. | May 2007 | B1 |
7232452 | Adams et al. | Jun 2007 | B2 |
7374560 | Ressemann et al. | May 2008 | B2 |
7431711 | Moutafis et al. | Oct 2008 | B2 |
7479147 | Honeycutt et al. | Jan 2009 | B2 |
7481222 | Reissmann | Jan 2009 | B2 |
7588033 | Wondka | Sep 2009 | B2 |
7591816 | Wang et al. | Sep 2009 | B2 |
7604612 | Ressemann et al. | Oct 2009 | B2 |
7615042 | Beyar et al. | Nov 2009 | B2 |
7621886 | Burnett | Nov 2009 | B2 |
7654996 | Lynn | Feb 2010 | B2 |
7655016 | Demarais et al. | Feb 2010 | B2 |
7666161 | Nash et al. | Feb 2010 | B2 |
7699804 | Barry et al. | Apr 2010 | B2 |
7713235 | Torrance et al. | May 2010 | B2 |
7717685 | Moutafis et al. | May 2010 | B2 |
7717898 | Gately et al. | May 2010 | B2 |
7736355 | Itou et al. | Jun 2010 | B2 |
7753868 | Hoffa | Jul 2010 | B2 |
7753880 | Malackowski | Jul 2010 | B2 |
7766894 | Weitzner et al. | Aug 2010 | B2 |
7776005 | Haggstrom et al. | Aug 2010 | B2 |
7798996 | Haddad et al. | Sep 2010 | B1 |
7798999 | Bailey et al. | Sep 2010 | B2 |
7806864 | Haddad et al. | Oct 2010 | B2 |
7833239 | Nash | Nov 2010 | B2 |
7842055 | Pintor et al. | Nov 2010 | B2 |
7846175 | Bonnette et al. | Dec 2010 | B2 |
7862575 | Tal | Jan 2011 | B2 |
7867192 | Bowman et al. | Jan 2011 | B2 |
7875004 | Yodfat et al. | Jan 2011 | B2 |
7879022 | Bonnette et al. | Feb 2011 | B2 |
7887510 | Karpowicz et al. | Feb 2011 | B2 |
7905710 | Wang et al. | Mar 2011 | B2 |
7909801 | Hinchliffe | Mar 2011 | B2 |
7909810 | Noone | Mar 2011 | B2 |
7914482 | Urich et al. | Mar 2011 | B2 |
7914549 | Morsi | Mar 2011 | B2 |
7918654 | Adahan | Apr 2011 | B2 |
7918822 | Kumar et al. | Apr 2011 | B2 |
7918835 | Callahan et al. | Apr 2011 | B2 |
7935077 | Thor et al. | May 2011 | B2 |
7951073 | Freed | May 2011 | B2 |
7951107 | Staid et al. | May 2011 | B2 |
7951112 | Patzer | May 2011 | B2 |
7959603 | Wahr et al. | Jun 2011 | B2 |
7959608 | Nash et al. | Jun 2011 | B2 |
7976528 | Nash et al. | Jul 2011 | B2 |
7981128 | To et al. | Jul 2011 | B2 |
7981129 | Nash et al. | Jul 2011 | B2 |
7998114 | Lombardi | Aug 2011 | B2 |
8007490 | Schaeffer et al. | Aug 2011 | B2 |
8012766 | Graham | Sep 2011 | B2 |
8021351 | Boldenow et al. | Sep 2011 | B2 |
8034018 | Lutwyche | Oct 2011 | B2 |
8043312 | Noriega et al. | Oct 2011 | B2 |
8043313 | Krolik et al. | Oct 2011 | B2 |
8062246 | Moutafis et al. | Nov 2011 | B2 |
8062257 | Moberg et al. | Nov 2011 | B2 |
8065096 | Moberg et al. | Nov 2011 | B2 |
8066677 | Lunn et al. | Nov 2011 | B2 |
8070694 | Galdonik et al. | Dec 2011 | B2 |
8075546 | Carlisle et al. | Dec 2011 | B2 |
8092483 | Galdonik et al. | Jan 2012 | B2 |
8123777 | Krolik et al. | Feb 2012 | B2 |
8140146 | Kim et al. | Mar 2012 | B2 |
8142458 | Shturman | Mar 2012 | B2 |
8152782 | Jang et al. | Apr 2012 | B2 |
8152951 | Zawacki et al. | Apr 2012 | B2 |
8157787 | Nash et al. | Apr 2012 | B2 |
8162877 | Bonnette et al. | Apr 2012 | B2 |
8162966 | Connor et al. | Apr 2012 | B2 |
8177739 | Cartledge et al. | May 2012 | B2 |
8182462 | Istoc et al. | May 2012 | B2 |
8187228 | Bikovsky | May 2012 | B2 |
8187229 | Weitzner et al. | May 2012 | B2 |
8202243 | Morgan | Jun 2012 | B2 |
8209060 | Ledford | Jun 2012 | B2 |
8221348 | Hackett et al. | Jul 2012 | B2 |
8226673 | Nash et al. | Jul 2012 | B2 |
8246573 | Ali et al. | Aug 2012 | B2 |
8246580 | Hopkins et al. | Aug 2012 | B2 |
8257298 | Hamboly | Sep 2012 | B2 |
8257343 | Chan et al. | Sep 2012 | B2 |
8262645 | Bagwell et al. | Sep 2012 | B2 |
8267893 | Moberg et al. | Sep 2012 | B2 |
8287485 | Kimura et al. | Oct 2012 | B2 |
8291337 | Gannin et al. | Oct 2012 | B2 |
8292841 | Gregersen | Oct 2012 | B2 |
8308745 | Seto et al. | Nov 2012 | B2 |
8317739 | Kueebler | Nov 2012 | B2 |
8317770 | Miesel et al. | Nov 2012 | B2 |
8317773 | Appling et al. | Nov 2012 | B2 |
8317786 | Dahla et al. | Nov 2012 | B2 |
8323239 | Bednarek et al. | Dec 2012 | B2 |
8323268 | Ring et al. | Dec 2012 | B2 |
8337175 | Dion et al. | Dec 2012 | B2 |
8337451 | Lareau et al. | Dec 2012 | B2 |
8343097 | Pile-Spellman et al. | Jan 2013 | B2 |
8343131 | Jakob | Jan 2013 | B2 |
8348896 | Wagner | Jan 2013 | B2 |
8353858 | Kozak et al. | Jan 2013 | B2 |
8353860 | Boulais et al. | Jan 2013 | B2 |
8357138 | Pierpont et al. | Jan 2013 | B2 |
8372038 | Urich et al. | Feb 2013 | B2 |
8394078 | Torrance et al. | Mar 2013 | B2 |
8398579 | Morris et al. | Mar 2013 | B2 |
8398581 | Panotopoulos | Mar 2013 | B2 |
8398582 | Gordon et al. | Mar 2013 | B2 |
8414521 | Baker et al. | Apr 2013 | B2 |
8414522 | Kamen et al. | Apr 2013 | B2 |
8414943 | Wijngaarden et al. | Apr 2013 | B2 |
8419709 | Haddad et al. | Apr 2013 | B2 |
8425458 | Scopton | Apr 2013 | B2 |
8430837 | Jenson et al. | Apr 2013 | B2 |
8430845 | Wahr et al. | Apr 2013 | B2 |
8430861 | Schwartz et al. | Apr 2013 | B2 |
8439876 | Spohn et al. | May 2013 | B2 |
8454557 | Qi et al. | Jun 2013 | B1 |
8465456 | Stivland | Jun 2013 | B2 |
8465867 | Kim | Jun 2013 | B2 |
8483980 | Moberg et al. | Jul 2013 | B2 |
8491523 | Thor et al. | Jul 2013 | B2 |
8500697 | Kurth et al. | Aug 2013 | B2 |
8506537 | Torstensen et al. | Aug 2013 | B2 |
8523801 | Nash et al. | Sep 2013 | B2 |
8529498 | Moutafis et al. | Sep 2013 | B2 |
8545432 | Renati et al. | Oct 2013 | B2 |
8545514 | Ferrera | Oct 2013 | B2 |
8562555 | MacMahon et al. | Oct 2013 | B2 |
8579926 | Pintor et al. | Nov 2013 | B2 |
8597238 | Bonnette et al. | Dec 2013 | B2 |
8608699 | Blomquist | Dec 2013 | B2 |
8613618 | Brokx | Dec 2013 | B2 |
8613724 | Lanier et al. | Dec 2013 | B2 |
8617110 | Moberg et al. | Dec 2013 | B2 |
8617127 | Woolston et al. | Dec 2013 | B2 |
8623039 | Seto et al. | Jan 2014 | B2 |
8628549 | To et al. | Jan 2014 | B2 |
8641671 | Michaud et al. | Feb 2014 | B2 |
8647294 | Bonnette et al. | Feb 2014 | B2 |
8652086 | Gerg et al. | Feb 2014 | B2 |
8657777 | Kozak et al. | Feb 2014 | B2 |
8657785 | Torrance et al. | Feb 2014 | B2 |
8663259 | Levine et al. | Mar 2014 | B2 |
8668464 | Kensy et al. | Mar 2014 | B2 |
8668665 | Gerg et al. | Mar 2014 | B2 |
8670836 | Aeschlimann et al. | Mar 2014 | B2 |
8672876 | Jacobson et al. | Mar 2014 | B2 |
8681010 | Moberg et al. | Mar 2014 | B2 |
8715237 | Moberg et al. | May 2014 | B2 |
8721674 | Kusleika | May 2014 | B2 |
8758325 | Webster et al. | Jun 2014 | B2 |
8758364 | Eckhouse et al. | Jun 2014 | B2 |
8783151 | Janardhan et al. | Jul 2014 | B1 |
8803030 | Janardhan et al. | Aug 2014 | B1 |
8814892 | Galdonik et al. | Aug 2014 | B2 |
8851866 | Moutafis et al. | Oct 2014 | B2 |
8852219 | Wulfman et al. | Oct 2014 | B2 |
8864792 | Eckhouse et al. | Oct 2014 | B2 |
8888801 | To et al. | Nov 2014 | B2 |
8900179 | Jenson et al. | Dec 2014 | B2 |
8900214 | Nance et al. | Dec 2014 | B2 |
8920402 | Nash et al. | Dec 2014 | B2 |
8932320 | Janardhan et al. | Jan 2015 | B1 |
8932321 | Janardhan et al. | Jan 2015 | B1 |
8936447 | Abal | Jan 2015 | B2 |
8945030 | Weston | Feb 2015 | B2 |
8962561 | Shalgi et al. | Feb 2015 | B2 |
8970384 | Yodfat et al. | Mar 2015 | B2 |
8974418 | Bonnette et al. | Mar 2015 | B2 |
8979798 | Shener et al. | Mar 2015 | B2 |
8986241 | Evans et al. | Mar 2015 | B2 |
8986252 | Cummings et al. | Mar 2015 | B2 |
8998843 | Bonnette et al. | Apr 2015 | B2 |
9005237 | Eckhouse et al. | Apr 2015 | B2 |
9011114 | Farrell et al. | Apr 2015 | B2 |
9017294 | McGuckin et al. | Apr 2015 | B2 |
9023070 | Levine et al. | May 2015 | B2 |
9024768 | Mandro et al. | May 2015 | B2 |
9033925 | Moberg et al. | May 2015 | B2 |
9034008 | Eckhouse et al. | May 2015 | B2 |
9042938 | Nimbalker et al. | May 2015 | B2 |
9078691 | Morris et al. | Jul 2015 | B2 |
9113955 | Noriega et al. | Aug 2015 | B2 |
9119941 | Rollins et al. | Sep 2015 | B2 |
9119942 | Rollins et al. | Sep 2015 | B1 |
9198679 | To et al. | Dec 2015 | B2 |
9238122 | Malhi et al. | Jan 2016 | B2 |
9248221 | Look et al. | Feb 2016 | B2 |
9254144 | Nguyen et al. | Feb 2016 | B2 |
9278189 | Corbett | Mar 2016 | B2 |
9282992 | Levine et al. | Mar 2016 | B2 |
9283040 | Hendrick et al. | Mar 2016 | B2 |
9308016 | Escudero et al. | Apr 2016 | B2 |
9314263 | Escudero et al. | Apr 2016 | B2 |
9332999 | Ray et al. | May 2016 | B2 |
9333007 | Escudero et al. | May 2016 | B2 |
9358035 | Kojima | Jun 2016 | B2 |
9402938 | Aklog et al. | Aug 2016 | B2 |
9433427 | Look et al. | Sep 2016 | B2 |
9456872 | Hendrick et al. | Oct 2016 | B2 |
9474543 | McGuckin et al. | Oct 2016 | B2 |
9492192 | To et al. | Nov 2016 | B2 |
9492193 | To et al. | Nov 2016 | B2 |
9510854 | Mallaby | Dec 2016 | B2 |
9586023 | Bonnette et al. | Mar 2017 | B2 |
9592073 | Kojima et al. | Mar 2017 | B2 |
9597480 | Purdy et al. | Mar 2017 | B2 |
9693789 | Garrison et al. | Jul 2017 | B2 |
9700346 | Levine et al. | Jul 2017 | B2 |
9770551 | Faden | Sep 2017 | B1 |
9782195 | MacTaggart et al. | Oct 2017 | B2 |
9795406 | Levine et al. | Oct 2017 | B2 |
9808266 | Ray et al. | Nov 2017 | B2 |
9827404 | Nance et al. | Nov 2017 | B2 |
9833257 | Bonnette et al. | Dec 2017 | B2 |
9883877 | Look et al. | Feb 2018 | B2 |
10238853 | Kume et al. | Mar 2019 | B2 |
10314608 | Jenson et al. | Jun 2019 | B2 |
10383983 | Aklog et al. | Aug 2019 | B2 |
10390926 | Janardhan et al. | Aug 2019 | B2 |
10426885 | Criado et al. | Oct 2019 | B2 |
10492805 | Culbert et al. | Dec 2019 | B2 |
10499944 | Mallaby | Dec 2019 | B2 |
10531883 | Deville et al. | Jan 2020 | B1 |
10702292 | Look et al. | Jul 2020 | B2 |
10716880 | Culbert et al. | Jul 2020 | B2 |
11490909 | Look et al. | Nov 2022 | B2 |
11497521 | Mallaby | Nov 2022 | B2 |
11653945 | Jenson et al. | May 2023 | B2 |
11672561 | Look et al. | Jun 2023 | B2 |
11678905 | Look et al. | Jun 2023 | B2 |
20010004700 | Honeycutt et al. | Jun 2001 | A1 |
20010051811 | Bonnette et al. | Dec 2001 | A1 |
20020016564 | Courtney et al. | Feb 2002 | A1 |
20020029052 | Evans et al. | Mar 2002 | A1 |
20020058904 | Boock et al. | May 2002 | A1 |
20020068895 | Beck | Jun 2002 | A1 |
20020133114 | Itoh et al. | Sep 2002 | A1 |
20020138095 | Mazzocchi et al. | Sep 2002 | A1 |
20020165575 | Saleh | Nov 2002 | A1 |
20020173812 | McGuckin et al. | Nov 2002 | A1 |
20020173819 | Leeflang et al. | Nov 2002 | A1 |
20020176788 | Moutafis et al. | Nov 2002 | A1 |
20020177789 | Ferry et al. | Nov 2002 | A1 |
20030032918 | Quinn | Feb 2003 | A1 |
20030040694 | Dorros et al. | Feb 2003 | A1 |
20030055404 | Moutafis | Mar 2003 | A1 |
20030069549 | MacMahon et al. | Apr 2003 | A1 |
20030083681 | Moutafis et al. | May 2003 | A1 |
20030088187 | Saadat et al. | May 2003 | A1 |
20030088209 | Chiu et al. | May 2003 | A1 |
20030139751 | Evans et al. | Jul 2003 | A1 |
20030144688 | Brady et al. | Jul 2003 | A1 |
20030216760 | Welch et al. | Nov 2003 | A1 |
20030220556 | Porat et al. | Nov 2003 | A1 |
20030236533 | Wilson et al. | Dec 2003 | A1 |
20040030281 | Goble et al. | Feb 2004 | A1 |
20040049149 | Drasler et al. | Mar 2004 | A1 |
20040049225 | Denison | Mar 2004 | A1 |
20040054322 | Vargas | Mar 2004 | A1 |
20040082915 | Kadan | Apr 2004 | A1 |
20040087988 | Heitzmann et al. | May 2004 | A1 |
20040097829 | McRury et al. | May 2004 | A1 |
20040143225 | Callan et al. | Jul 2004 | A1 |
20040147871 | Burnett | Jul 2004 | A1 |
20040153109 | Tiedtke et al. | Aug 2004 | A1 |
20040158136 | Gough et al. | Aug 2004 | A1 |
20040167463 | Zawacki et al. | Aug 2004 | A1 |
20040193046 | Nash et al. | Sep 2004 | A1 |
20040199201 | Kellett et al. | Oct 2004 | A1 |
20040215222 | Krivoruchko | Oct 2004 | A1 |
20040236214 | Opie et al. | Nov 2004 | A1 |
20040243157 | Connor et al. | Dec 2004 | A1 |
20050004594 | Nool et al. | Jan 2005 | A1 |
20050043682 | Kucklick et al. | Feb 2005 | A1 |
20050049547 | Anspach et al. | Mar 2005 | A1 |
20050065426 | Porat et al. | Mar 2005 | A1 |
20050085769 | MacMahon et al. | Apr 2005 | A1 |
20050102165 | Oshita et al. | May 2005 | A1 |
20050159716 | Kobayashi et al. | Jul 2005 | A1 |
20050196748 | Ericson | Sep 2005 | A1 |
20050238503 | Rush et al. | Oct 2005 | A1 |
20050240116 | Saadat et al. | Oct 2005 | A1 |
20050240120 | Modesitt | Oct 2005 | A1 |
20050240146 | Nash et al. | Oct 2005 | A1 |
20050244521 | Strickland et al. | Nov 2005 | A1 |
20050256457 | Rome | Nov 2005 | A1 |
20050277851 | Whittaker et al. | Dec 2005 | A1 |
20050283150 | Moutafis et al. | Dec 2005 | A1 |
20060009785 | Maitland et al. | Jan 2006 | A1 |
20060041245 | Ferry et al. | Feb 2006 | A1 |
20060058836 | Bose et al. | Mar 2006 | A1 |
20060063973 | Makower et al. | Mar 2006 | A1 |
20060064051 | Gross | Mar 2006 | A1 |
20060064123 | Bonnette et al. | Mar 2006 | A1 |
20060074442 | Noriega et al. | Apr 2006 | A1 |
20060093989 | Hahn et al. | May 2006 | A1 |
20060142630 | Meretei | Jun 2006 | A1 |
20060149191 | DiFiore | Jul 2006 | A1 |
20060184186 | Noone | Aug 2006 | A1 |
20060212055 | Karabey et al. | Sep 2006 | A1 |
20060229550 | Staid et al. | Oct 2006 | A1 |
20060229587 | Beyar et al. | Oct 2006 | A1 |
20060264808 | Staid et al. | Nov 2006 | A1 |
20060282150 | Olson et al. | Dec 2006 | A1 |
20070016105 | Mamourian | Jan 2007 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070073233 | Thor et al. | Mar 2007 | A1 |
20070073268 | Goble et al. | Mar 2007 | A1 |
20070078438 | Okada | Apr 2007 | A1 |
20070118165 | Demello et al. | May 2007 | A1 |
20070135812 | Sartor | Jun 2007 | A1 |
20070167804 | Park et al. | Jul 2007 | A1 |
20070197956 | Le et al. | Aug 2007 | A1 |
20070197963 | Griffiths et al. | Aug 2007 | A1 |
20070219467 | Clark et al. | Sep 2007 | A1 |
20070225615 | Chechelski et al. | Sep 2007 | A1 |
20070225739 | Pintor et al. | Sep 2007 | A1 |
20070239182 | Glines et al. | Oct 2007 | A1 |
20070249990 | Cosmescu | Oct 2007 | A1 |
20070270755 | Von et al. | Nov 2007 | A1 |
20070299306 | Parasher et al. | Dec 2007 | A1 |
20080009784 | Leedle et al. | Jan 2008 | A1 |
20080091061 | Kumar et al. | Apr 2008 | A1 |
20080097339 | Ranchod et al. | Apr 2008 | A1 |
20080097465 | Rollins et al. | Apr 2008 | A1 |
20080097563 | Petrie et al. | Apr 2008 | A1 |
20080108960 | Shapland et al. | May 2008 | A1 |
20080119824 | Weitzner et al. | May 2008 | A1 |
20080125698 | Gerg et al. | May 2008 | A1 |
20080125798 | Osborne et al. | May 2008 | A1 |
20080195058 | Moutafis et al. | Aug 2008 | A1 |
20080195139 | Donald et al. | Aug 2008 | A1 |
20080243054 | Mollstam et al. | Oct 2008 | A1 |
20080243153 | Nguyen et al. | Oct 2008 | A1 |
20080249501 | Yamasaki | Oct 2008 | A1 |
20080255539 | Booth | Oct 2008 | A1 |
20080255596 | Jenson et al. | Oct 2008 | A1 |
20080294008 | Toyama | Nov 2008 | A1 |
20080294181 | Wensel et al. | Nov 2008 | A1 |
20080306465 | Bailey et al. | Dec 2008 | A1 |
20080319376 | Wilcox et al. | Dec 2008 | A1 |
20090018566 | Escudero et al. | Jan 2009 | A1 |
20090048607 | Rockley | Feb 2009 | A1 |
20090054825 | Melsheimer et al. | Feb 2009 | A1 |
20090082722 | Munger et al. | Mar 2009 | A1 |
20090105645 | Kidd et al. | Apr 2009 | A1 |
20090105690 | Schaeffer et al. | Apr 2009 | A1 |
20090157057 | Ferren et al. | Jun 2009 | A1 |
20090264940 | Beale et al. | Oct 2009 | A1 |
20090292212 | Ferren et al. | Nov 2009 | A1 |
20090306476 | Banik et al. | Dec 2009 | A1 |
20090306692 | Barrington et al. | Dec 2009 | A1 |
20100010524 | Barrington et al. | Jan 2010 | A1 |
20100030134 | Fitzgerald et al. | Feb 2010 | A1 |
20100030186 | Stivland | Feb 2010 | A1 |
20100094201 | Mallaby | Apr 2010 | A1 |
20100145302 | Cull et al. | Jun 2010 | A1 |
20100160851 | Dimalanta et al. | Jun 2010 | A1 |
20100174233 | Kuban et al. | Jul 2010 | A1 |
20100191178 | Ross et al. | Jul 2010 | A1 |
20100204613 | Rollins et al. | Aug 2010 | A1 |
20100204672 | Lockhart et al. | Aug 2010 | A1 |
20100217275 | Carmeli et al. | Aug 2010 | A1 |
20100217276 | Garrison et al. | Aug 2010 | A1 |
20100228273 | Staid et al. | Sep 2010 | A1 |
20100268236 | Moutafis et al. | Oct 2010 | A1 |
20100274191 | Ting | Oct 2010 | A1 |
20100280534 | Sher | Nov 2010 | A1 |
20110034986 | Chou et al. | Feb 2011 | A1 |
20110040314 | McGuckin, Jr. et al. | Feb 2011 | A1 |
20110091331 | Moutafis et al. | Apr 2011 | A1 |
20110092892 | Nitsan et al. | Apr 2011 | A1 |
20110106019 | Bagwell et al. | May 2011 | A1 |
20110152920 | Eckhouse et al. | Jun 2011 | A1 |
20110160683 | Pinotti et al. | Jun 2011 | A1 |
20110282426 | Mitra et al. | Nov 2011 | A1 |
20120053557 | Abal | Mar 2012 | A1 |
20120059340 | Larsson | Mar 2012 | A1 |
20120059354 | Zarate | Mar 2012 | A1 |
20120065656 | Karwei | Mar 2012 | A1 |
20120065660 | Ferrera et al. | Mar 2012 | A1 |
20120071907 | Pintor et al. | Mar 2012 | A1 |
20120078080 | Foley et al. | Mar 2012 | A1 |
20120123509 | Merrill et al. | May 2012 | A1 |
20120130415 | Tal et al. | May 2012 | A1 |
20120165756 | Root et al. | Jun 2012 | A1 |
20120239008 | Fojtik | Sep 2012 | A1 |
20120239064 | Cartier et al. | Sep 2012 | A1 |
20120239066 | Levine et al. | Sep 2012 | A1 |
20120259265 | Salehi et al. | Oct 2012 | A1 |
20120277665 | Tachoire et al. | Nov 2012 | A1 |
20120289910 | Shtul et al. | Nov 2012 | A1 |
20120291811 | Dabney et al. | Nov 2012 | A1 |
20120330196 | Nita | Dec 2012 | A1 |
20130085381 | Comerota et al. | Apr 2013 | A1 |
20130184734 | Morris et al. | Jul 2013 | A1 |
20130190701 | Kirn | Jul 2013 | A1 |
20130218186 | Dubois et al. | Aug 2013 | A1 |
20130245543 | Gerg et al. | Sep 2013 | A1 |
20130267891 | Malhi et al. | Oct 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20130310809 | Armstrong et al. | Nov 2013 | A1 |
20130310845 | Thor et al. | Nov 2013 | A1 |
20130331776 | Klein et al. | Dec 2013 | A1 |
20140005699 | Bonnette et al. | Jan 2014 | A1 |
20140058361 | Gordon | Feb 2014 | A1 |
20140142594 | Fojtik | May 2014 | A1 |
20140147246 | Chappel et al. | May 2014 | A1 |
20140148830 | Bowman | May 2014 | A1 |
20140155931 | Bose et al. | Jun 2014 | A1 |
20140228569 | Okumura et al. | Aug 2014 | A1 |
20140228869 | Bonnette et al. | Aug 2014 | A1 |
20140257097 | Bonnette et al. | Sep 2014 | A1 |
20140276920 | Hendrick et al. | Sep 2014 | A1 |
20140309589 | Momose et al. | Oct 2014 | A1 |
20140323906 | Peatfield et al. | Oct 2014 | A1 |
20140360494 | Herskovic | Dec 2014 | A1 |
20140378951 | Dye | Dec 2014 | A1 |
20150025446 | Jacobson et al. | Jan 2015 | A1 |
20150032138 | Jenson et al. | Jan 2015 | A1 |
20150094673 | Pratt et al. | Apr 2015 | A1 |
20150094748 | Nash et al. | Apr 2015 | A1 |
20150142030 | MacTaggart et al. | May 2015 | A1 |
20150257724 | Lautenschläger | Sep 2015 | A1 |
20150283309 | Look et al. | Oct 2015 | A1 |
20150305765 | Fojtik et al. | Oct 2015 | A1 |
20150306286 | Ross et al. | Oct 2015 | A1 |
20150327875 | Look et al. | Nov 2015 | A1 |
20150343182 | Vazales et al. | Dec 2015 | A1 |
20150374391 | Quick et al. | Dec 2015 | A1 |
20160051323 | Stigall et al. | Feb 2016 | A1 |
20160058614 | Ross et al. | Mar 2016 | A1 |
20160143721 | Rosenbluth et al. | May 2016 | A1 |
20160220741 | Garrison et al. | Aug 2016 | A1 |
20160331645 | Bagwell et al. | Nov 2016 | A1 |
20170065396 | Look et al. | Mar 2017 | A1 |
20170079672 | Quick | Mar 2017 | A1 |
20170105745 | Rosenbluth et al. | Apr 2017 | A1 |
20170172603 | Bonnette et al. | Jun 2017 | A1 |
20170181760 | Look et al. | Jun 2017 | A1 |
20170216503 | Look et al. | Aug 2017 | A1 |
20170245885 | Lenker | Aug 2017 | A1 |
20170265885 | Bonnette et al. | Sep 2017 | A1 |
20170281204 | Garrison et al. | Oct 2017 | A1 |
20170290598 | Culbert et al. | Oct 2017 | A1 |
20180207397 | Look et al. | Jul 2018 | A1 |
20180214172 | Donnelly et al. | Aug 2018 | A1 |
20180338770 | Mogi et al. | Nov 2018 | A1 |
20180368876 | Malhi et al. | Dec 2018 | A1 |
20190328412 | Mazhar et al. | Oct 2019 | A1 |
20190381223 | Culbert et al. | Dec 2019 | A1 |
20200022711 | Look et al. | Jan 2020 | A1 |
20200345904 | Casey et al. | Nov 2020 | A1 |
20200367917 | Teigen et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
1120805 | Apr 1996 | CN |
201079629 | Jul 2008 | CN |
101730507 | Jun 2010 | CN |
201603160 | Oct 2010 | CN |
103251440 | Aug 2013 | CN |
103767760 | May 2014 | CN |
104905769 | Sep 2015 | CN |
106456849 | Feb 2017 | CN |
3715418 | Nov 1987 | DE |
4018736 | Jan 1992 | DE |
0701834 | Mar 1996 | EP |
0709110 | May 1996 | EP |
0726466 | Aug 1996 | EP |
0806213 | Nov 1997 | EP |
1092396 | Apr 2001 | EP |
1488748 | Dec 2004 | EP |
2301450 | Mar 2011 | EP |
2859902 | Apr 2015 | EP |
2131759 | Oct 2017 | EP |
06-125915 | May 1994 | JP |
06-205784 | Jul 1994 | JP |
06-205785 | Jul 1994 | JP |
07-299078 | Nov 1995 | JP |
2001-161700 | Jun 2001 | JP |
2003-010194 | Jan 2003 | JP |
2003-101194 | Apr 2003 | JP |
2003-514632 | Apr 2003 | JP |
2003-260127 | Sep 2003 | JP |
2003-290236 | Oct 2003 | JP |
2004-514466 | May 2004 | JP |
2007-160109 | Jun 2007 | JP |
2009-039216 | Feb 2009 | JP |
2010-517642 | May 2010 | JP |
2013-154171 | Aug 2013 | JP |
2013-180156 | Sep 2013 | JP |
0069348 | Nov 2000 | NO |
9005493 | May 1990 | WO |
9601079 | Jan 1996 | WO |
9635469 | Nov 1996 | WO |
9901079 | Jan 1999 | WO |
9918850 | Apr 1999 | WO |
0137916 | May 2001 | WO |
0219928 | Mar 2002 | WO |
0226289 | Apr 2002 | WO |
2004100772 | Nov 2004 | WO |
2005004968 | Jan 2005 | WO |
2006081238 | Aug 2006 | WO |
2007087404 | Aug 2007 | WO |
2007143633 | Dec 2007 | WO |
2008097993 | Aug 2008 | WO |
2008121481 | Oct 2008 | WO |
2010023617 | Mar 2010 | WO |
2010023671 | Mar 2010 | WO |
2015179329 | Nov 2015 | WO |
2016126974 | Aug 2016 | WO |
2017112922 | Jun 2017 | WO |
2018215840 | Nov 2018 | WO |
Entry |
---|
Extended European Search Report dated Aug. 31, 2018, in EP App. No. 16843162.5 filed Sep. 3, 2016 (10 pages). |
PCT International Search Report and Written Opinion for PCT/US2016/050302, Applicant: Vesatek, LLC, Forms PCT/ISA/220, 210, and 237 dated Nov. 29, 2016 (10 pages). |
Angiojet Ultra Power Pulse Kit Information for Use, Medrad, Inc., downloaded from internet Jan. 23, 2017. |
Comparison of Dimensions and Aspiration Rate of the Pronto V3, Pronto LP, Export XT, Export AP, Fetch, Xtract, Diver C.E, and QuickCat Catheter, Vascular Solutions, Inc., downloaded from internet Oct. 22, 2014. |
Dalal, J., Sahoo, P., Dhall, A., Kapoor, R., Krishnamurthy, A., Shetty, S., Trivedi, S., Kahali, D., Shah, B., Chockalingam, K., Abdullakutty, J., Shetty, P., Chopra, A., Ray, R., Desai, D., Pachiyappan, Ratnaparkhi, G., Sharma, M., Sambasivam, K. “Role of thrombysis in reperfusion therapy for management of AMI: Indian scenario,” Indian Heart Journal, 2013, pp. 566-585, vol. 63, Cardiological Society of India, Bombay, India. |
Franetzki, M., “Confusion in the Terminology of Insulin Devices”, Diabetes Care, Jan.-Feb. 1982, pp. 74-75, vol. 5, No. 1, American Diabetes Association, Alexandria, USA. |
Frolich, G., Meier, P., White, S., Yellon, D., Hausenloy, D., “Myocardial reperfusion injury: looking beyond primary PCI”, European Heart Journal Jun. 2013, pp. 1714-1722, vol. 34, No. 23, Elsevier, Amsterdam, The Netherlands. |
Gousios, A, Shearn, M, “Effect of Intravenous Heparin on Human Blood Viscosity”, Circulation, Dec. 1959, pp. 1063-1066, vol. 20, American Heart Association, Dallas, USA. |
Harvard Health; Normal Body Temperature: Rethinking the normal human body temperature; p. 1; published Apr. 1, 2006; http://www.health.harvard.edu/press.sub.--releases/normal.sub.-body.sub.- --temperature. |
Infusion Liquid Flow Sensors—Safe, Precise and Reliable, Sensirion, downloaded from Internet Apr. 3, 2015. |
Irsigler, K, Kritz, H., Hagmuller, G., Franezki, M., Prestele, K, Thurow, H., Geisen, K., “Long-term Continuous Intraperitoneal Insulin Infusion with an Implanted Remote-Controlled Insulin Infusion Device”, Diabetes, Dec. 1981, pp. 1072-1075, vol. 30, No. 12, American Diabetes Association, New York, USA. |
Kritz, H., Hagmuller, G, Lovett, R., Irsigler, K., “Implanted Constant Basal Rate Insulin Infusion Devices for Type 1 (Insulin-Dependent) Diabetic Patients”, Diabetologia, Aug. 1983, pp. 78-81, vol. 25, No. 2, Springer-Verlag, Berlin, Germany. |
Lipinski, M., Lee, R., Gaglia, M., Torguson, R., Garcia-Garcia, H., Pichard, A., Satler, L., Waksman, R. “Comparison of heparin, bivalirudin, and different glycoprotein Ilb/Illa inhibitor regimens for anticoagulation during percutaneous coronary intervention: A network meta-analysis,” Cardiovascular Revascularization Medicine, 2016, pp. 535-545, vol. 17, Elsevier, New York, USA. |
Makes even the most difficult intervention a Fast and Smooth Run. GuideLiner brochure. Vascular Solutions,. Inc., downloaded from internet Apr. 9, 2015. |
Metzler, L., “Miniature Sensor Combines with Micropump to Control Drug Delivery”, Medical Design Technology, Mar. 2017, pp. 22-23, MDTmag.com, Advantage Business Media, Rockaway, USA. |
Micossi, P., Cristallo, M., Galberti, G, Librenti, M., Petrella, G., Pozza, G., Hutter, R., Babic, D., Hagmuller, G., Veit, F., Irsigler, K., Walter, H., Ladik, T., Flaschentrager, T., Gunther, A., Kronski, K., Mehnert, H., Bauersachs, R., Ruhland, B., Piwernetz, K., Renner, R., Hepp, K., Buchholz, G., Kollert, D., Wohlers, C,, Jahrling, P., Franetzki, M., Pfeiffer, C., Neuhauser, C., Seipke. G., Deutschlander. N., Zoltobrocki, M., “One-Year Trial of a Remote-Controlled Implantable Insulin Infusion System in Type I Diabetic Patients”, The Lancet, Oct. 15, 1988, pp. 866-869, vol. 2, No. 8616. |
Parikh, A., Ali, F., “Novel Use of GuideLiner Catheter to Perform Aspiration Thrombectomy in a Saphenous Vein Graft” Cath Lab Digest, Oct. 2013, downloaded from internet Oct. 22, 2014. |
Pechlaner, C., Knapp, E., Wiedermann, C. “Hypersensitivity reactions associated with recombinant tissue-type plasminogen activator and urokinase,” Blood Coagulation and Fibrinolysis, 2001, pp. 491-494, vol. 12, Lippincott Williams & Wilkins, Hagerstown, USA. |
Prasad, A., Stone, G., Holmes, D., Gersh, B., Peperfusion Injury, Microvascular Dysfunction, and Carioprotection: The “Dark Side” of Reperfusion, Circulation, Nov. 24, 2009, pp. 2105-2112, vol. 120, American Heart Association, Dallas, USA. |
Principles and Practice of Pharmacology for Anaesthetists, ed. Calvey, T., Williams, N., 2008, pp. 324-327, 5th Edition, Blackwell Publishing, Malden, USA. |
Puddu, P., Ianetta, L., Placanica, A., Cuturello, D., Schiariti, M., Manfrini, O., “The role of Glycoprotein IIb/IIIa inhibitors in acute coronary syndromes and the interference with anemia,” International Journal of Cardiology, 2016, pp. 1091-1096, vol. 222, Elsevier, Amsterdam, The Netherlands. |
Rodriquez, R., Conde-Green, A., “Quantification of Negative Pressures Generated by Syringes of Different Calibers Used for Liposuction”, Plastic & Reconstructive Surgery, Aug. 2012; pp. 383e-384e, vol. 130, No. 2, Lippicott Williams & Wilkins, Philadelphia, USA. |
Saudek, C., Selam, J-L, Pitt, H., Waxman, K., Rubio, M., Jeandidier, N., Turner, D., Fischell, R., Charles, M., “A Preliminary trial of the Programmable Implantable Medication System for Insulin Delivery”, The New England Journal of Medicine, Aug. 31, 1989, pp. 574-579, vol. 321, No. 9, Massachusetts Medical Society, Boston, USA. |
Selam, J-L, “Development of Implantable Insulin Pumps: Long is the Road”, Diabetic Medicine, Nov. 1988, pp. 724-733, vol. 5, No. 8, Wiley, Chichester, UK. |
Stys, A., Stys, T., Rajpurohit, N., Khan, M. “A Novel Application of GuideLiner Catheter for Thrombectomy in Acute Myocardial Infarction: A Case Series”, Journal of Invasive cardiology, Nov. 2013, pp. 620-624, vol. 25, No. 11, King of Prussia, USA. |
Van De Werf, F, “The ideal fibrinolytic: can drug design improve clinical results?” European Heart Journal, 1999, pp. 1452-1458, vol. 20, Elsevier, Amsterdam, The Netherlands. |
Warmerdam, P., Vanderlick, K., Vandervoort, P., de Smedt, H., Plaisance, S., De Maeyer, M., Collen, D. “Saphylokinase-Specific-Cell-Mediated Immunity in Humans, ” The Journal of Immunology, 2002, pp. 155-161, vol. 168, Williams & Wilkins Co., Baltimore, USA. |
Number | Date | Country | |
---|---|---|---|
20220378443 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
62000448 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16900705 | Jun 2020 | US |
Child | 17884063 | US | |
Parent | 15493584 | Apr 2017 | US |
Child | 16900705 | US | |
Parent | 14715451 | May 2015 | US |
Child | 15493584 | US |