Systems and methods for removal of blood and thrombotic material

Information

  • Patent Grant
  • 12171445
  • Patent Number
    12,171,445
  • Date Filed
    Thursday, August 11, 2022
    2 years ago
  • Date Issued
    Tuesday, December 24, 2024
    2 days ago
Abstract
An extension conduit for use with a system for aspirating thrombus includes a passageway extending between a distal end and a proximal end of the extension conduit, and a combined hydraulic and electrical control carried on the extension conduit and configured to be activated by a user to activate an electric switch while opening a valve to allow flow through the passageway.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present disclosure pertains generally to medical devices and methods of their use. More particularly, the present invention pertains to aspiration and thrombectomy devices and methods of use thereof.


Description of the Related Art

Several devices and systems already exist to aid in the removal of thrombotic material. These include simple aspiration tube type devices using vacuum syringes to extract thrombus into the syringe, simple flush-and-aspirate devices, more complex devices with rotating components the pull in, macerate and transport thrombotic material away from the distal tip using a mechanical auger, systems that use very high pressure to macerate the thrombus and create a venturi effect to flush the macerated material away.


All of the devices described above have limitations as a result of individual design characteristics. For example, simple aspiration catheters offer ease of use and rapid deployment but may become blocked or otherwise inoperable when faced with older, more organized thrombotic material. Such devices must be removed and cleared outside the body and then re-inserted into the vasculature, which lengthens the time needed for the procedure and increases the opportunity to kink the catheter shaft. Such kinks may reduce performance by decreasing the cross-sectional area of the catheter or may render the device inoperable.


Mechanical rotary devices use an auger to grab and carry the thrombus away from the target area. Some create transport force via vacuum bottles while others create differential pressure at the distal tip of the device with the auger acting as a low pressure pump. These devices typically work slowly and offer the physician no feedback as to when the device should be advanced further into the lesion.


Flushing type devices include manual flush type devices in which the physician manipulates a hand-driven pump to provide flowing saline at the tip of the device to break up and aspirate the thrombus material, which may introduce performance variations based on the ability of the physician to consistently pump the device over the duration of the procedure. Flushing devices also include high pressure flushing devices that macerate the thrombus and then, using a vortex created by the high pressure fluid, transport the emulsified thrombotic material to a collection bag. These devices are effective at removing all levels of thrombotic material, but the pressure created by the device is so great that its action against certain vessel walls may interrupt the heart muscle stimulation mechanism and create a bradycardia event in certain patients, sometimes requiring that a pacing lead be placed in the patient prior to use. Further, interacting with the thrombotic material outside of the catheter may allow loose material to escape the capture mechanism.


SUMMARY OF THE INVENTION

In one embodiment of the present disclosure, a system for aspirating thrombus includes an aspiration catheter including an elongate shaft configured for placement within a blood vessel of a subject, a supply lumen and an aspiration lumen each extending along a shaft, the supply lumen having a proximal end and a distal end, and the aspiration lumen having a proximal end and a distal opening, and an opening at or near the distal end of the supply lumen, the opening configured to allow injection of pressurized fluid into the aspiration lumen at or near the distal end of the aspiration lumen when the pressurized fluid is pumped through the supply lumen, an extension conduit including a distal end configured to couple to the aspiration lumen of the aspiration catheter, a proximal end configured to couple to a negative pressure source, and a passageway extending between the distal end and the proximal end of the extension conduit, a combined hydraulic and electrical control carried on the extension conduit and including a first control interface and a control body, the first control interface configured to be activated by a user to move the control body between a first position and a second position, an electrical switch configured to be activated by the control body when the control body is moved to the second position, and a valve having a closed position blocking flow through the passageway of the extension conduit and an open position allowing flow through the passageway of the extension conduit, the valve configured to be moved from the closed position to the open position by the control body when the control body is moved to the second position.


In another embodiment of the present disclosure, an extension conduit for use with a system for aspirating thrombus includes a passageway extending between a distal end and a proximal end of the extension conduit, and a combined hydraulic and electrical control carried on the extension conduit and configured to be activated by a user to activate an electric switch while opening a valve to allow flow through the passageway.


In yet another embodiment of the present disclosure, an extension conduit for use with a system for aspirating thrombus includes a passageway extending between a distal end and a proximal end of the extension conduit, and a combined hydraulic and electrical control carried on the extension conduit and configured to be activated by a user to deactivate an electric switch while closing a valve to stop flow through the passageway.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of disposable components of a system for aspirating thrombus according to an embodiment of the present disclosure.



FIG. 2 is a sectional view of a distal end of the aspiration catheter of the system for aspirating thrombus of FIG. 1.



FIG. 3 is a detail view of a y-connector of the aspiration catheter of the system for aspirating thrombus of FIG. 1.



FIG. 4 is a plan view of disposable components of a system for aspirating thrombus according to an embodiment of the present disclosure.



FIG. 5 is a perspective view of the system for aspirating thrombus of FIG. 4.



FIG. 6 is a perspective view of an aspiration tubing set with a control, according to an embodiment of the present disclosure.



FIG. 7 is a plan view of the aspiration tubing sent and control of FIG. 6.



FIG. 8 is a view of the intern components of the control of FIG. 6.



FIG. 9 is an exploded view of the control.



FIG. 10 is an exploded view of some internal components of the control.



FIG. 11 is a sectional view of the control in a closed position, according to an embodiment of the present disclosure.



FIG. 12 is a sectional view of the control in an open position, according to an embodiment of the present disclosure.



FIG. 13 is a sectional view of a control in a closed position, according to an alternative embodiment of the present disclosure.



FIG. 14 is a sectional view of the control of FIG. 13 in an open position.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

A system for aspirating thrombus 2000 is illustrated in FIG. 1. The system for aspirating thrombus 2000 includes three major components: a pump 200, an aspiration catheter 2018, and a tubing set 2003. The aspiration catheter 2018 and the tubing set 2003 represent disposable components 2001, and the pump 200, and the pump's associated pump base, is a reusable component. It is not necessary to sterilize the pump 200 as it may be kept in a non-sterile field or area during use. The aspiration catheter 2018 and the tubing set 2003 may each be supplied sterile, after sterilization by ethylene oxide gas, electron beam, gamma, or other sterilization methods. The aspiration catheter 2018 may be packaged and supplied separately from the tubing set 2003, or the aspiration catheter 2018 and the tubing set 2003 may be packaged together and supplied together. Alternatively, the aspiration catheter 2018 and tubing set 2003 may be packaged separately, but supplied together (i.e., bundled). The aspiration catheter 2018 has a distal end 2020 and includes an over-the-wire guidewire lumen/aspiration lumen 2032 extending between an open distal end 2036, and a proximal end 2019 comprising a y-connector 2010. The catheter shaft 2042 of the aspiration catheter 2018 is connected to the y-connector 2010 via a protective strain relief 2056. In other embodiments, the catheter shaft 2042 may be attached to the y-connector 2010 with a luer fitting. The y-connector 2010 comprises a first female luer 2055 which communicates with a catheter supply lumen 2093 (FIG. 2), and a second female luer 2051 which communicates with the guidewire lumen/aspiration lumen 2032.


A spike 2002 for coupling to a fluid source 20 (e.g., saline bag, saline bottle) allows fluid to enter through an extension tubing 2022 and flow into a supply tube 2030. An optional injection port 2028 allows injection of materials or removal of air, as described in relation to previous embodiments. A cassette 2016 having a moveable piston 2015 is used in conjunction with a mechanical actuator 2017 of the pump 200. Fluid is pumped into an injection tube 2052 from action of the cassette 2016 as applied by the actuator 2017 of the pump 200. A male luer 2054, hydraulically communicating with the catheter supply lumen 2093, via the injection tube 2052, is configured to attach to the female luer 2055 of the y-connector 2010.


Accessories 2057 are illustrated that are intended for applying a vacuum source, such as a syringe 2049 having a plunger 2067 and a barrel 2099, to the aspiration lumen 2032 of the catheter 2018. The syringe 2049 is attached to a vacuum line 2008 via the luer 2065 of the syringe 2049. A stopcock 2047 may be used on the luer 2065 to maintain the vacuum, or alternatively, the plunger 2067 may be a locking variety of plunger that is configured to be locked in the retracted (vacuum) position. A male luer 2053 at the end of the vacuum line 2008 may be detachably secured to the female luer 2051 of the y-connector 2010 of the aspiration catheter 2018. As shown in more detail in FIG. 3, a pressure sensor or transducer 2006 is secured inside an internal cavity 2097 of the y-connector 2010 proximal to the female luer 2055 and the female luer 2051. A valve 2095, for example a Touhy-Borst, at the proximal end of the y-connector 2010 allows hemostasis of the guidewire lumen/aspiration lumen 2032 around a guidewire 2091. In other embodiments, the valve 2095 may comprise a longitudinally spring-loaded seal. The guidewire 2091 may be inserted entirely through the guidewire lumen/aspiration lumen 2032. Signals output from the pressure sensor 2006 are carried through a cable 2012 to a connector 2014. The connector 2014 is plugged into a socket 308 of the pump 200. Pressure related signals may be processed by a circuit board 304 of the pump 200. The pressure transducer 2006 may be powered from the pump 200, via the cable 2012. The accessories 2057 may also be supplied sterile to the user.


A foot pedal 2021 is configured to operate a pinch valve 2023 for occluding or opening the vacuum line 2008. The foot pedal 2021 comprises a base 2025 and a pedal 2027 and is configured to be placed in a non-sterile area, such as on the floor, under the procedure table/bed. The user steps on the pedal 2027 causing a signal to be sent along a cable 2029 which is connected via a plug 2041 to an input jack 2037 in the pump 200. The vacuum line 2008 extends through a portion of the pump 200. The circuit board 304 of the pump may include a controller 303 configured to receive one or more signals indicating on or off from the foot pedal 2021. The controller of the circuit board 304 may be configured to cause an actuator 2031 carried by the pump 200 to move longitudinally to compress and occlude the vacuum line 2008 between an actuator head 2033 attached to the actuator 2031 and an anvil 2035, also carried by the pump 200. By stepping on the pedal 2027, the user is able to thus occlude the vacuum line 2008, stopping the application of a negative pressure. Also, by stepping on the pedal 2027, the user may cause the opposite action, wherein the actuator head 2033 opens the vacuum line 2008, by moving away from the anvil 2035. The anvil 2035 may have a flat (planar) shape, or a U-shape (e.g., semi-cylindrical), or a V-shape (e.g., a V-block) where it contacts the tubing of the vacuum line 2008. Furthermore, the actuator head 2033 may have a flat (planar) shape, or a U-shape (e.g., semi-cylindrical), or a V-shape (e.g., a V-block) where it contacts the vacuum line 2008. The foot pedal 2021 may operate by alternately causing the actuator 2031 to move in a first direction and a second, opposite direction, respectively, with alternate hits on the pedal 2027. In some embodiments, as the pedal 2027 of the foot pedal 2021 is depressed, the controller may be configured to open the pinch valve 2023.


The pressure transducer 2006 thus senses a negative pressure and sends a signal, causing the controller to start the motor 302 of the pump 200. As the effect via the electronics is substantially immediate, the motor 302 starts pumping almost immediately after the pedal 2027 is depressed. As the pedal 2027 of the foot pedal 2021 is released, the controller then causes the pinch valve 2023 to close. The pressure transducer 2006 thus senses that no negative pressure is present and the controller 303 causes the motor 302 of the pump 200 to shut off. Again, the effect via the electronics is substantially immediate, and thus the motor 302 stops pumping almost immediately after the pedal 2027 is depressed. During sterile procedures, the main interventionalist is usually “scrubbed” such that the hands only touch items in the sterile field. However, the feet/shoes/shoe covers are not in the sterile field. Thus again, a single user may operate a switch (via the pedal 2027) while also manipulating the catheter 2018 and guidewire 2091. However, this time, it is the sterile field hands and non-sterile field feet that are used. Alternatively, the foot pedal 2021 may comprise two pedals, one for occlude and one for open. In an alternative foot pedal embodiment, the pedal 2027 may operate a pneumatic line to cause a pressure activated valve or a cuff to occlude and open the vacuum line 2008, for example, by forcing the actuator head 2033 to move. In another alternative embodiment, the pedal 2027 may turn, slide, or otherwise move a mechanical element, such as a flexible pull cable or push rod that is coupled to the actuator 2031, to move the actuator head 2033. The cable 2029 may be supplied sterile and connected to the base 2025 prior to a procedure. The occlusion and opening of the vacuum line 2008 thus acts as an on and off switch for the pump 200 (via the pressure sensor 2006). The on/off function may thus be performed by a user whose hands can focus on manipulating sterile catheters, guidewires, and accessories, and whose foot can turn the pump on and off in a non-sterile environment. This allows a single user to control the entire operation or the majority of operation of the system for aspirating thrombus 2000. This can be an advantage both in terms of a rapid, synchronized procedure, but is also helpful in laboratories where additional assistants are not available. The actuator 2031 and anvil 2035 may be controlled to compress the vacuum line 2008 with a particular force, and the actuator 2031 may be controlled to move at a particular speed, either when compressing or when removing compression. Speed and force control allows appropriate response time, but may also be able to add durability to the vacuum line 2008, for example, by not overcompressing.


The foot pedal 2021 may communicate with the pinch valve 2023 via a wired connection through the pump 200 or may communicate with the pinch valve 2023 wirelessly.


Returning to FIG. 1, the plug 2041 contains an identification component 2043, which may be read by the circuitry (e.g., circuit board 304) coupled to the input jack 2037 of the pump 200. In some embodiments, the identification component 2043 comprises a resistor having a particular value. When the plug 2041 is connected to the input jack 2037, the circuitry of the input jack 2037 sends a current through the resistor, resulting in the pump 200 being electronically placed into a “foot pedal” mode, wherein the foot pedal 2021 can be used to control the operation of the pinch valve 2023. Alternatively, when the plug 2041 is detached from the input jack 2037, and the circuitry is not able to identify the resistor, the pump 200 is placed in a “manual” mode, wherein the pump is controllable only by buttons 232. In other embodiments, instead of a resistor, the identification component 2043 may comprise an RFID (radio-frequency identification) chip, which is read by the circuitry when the plug 2041 is connected to the input jack 2037. In other embodiments, a proximity sensor, such as a Hall-effect device, may be utilized to determine whether the plug 2041 is or is not connected to the input jack 2037.


In should be noted that in certain embodiments, the pinch valve 2023 and the foot pedal 2021 may be incorporated for on/off operation of the pinch valve 2023 on the vacuum line 2008, without utilizing the pressure sensor 2006. In fact, in some embodiments, the pressure sensor 2006 may even be absent from the system for aspirating thrombus 2000, the foot pedal 2021 being used as a predominant control means.


Turning to FIG. 2, a supply tube 2087, which contains the catheter supply lumen 2093, freely and coaxially extends within the over-the-wire guidewire lumen/aspiration lumen 2032. At least a distal end 2089 of the supply tube 2087 is secured to an interior wall 2085 of the guidewire lumen/aspiration lumen 2032 of the catheter shaft 2042 by adhesive, epoxy, hot melt, thermal bonding, or other securement modalities. A plug 2083 is secured within the catheter supply lumen 2093 at the distal end 2089 of the supply tube 2087. The plug 2083 blocks the exit of pressurized fluid, and thus the pressurized fluid is forced to exit through an orifice 2081 in the wall 2079 of the supply tube 2087. The orifice 2081 may comprise a number of different shapes, including but not limited to a circular hole, an oval hole, an elliptical hole, a longitudinally-extending slit, a circumferentially-extending slit, or combinations and modifications thereof. The free, coaxial relationship between the supply tube 2087 and the catheter shaft 2042 along their respective lengths, allows for improved flexibility. In some embodiments, in which a stiffer proximal end of the aspiration catheter 2018 is desired (e.g., for pushability or even torquability), the supply tube 2087 may be secured to the interior wall 2085 of the guidewire lumen/aspiration lumen 2032 of the catheter shaft 2042 along a proximal portion of the aspiration catheter 2018, but not along a distal portion. This may be appropriate if, for example, the proximal portion of the aspiration catheter 2018 is not required to track through tortuous vasculature, but the distal portion is required to track through tortuous vasculature. The free, substantially unconnected, coaxial relationship between the supply tube 2087 and the catheter shaft 2042 along their respective lengths, may also be utilized to optimize flow through the guidewire lumen/aspiration lumen 2032, as the supply tube 2087 is capable of moving out of the way due to the forces of flow (e.g., of thrombus/saline) over its external surface, such that the remaining inner luminal space of the guidewire lumen/aspiration lumen 2032 self-optimizes, moving toward the lowest energy condition (least fluid resistance) or toward the largest cross-sectional space condition (e.g., for accommodating and passing pieces of thrombus).


A system for aspirating thrombus 400 is illustrated in FIGS. 4-5. An aspiration catheter 406 is similar to the aspiration catheter 2018 of FIGS. 1-3. The aspiration catheter 406 is configured for aspirating thrombus from peripheral vessels, but may also be configured with a size for treating coronary, cerebral, pulmonary or other arteries, or veins. The aspiration catheter 406/system 400 may be used in interventional procedures, but may also be used in surgical procedures. The aspiration catheter 406/system 400 may be used in vascular procedures, or non-vascular procedures (other body lumens, ducts, or cavities). The catheter 406 comprises an elongate shaft 423 configured for placement within a blood vessel of a subject; a catheter supply lumen 2093 (FIG. 2) and a guidewire/aspiration lumen 2032, each extending along the shaft, the supply lumen 2093 having a proximal end 2011 and a distal end 2009, and the aspiration lumen 2032 having a proximal end 2005 (FIG. 3) and an open distal end 2036 (FIG. 2); and an orifice or opening 2081 at or near the distal end 2009 of the supply lumen 2093, the opening configured to allow the injection of pressurized fluid into the aspiration lumen 2032 at or near the distal end 2036 of the aspiration lumen 2032 when the pressurized fluid is pumped through the supply lumen 2093. In some embodiments, the orifice or opening 2081 may be located proximal to the distal end 2009 of the supply lumen 2093. In some embodiments, the distal end 2009 of the supply lumen 2093 may comprise a plug 2083. A pump set 404 (e.g., tubing set) is configured to hydraulically couple the supply lumen 2093 to a pump within a saline drive unit (SDU) 411, for injecting pressurized fluid (e.g., saline, heparinized saline) through the supply lumen 2093. Suction tubing 408, comprising sterile suction tubing 419 and non-sterile suction tubing 420, is configured to hydraulically couple a vacuum canister 407 to the aspiration lumen 2032. A filter 418 may be carried in-line on the suction tubing 408, for example, connected between the sterile suction tubing 419 and the non-sterile suction tubing 420, or on the non-sterile suction tubing 420. The filter 418 is configured to capture large elements such as large pieces of thrombus or emboli.


The pump set 404 includes a saline spike 402 for connection to a port 602 of a saline bag 401, and an inline drip chamber 403 for visually assessing the movement of saline, as well as keeping air out of the fluid being injected. The saline bag 401 may be hung on an IV pole 405 on one or more hooks 608. A pressure sensor 604 such as a vacuum sensor may be used within any lumen of the pump set 404, the suction tubing 408, the supply lumen 2093 or aspiration lumen 2032 of the catheter 406, or any other component which may see fluid flow. The pressure sensor 604 is shown in FIG. 4 within a lumen at a junction between a first aspiration tube 606 and a control 409. A cable 412 carries signals output from the pressure sensor 604 to a controller 493 in the SDU 411. A connector 439, electrically connected to the cable 412, is configured to be detachably coupled to a mating receptacle 492 (e.g., input jack) in the SDU 411. The SDU 411 also may have a display 413, including an LCD screen or alternative screen or monitor, in order to visually monitor parameters and status of a procedure. In alternative embodiments, the pressure sensor 604 may be replaced by another type of sensor that is configured to characterize fluid flow. In some embodiments, the sensor is a flow sensor, such as a Doppler flow velocity sensor.


Aspirant (e.g., clot, thrombus, blood) that is evacuated from the patient through the aspiration lumen 2032 is collected in the vacuum canister 407. The canister is held in a canister mount 421 carried by the IV pole 405, or alternatively carried by any other part of the system 400. The vacuum canister 407 comprises a receptacle 610 and a lid 612 configured to snappingly cover a portion of the receptacle 610 to close the interior 676 of the receptacle 610. Alternatively, the lid 612 may couple to the receptacle 610 by screwing, clipping, friction fitting, or other manners. The SDU 411 is held on a mount 614 by four locking knobs 414. The mount 614 is secured to a telescoping rod 422 that is adjustable from a cart base 410 via a cart height adjustment knob or other element 417. The mount 614 and a handle 415 are secured to the rod 422 via an inner post 616 that is insertable and securable within an inner cavity in the rod 422. The IV pole 405 secures to the mount 614 via a connector 618. The base 410 includes legs 424 having wheels 425 (e.g., three or more wheels or four or more wheels) and is movable via the handle 415, for instance. The system 400 may also carry a basket 416 for placement of components, products, documentation, or other items.


In use, a user connects a first connector 620 at a first end 624 of the suction tubing 420 to a port 622 on the lid 612 of the canister 407, and connects a second connector 441 at a second end 626 of the suction tubing 420 to a vacuum pump input 628 in the SDU 411. A vacuum pump 630 may be carried within the SDU 411 in order to maintain a vacuum/negative pressure within the canister 407. Alternatively, the vacuum inside the canister 407 may be maintained manually, without a vacuum pump, by evacuating the canister 407 via one or more additional ports 632. A user connects a first connector 440 of the sterile suction tubing 419 to an aspiration luer 634 of the aspiration catheter 406 (similar to luer 2051), and connects a second connector 441 of the sterile suction tubing 419 to port 636 in the lid 612 of the canister 407. Connector 439 is then coupled to the mating receptacle in the SDU 411 for communication with the control 409 and/or the pressure sensor 604. For instance, the connector 439 can be snapped into mating receptacle 492 in the SDU 411 for communication with elements of the control 409 and/or for communication with the pressure sensor 604, either via cable 412, and/or additional cables or wires. The control 409 is configured for controlling the operation of the system and will be described in more detail herein. Alternatively, the connector 439 may couple to the mating receptacle 492 by clipping, friction fitting, vacuum fitting, or other manners.


After allowing saline to purge through the supply tube 638, cassette 642, and injection tube 640 of the pump set 404, the user connects the luer connector 644 of the pump set 404 to a luer 646 of the aspiration catheter 406 (similar to luer 2055). The cassette 642 (similar to cassette 2016) is then attached to a saddle 648 in the SDU 411. The saddle 648 is configured to reciprocate a piston to inject the saline from the IV bag 401 at high pressure, after the cassette 2016 is snapped in place, keeping the internal contents (e.g., saline) sterile. Systems configured for performing this type of sterile injection of high pressure saline are described in U.S. Pat. No. 9,883,877, issued Feb. 6, 2018, and entitled, “Systems and Methods for Removal of Blood and Thrombotic Material”, which is incorporated by reference in their entirety for all purposes. The SDU 411 is enclosed within a case 650 and a case lid 652. The controller 493 may reside on a circuit board 654. Noise from a motor 656 controlling the saddle 648 and from the vacuum pump 630 is abated by internal foam sections 658, 660. The saddle 648 may be moved directly by the motor 656, or may be moved with pneumatics, using a cycled pressurization. An interface panel 662 provides one or more switch 664 and the display 413. Alternatively, the cassette 2016 may couple to the saddle 648 by clipping, friction fitting, vacuum fitting, or other manners.



FIGS. 6-12 illustrate an aspiration tubing set 444 comprising sterile suction tubing 419 and the control 409. A housing 443 comprises a first housing half 426 and a second housing half 427, each configured to house several components, and to close on one another, and to attach to one another. The halves 426, 427 may be bonded together with adhesive, epoxy, or fused with ultrasonic welding or solvent welding, or may be secured together with screws or other connecting elements. As shown in FIG. 6, an aspiration passage from the aspiration lumen 2032 of the aspiration catheter 406 extends from left to right. A first connector 440 may be a luer fitting configured to sealingly attach to the luer 2051. However, alternatively, the luer 2051 may be replaced by a barb and the first connector 440 may be a suction connector, for example a 22 French silicone suction connector. The first connector 440 is sealingly secured to a first end 445 of a first sterile suction tubing 419a, which extends into an inlet 446 of the control 409 at its second end 447. The inlet 446 comprises a hole within an end cover 429 that attaches to an end of the halves 426, 427. The second end 447 is frictionally slid over a barb 599 of an elbow fitting 434, which includes an inner passage 448 having a 90° curve 449. In some embodiments, the curve 449 may comprise an acute angle, such as an angle between about 10° and about 80°, or between about 20° and about 70°, or between about 30° and about 60°. The inner passage 448 of the elbow fitting 434 has an inlet 450 and an outlet 451 (see FIG. 10). Surrounding the outlet 451 is a concave radiused surface 452 configured to be sealingly bonded to a convex cylindrical surface 453 on a custom syringe barrel (piston cylinder) 437. An entry orifice 454 passes through a wall 478 of the cylinder 437, starting at the surface 453. In some embodiments, the elbow fitting 434 and the cylinder 437 may be monolithic. For example, they may comprise a single injection-molded or 3D-printed component (or using other additive fabrication methods). A first end 457 of a second sterile suction tubing 419b is frictionally fit over an outer cylindrical surface 455 on a hub 456 of the cylinder 437. In some embodiments, an adhesive, epoxy, or welding may be used to seal the internal wall surface of the tubing 419b to the outer cylindrical surface 455, though the friction fit is sufficient for resisting −1 atmosphere of vacuum. In an alternative embodiment, the hub 456 includes a barb. In a further alternative embodiment, shown in FIGS. 11-12, the first end 457 may be flared and bonded and/or wedged between the halves 426, 427.


At a second end 458 of the tubing 419b, a second connector 441 is sealingly bonded. The second connector 441 may be a suction connector, for example a 30 French silicone suction connector. The second connector 441 may be configured to sealingly connect to a port of the cannister 407, or to an intermediate tube that is then attached to the canister 407, or to the filter 418. Thus, from the first connector 440 to the second connector 441, a continuous, contained aspiration passageway 459 is formed. As shown in FIG. 12 by an S-shaped arrow, the passageway 459 comprises an S-duct 460 that is formed by the combination of the suction tubing 419a, the elbow fitting 434, the cylinder 437, and the suction tubing 419b. The passageway 459 is configured for the transport of thrombus and blood from the aspiration lumen 2032 of the aspiration catheter 406 to the canister 407.


Referring to FIGS. 11-12, the S-duct 460 provides the interior space of a valve 461, via the sliding of a plunger 433 that is carried by a piston body 432, thus forming a piston 462 structure. The piston body 432 may comprise a rigid polymer, such as a polyamide. FIG. 11 illustrates the valve 461 in a closed position, stopping flow through the passageway 459, and FIG. 12 illustrates the valve 461 in an open position, allowing flow through the passageway 459. The plunger 433 is snapped onto a barb 463 at a first end 464 of the piston body 432, and is configured to move in unison with the piston body 432 within a cylindrical cavity 465 (FIG. 10) within the cylinder 437, the cylindrical cavity 465 (FIG. 10) having an internal volume. Alternatively, the plunger 433 may couple to the piston body 432 by screwing, clipping, friction fitting, or other manners. A slider 430 includes a concavity 466 for engaging the finger of a user and includes a hole 467 (FIGS. 11-12) into which a first end 468 of a spring pin 436 is frictionally engaged. Alternatively, the spring pin 436 may be bonded into the hole 467. The spring pin 436 is configured to be slidable, back-and-forth within an elongate slot 470 in the cylinder 437. The second end 469 of the spring pin 436 is frictionally engaged into a hole 471 in the piston body 432. The housing 443 includes a handle 472 extending transversely therefrom, and configured for holding or grasping (e.g., by the user's hand or one or more fingers) in opposition to the concavity 466 of the slider 430. Thus, by forcing the slider 430 to move relative to the housing 443 toward the handle 472, in the direction of the arrow 666 that is molded or otherwise marked on the side 669 of the first half 426, the piston body 432 is retracted, bringing the plunger 433 with it, and thus changing the valve 461 from the closed position of FIG. 11 to the open position of FIG. 12.


The piston body 432 further includes a cantilever beam 473 extending longitudinally from a second end 474 of the piston body 432 and terminating in a free beam end 475 having a locking tab 476. When the valve 461 is in its open position, the locking tab 476 is configured to extend out through a locking hole 477 in the wall 478 of the cylinder 437. Because the valve 461 is open, the negative pressure within the passageway 459 sucks, and thus pulls, the plunger 433 (and thus, the piston body 432) in the opposite direction from the arrow 666 on the first half 426 of the housing 443. Thus, with features best seen in FIG. 9, an extreme edge 479 of the locking tab 476 stops against a distal ledge 480 of the locking hole 477, maintaining and locking the valve 461 in the open position. An unlocking assembly 481, comprising a casing 482 and a button 431, is slidable within a cavity 668 of the handle 472 in a direction generally transverse to longitudinal axis L of the cylinder 437/piston body 432 (FIG. 8). A user may voluntarily unlock the piston body 432 from the cylinder 437 by pressing the button 431 in direction D, causing an engagement pin 483 of the unlocking assembly 481 to push the locking tab 476 transversely inward (also generally in direction D) while causing the cantilever beam 473 to flex or deflect, thus moving the entirety of the locking tab 476 into the cylinder 437, fully free of the locking hole 477, and no longer engaged with the distal ledge 480. Therefore, the negative pressure within the passageway 459 is now able to cause the plunger 433 (and thus, the piston body 432) to move in the opposite direction from the arrow 666 such that the valve 461 forcibly closes. The plunger 433 being sealingly forced against an interior annular edge 670 at the end of the cylinder 437. In this closed position, the locking tab 476 is moved to a position adjacent a resting hole 484 (FIG. 9), and the spring memory of the cantilever beam 473 causes the locking tab 476 to move transversely (generally opposite direction D), and through the resting hole 484. The negative pressure within the passageway 459 forces the plunger 433/piston body 432, with some compression of the elastomeric plunger 433 material, such that the extreme edge 479 of the locking tab 476 is stopped against a resting ledge 485, thus freezing the piston body 432 in a single position with the valve 461 closed. Flow through the passageway 459 is thus interrupted. A compression spring 496 may be carried on a shaft 497 below the button 431 to cause the button 431 and the unlocking assembly 481 to return to the original position after the button 431 is depressed and then released.


An electrical switch 438 is carried within a groove 486 of the end cover 429 and includes a spring-loaded, displaceable switch button 487. When the valve 461 is opened, the piston body 432 is slid toward the switch 438 such that an annular edge 488 of the second end 474 of the piston body 432 engages and moves the switch button 487, thus activating the electrical switch 438. In some embodiments, the activation of the electrical switch 438 causes the pump of the SDU 411 to start injecting pressurized fluid through the supply lumen 2093 of the catheter 406. In some embodiments, the deactivation of the electrical switch 438 causes the pump of the SDU 411 to stop. The movement of the piston body toward the direction in which the valve 461 is closed causes the annular edge 488 to move away from and stop engaging the switch button 487, thus shutting off the switch. In some embodiments, the electrical switch 438 may comprise an SPST-NO switch. Thus, the opening and closing of the valve 461 and the turning on and off of the pump of the SDU 411 are synchronized together by a combination electric and hydraulic switch comprised by the control 409. In manual operation, a user opens the valve 461 and also turns on the pump of the SDU 411 by moving the slider 430. The user then closes the valve 461 and turns off the pump of the SDU 411 by pushing the button 431. The controller 493 is configured to receive the signal from the switch 438, and to turn the pump of the SDU 411 to start (or stop) immediately, or with a particular delay time.


An emergency shut-off is provided by a solenoid 435 within the unlocking assembly 481, and a pressure sensor 428 configured to measure the pressure within the passageway 459. Turning to FIG. 10, the pressure sensor 428 includes a sensing portion 489 which is inserted through a hole 490 in the elbow fitting 434. The surrounding portions of the pressure sensor 428 and the elbow fitting 434 are then sealed with epoxy, adhesive, or other means. Thus, the pressure sensor 428 is capable of measuring the pressure within inner passage 448 of the elbow fitting 434 and outputting a signal related to the measured parameter. Alternatively, the pressure sensor 428 (or another pressure sensor) can be configured to measure the pressure in another location along the passageway 459, or even in the aspiration lumen 2032 of the catheter 406. A wire conduit 442 extends in parallel along the suction tubing 419b and carries on or more or two or more conductors 491. The conductors 491 may each comprise insulated copper wire. The conductors 491 are configured to deliver power and/or to carry signals to and from the pressure sensor 428, the switch 438, and the solenoid 435, as well as the additional pressure sensor 604, if used. As mentioned, at the second end 458 of the tubing 419b, the conductors 491 terminate via electrical connection to a modular plug connector 439 that is configured to snap into the mating receptacle 492 in the SDU 411 (FIG. 4). The connector 439 may in some embodiments be an eight position, eight contact (8p8c) connector.


While the valve 461 is in the open position and the pump of the SDU 411 is operating (e.g., via the saddle 648), a malfunction may occur that causes a loss in negative pressure within the passageway 459. The user may not realize that this has happened, and thus the potentially hazardous situation of injecting the pressurized fluid without any aspiration may occur. The pressure sensor 428 inputs to the controller 493, which is configured to recognize when an unacceptable pressure is being read (e.g., insufficient level of vacuum). The controller 493 is configured to temporarily energize the solenoid 435, which causes the engagement pin 483 of the unlocking assembly 481 to telescopically extend from the solenoid 435, thus electromagnetically energizing the solenoid 435 to move the locking tab 476 transversely inward (direction D) while causing the cantilever beam 473 to flex, pushing the entirety of the locking tab 476 within the cylinder 437, free of the locking hole 477. This allows the valve 461 to close and the pump of the SDU 411 to be immediately shut off, avoiding the potentially hazardous situation. A spring 494 and retaining ring 495 are shown in FIG. 9 and are configured to return the engagement pin 483 to its unextended position, after the controller 493 stops energizing the solenoid 435. Other safety features related to system shut-down, or other automatic system responses, may be utilized, such as those described in U.S. Pat. No. 10,716,583, issued Jul. 21, 2020, and entitled, “Systems and Methods for Removal of Blood and Thrombotic Material”, U.S. Pat. No. 10,492,805, issued Dec. 3, 2019, and entitled, “Systems and Methods for Thrombosis and Delivery of an Agent” or U.S. Pat. App. Pub. No. 2018/0207397, published Jul. 26, 2018, and entitled, “Systems and Methods for Removal of Blood and Thrombotic Material”, all of which are incorporated by reference in their entirety for all purposes.


Returning to FIG. 5, a solenoid 672 is carried internally in the SDU 411, and is configured to interface with the interior 676 of the canister 407, via the suction tubing 408, or via any additional tubing. The solenoid 672 is configured to vent the negative pressure inside the canister 407, by opening a valve 674 coupled to the solenoid (mechanically or electromagnetically) that opens the interior 676 of the canister 407 to ambient pressure. The venting allows any foaming of blood or fluid, such as any aspirated liquid, within the canister 407 to be reduced. Foaming can occur during a thrombolysis procedure due to cavitation, as air bubbles are formed. The solenoid 672 is then configured to close the valve 674, to allow negative pressure to again be built up within the interior 676 of the canister 407. The controller 493 is configured to automatically energize the solenoid 672, in order to allow for the degassing/defoaming. For example, the controller 493 may send a signal to energize the solenoid 672 based on the measurement of a targeted negative pressure and/or a targeted time of aspiration cycle. In other cases, the controller 493 can send a signal to energize the solenoid 672 every minute, every five minutes, every ten minutes, etc. Additionally, a user can operate the controller 493, and more generally the controller 303, of the system 400 through the interface panel 662 to initiate degassing/defoaming of the interior 676. The venting may also be able to remove air bubbles inside the other lumens of the catheter and tubing sets.


In some embodiments, the controller 493 can output or send a signal to energize the solenoid 672 to open the valve 674, in order to stop any aspiration, while still allowing the SDU 411 to deliver saline, medication, or saline combined with medication (e.g., thrombolytic drugs), so that the fluids can be delivered out of the open distal end 2036 (instead of being aspirated through the aspiration lumen 2032).



FIGS. 13-14 illustrate an alternative control 509 that generally contains the same components as the control 409, except for certain alternative or additional parts, including a modified piston body 532 and a modified cylinder 537. The cantilever beam 573 extends away from the plunger 433 instead of toward it. The cantilever beam 573 is also on an opposite (e.g., lower) side 531 of the cylinder 537 than the slider 430, which is on the upper side 533. The cantilever beam 573 is attached to the cylinder 537 at its proximal end 535. The resting hole 584 and resting ledge 585, as well as the locking hole 577 and the distal ledge 580, are on the opposite side 531 of the cylinder 537 than is the elongate slot 570, which is on the upper side 533. Note: that “upper” and “lower” are used in this case to denote opposites, and should not be considered to limit the manner in which the control 509 is intended to be held. It may be held in a number of orientations, depending upon the preference of the user. Whereas in the control 409, the annular edge 488 of the second end 474 of the piston body 432 engages and moves the switch button 487 and activates the electrical switch 438, in the control 509, the tip 598 of the locking tab 576 moves the switch button 487, when the piston body 432 is moved toward the switch 438. It should be noted that in either the control 409 or the control 509, instead of a cantilever beam 473, 573 having locking tabs 476, 576, any other structure or structures may be used that allows for locking and unlocking.


In a further alternative embodiment, the control 409 or control 509 may be configured to be foot-operated instead of hand-operated. Representative foot pedals for achieving this may also utilize features as described in U.S. Pat. App. Pub. No. 2018/0207397, published Jul. 26, 2018, and entitled, “Systems and Methods for Removal of Blood and Thrombotic Material”.


Although the systems for aspirating thrombus described herein are predominantly focused on aspiration, the systems may also, or alternatively, be configured for injecting or infusing fluids, with or without drugs, and may incorporate related features described in U.S. Pat. No. 10,716,583, issued Jul. 21, 2020, and entitled, “Systems and Methods for Removal of Blood and Thrombotic Material” and U.S. Pat. No. 10,492,805, issued Dec. 3, 2019, and entitled, “Systems and Methods for Thrombosis and Delivery of an Agent”.


It is contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the embodiments. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed embodiments. Thus, it is intended that the scope of the present disclosure herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the present disclosure is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the present disclosure is not to be limited to the particular forms or methods disclosed, but to the contrary, the present disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication.


The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.


For purposes of the present disclosure and appended claims, the conjunction “or” is to be construed inclusively (e.g., “an apple or an orange” would be interpreted as “an apple, or an orange, or both”; e.g., “an apple, an orange, or an avocado” would be interpreted as “an apple, or an orange, or an avocado, or any two, or all three”), unless: (i) it is explicitly stated otherwise, e.g., by use of “either . . . or,” “only one of,” or similar language; or (ii) two or more of the listed alternatives are mutually exclusive within the particular context, in which case “or” would encompass only those combinations involving non-mutually-exclusive alternatives. For purposes of the present disclosure and appended claims, the words “comprising,” “including,” “having,” and variants thereof, wherever they appear, shall be construed as open-ended terminology, with the same meaning as if the phrase “at least” were appended after each instance thereof.

Claims
  • 1. A method of controlling aspiration by an aspiration catheter, the method comprising: positioning an extension conduit between a negative pressure source and the aspiration catheter, the extension conduit comprising a combined hydraulic and electrical control disposed between a first conduit and a second conduit, the combined hydraulic and electrical control providing a fluid passageway between the first conduit, which is in fluid communication with the negative pressure source, and the second conduit, which is in fluid communication with the aspiration catheter; andactivating a first control interface of the combined hydraulic and electrical control to both open the passageway to cause the second conduit to fluidly communicate with the negative pressure source and activate a switch to cause delivery of a pressurized fluid through the aspiration catheter,wherein activating the first control interface further comprises moving a control body within a housing of the combined hydraulic and electrical control from a first position to a second position to open the passageway and locking a control body in the second position to maintain the passageway in an open state.
  • 2. The method of claim 1, wherein activating the first control interface further comprising causing a pump to pump the fluid through a supply lumen of the aspiration lumen.
  • 3. The method of claim 2, wherein the combined hydraulic and electrical control electrically communicates with a drive unit comprising the pump, and causing the pump to pump comprises sending a signal from the switch to the drive unit.
  • 4. The method of claim 1, further comprising releasing a control body from the second position to close the passageway.
  • 5. The method of claim 4, wherein releasing the control body further comprises moving a locking tab to release the control body.
  • 6. The method of claim 5, further comprising moving the locking tab so that the negative pressure in the passageway moves the control body to close the passageway.
  • 7. The method of claim 6, further comprising moving a plunger on a first end of a piston within a housing of the combined hydraulic and electrical control to close the passageway.
  • 8. The method of claim 4, wherein releasing the control body comprise activating one of a hand-operatable interface, a foot-operatable interface, a solenoid, or an operator-contact-operated interface and a solenoid.
  • 9. A method of controlling aspiration by an aspiration catheter, the method comprising: positioning an extension conduit between a negative pressure source and the aspiration catheter, the extension conduit comprising a combined hydraulic and electrical control disposed between a first conduit and a second conduit, the combined hydraulic and electrical control providing a fluid passageway between the first conduit, which is in fluid communication with the negative pressure source, and the second conduit, which is in fluid communication with the aspiration catheter; andactivating a first control interface of the combined hydraulic and electrical control to both open the passageway to cause the second conduit to fluidly communicate with the negative pressure source and activate a switch to cause delivery of a pressurized fluid through the aspiration catheter,wherein, activating the first control interface further comprises moving a control body within a housing of the combined hydraulic and electrical control and moving a locking tab to release the control body.
  • 10. The method of claim 9, wherein activating the first control interface further comprises moving the control body within the housing of the combined hydraulic and electrical control from a first position to a second position to open the passageway.
  • 11. The method of claim 10, further comprising releasing the control body from the second position to close the passageway.
  • 12. The method of claim 11, wherein releasing the control body comprises activating one of a hand-operatable interface, a foot-operatable interface, a solenoid, or an operator-contact-operated interface and a solenoid.
  • 13. The method of claim 9, further comprising moving a plunger on a first end of a piston within the housing of the combined hydraulic and electrical control to close the passageway.
  • 14. A method of controlling aspiration by an aspiration catheter, the method comprising: positioning an extension conduit between a negative pressure source and the aspiration catheter, the extension conduit comprising a combined hydraulic and electrical control disposed between a first conduit and a second conduit, the combined hydraulic and electrical control providing a fluid passageway between the first conduit, which is in fluid communication with the negative pressure source, and the second conduit, which is in fluid communication with the aspiration catheter; andactivating a first control interface of the combined hydraulic and electrical control to both open the passageway to cause the second conduit to fluidly communicate with the negative pressure source and activate a switch to cause delivery of a pressurized fluid through the aspiration catheter,wherein, activating the first control interface further comprises moving a control body within a housing of the combined hydraulic and electrical control and moving a locking tab operatively associated with the control body so that the negative pressure in the passageway moves the control body to close the passageway.
  • 15. The method of claim 14, wherein activating the first control interface further comprises moving the control body within the housing of the combined hydraulic and electrical control from a first position to a second position to open the passageway.
  • 16. The method of claim 15, further comprising releasing the control body from the second position to close the passageway.
  • 17. The method of claim 16, wherein releasing the control body comprises activating one of a hand-operatable interface, a foot-operatable interface, a solenoid, or an operator-contact-operated interface and a solenoid.
  • 18. The method of claim 14, further comprising moving a plunger on a first end of a piston within the housing of the combined hydraulic and electrical control to close the passageway.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/671,462, filed Feb. 14, 2022, which claims the benefit of and priority to U.S. Provisional Patent Application No. 63/149,623, filed on Feb. 15, 2021, which are incorporated by reference herein in their entireties for all purposes. Priority is claimed pursuant to 35 U.S.C. § 119 and 35 U.S.C. § 120.

US Referenced Citations (727)
Number Name Date Kind
1114268 Kells Oct 1914 A
1144268 Vickery Jun 1915 A
1148093 Kells Jul 1915 A
2804075 Borden Aug 1957 A
3429313 Romanelli Feb 1969 A
3494363 Jackson Feb 1970 A
3589363 Banko et al. Jun 1971 A
3620650 Shaw Nov 1971 A
3631847 Hobbs Jan 1972 A
3693613 Kelman Sep 1972 A
3707967 Kitrilakis et al. Jan 1973 A
3748435 Reynolds Jul 1973 A
3807401 Bennett et al. Apr 1974 A
3818913 Wallach Jun 1974 A
3847140 Ayella Nov 1974 A
3916892 Hansen et al. Nov 1975 A
3918453 Leonard Nov 1975 A
3930505 Wallach Jan 1976 A
3955573 Hansen et al. May 1976 A
4030503 Clark, III Jun 1977 A
4274411 Dotson, Jr. Jun 1981 A
4299221 Phillips et al. Nov 1981 A
4465470 Kelman Aug 1984 A
4573476 Ruiz Mar 1986 A
4574812 Arkans Mar 1986 A
4638539 Palmer Jan 1987 A
4690672 Veltrup Sep 1987 A
4700705 Kensey et al. Oct 1987 A
4702733 Wright et al. Oct 1987 A
4715853 Prindle Dec 1987 A
4728319 Masch Mar 1988 A
4740203 Hoskins et al. Apr 1988 A
4747821 Kensey et al. May 1988 A
4747834 Prindle May 1988 A
4770654 Rogers et al. Sep 1988 A
4784157 Halls et al. Nov 1988 A
4790813 Kensey Dec 1988 A
4832685 Haines May 1989 A
4842579 Shiber Jun 1989 A
4854325 Stevens Aug 1989 A
4857046 Stevens et al. Aug 1989 A
4883458 Shiber Nov 1989 A
4883467 Franetzki et al. Nov 1989 A
4886490 Shiber Dec 1989 A
4886507 Patton et al. Dec 1989 A
4894051 Shiber Jan 1990 A
4898574 Uchiyama et al. Feb 1990 A
4957482 Shiber Sep 1990 A
4979939 Shiber Dec 1990 A
4998919 Schnepp-Pesch et al. Mar 1991 A
5002553 Shiber Mar 1991 A
5007896 Shiber Apr 1991 A
5011468 Lundquist et al. Apr 1991 A
5011488 Ginsburg Apr 1991 A
5024651 Shiber Jun 1991 A
5055109 Gould et al. Oct 1991 A
5057098 Zelman Oct 1991 A
5064428 Cope et al. Nov 1991 A
5073164 Hollister et al. Dec 1991 A
5073168 Danforth Dec 1991 A
5074841 Ademovic et al. Dec 1991 A
5078722 Stevens Jan 1992 A
5091656 Gahn Feb 1992 A
5125893 Dryden Jun 1992 A
5129887 Euteneuer et al. Jul 1992 A
5135482 Neracher Aug 1992 A
5135531 Shiber Aug 1992 A
5158564 Schnepp-Pesch et al. Oct 1992 A
5163433 Kagawa et al. Nov 1992 A
5195954 Schnepp-Pesch et al. Mar 1993 A
5197795 Mudrovich Mar 1993 A
5197951 Mahurkar Mar 1993 A
5234407 Teirstein et al. Aug 1993 A
5242404 Conley et al. Sep 1993 A
5243997 Uflacker et al. Sep 1993 A
5248297 Takase Sep 1993 A
5254085 Cleveland Oct 1993 A
5261877 Fine et al. Nov 1993 A
5284486 Kotula et al. Feb 1994 A
5290247 Crittenden Mar 1994 A
5306244 Shiber Apr 1994 A
5312427 Shturman May 1994 A
5318518 Plechinger et al. Jun 1994 A
5318529 Kontos Jun 1994 A
5320604 Walker et al. Jun 1994 A
5322504 Doherty et al. Jun 1994 A
5324263 Kraus et al. Jun 1994 A
5325868 Kimmelstiel Jul 1994 A
5327906 Fideler Jul 1994 A
5334211 Shiber Aug 1994 A
5342293 Zanger Aug 1994 A
5342306 Anthony Aug 1994 A
5356375 Higley Oct 1994 A
5368555 Sussman et al. Nov 1994 A
5370609 Drasler et al. Dec 1994 A
5385562 Adams et al. Jan 1995 A
5389072 Mran Feb 1995 A
5392778 Horzewski Feb 1995 A
5395315 Griep Mar 1995 A
5403274 Cannon Apr 1995 A
5403276 Schechter et al. Apr 1995 A
5413561 Fischell et al. May 1995 A
5419772 Teitz et al. May 1995 A
5421826 Crocker et al. Jun 1995 A
5429601 Conley et al. Jul 1995 A
5443078 Uflacker Aug 1995 A
5443443 Shiber Aug 1995 A
5476450 Ruggio Dec 1995 A
5478331 Heflin et al. Dec 1995 A
5486183 Middleman et al. Jan 1996 A
5490837 Blaeser et al. Feb 1996 A
5496267 Drasler et al. Mar 1996 A
5507738 Ciervo Apr 1996 A
5524180 Wang et al. Jun 1996 A
5524635 Uflacker et al. Jun 1996 A
5527274 Zakko Jun 1996 A
5536242 Willard et al. Jul 1996 A
5538002 Boussignac et al. Jul 1996 A
5562692 Bair Oct 1996 A
5569275 Kotula et al. Oct 1996 A
5577674 Altonji et al. Nov 1996 A
5605545 Nowosielski et al. Feb 1997 A
5606968 Mang Mar 1997 A
5624394 Barnitz et al. Apr 1997 A
5626563 Dodge et al. May 1997 A
5634475 Wolvek Jun 1997 A
5647847 Lafontaine et al. Jul 1997 A
5653696 Shiber Aug 1997 A
5660180 Malinowski et al. Aug 1997 A
5669876 Schechter et al. Sep 1997 A
5695507 Auth et al. Dec 1997 A
5709661 Van et al. Jan 1998 A
5713849 Bosma et al. Feb 1998 A
5713851 Boudewijn et al. Feb 1998 A
5713878 Moutafis et al. Feb 1998 A
5730717 Gelbfish Mar 1998 A
5735535 McCombs et al. Apr 1998 A
5766191 Trerotola Jun 1998 A
5772674 Nakhjavan Jun 1998 A
5785685 Kugler et al. Jul 1998 A
5795322 Boudewijn Aug 1998 A
5795332 Lucas et al. Aug 1998 A
5810770 Chin et al. Sep 1998 A
5827229 Auth et al. Oct 1998 A
5827243 Palestrant Oct 1998 A
5833644 Zadno-Azizi et al. Nov 1998 A
5843022 Willard et al. Dec 1998 A
5843051 Adams et al. Dec 1998 A
5853384 Bair Dec 1998 A
5855567 Reesemann Jan 1999 A
5868702 Stevens et al. Feb 1999 A
5871462 Yoder et al. Feb 1999 A
5876414 Straub Mar 1999 A
5885238 Stevens et al. Mar 1999 A
5885244 Leone et al. Mar 1999 A
5893857 Shturman et al. Apr 1999 A
5895398 Wensel et al. Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5908395 Stalker et al. Jun 1999 A
5910252 Truitt et al. Jun 1999 A
5911722 Adler et al. Jun 1999 A
5916192 Nita et al. Jun 1999 A
5921958 Ressemann et al. Jul 1999 A
5938645 Gordon Aug 1999 A
5941871 Adams et al. Aug 1999 A
5944686 Patterson et al. Aug 1999 A
5957901 Mottola et al. Sep 1999 A
5989210 Morris et al. Nov 1999 A
5989271 Bonnette et al. Nov 1999 A
6001112 Taylor Dec 1999 A
6007513 Anis et al. Dec 1999 A
6019728 Iwata et al. Feb 2000 A
6022336 Zadno-Azizi et al. Feb 2000 A
6027460 Shturman Feb 2000 A
6039078 Tamari Mar 2000 A
6080170 Nash et al. Jun 2000 A
6090118 McGuckin, Jr. Jul 2000 A
6096001 Drasler et al. Aug 2000 A
6101406 Hacker et al. Aug 2000 A
6126635 Simpson et al. Oct 2000 A
6129697 Drasler et al. Oct 2000 A
6129698 Beck Oct 2000 A
6146355 Biggs Nov 2000 A
6146396 Konya et al. Nov 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6159230 Samuels Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6176844 Lee Jan 2001 B1
6179809 Khairkhahan et al. Jan 2001 B1
6179851 Barbut et al. Jan 2001 B1
6183432 Milo Feb 2001 B1
6190357 Ferrari et al. Feb 2001 B1
6196989 Padget et al. Mar 2001 B1
6206898 Honeycutt et al. Mar 2001 B1
6216573 Moutafis et al. Apr 2001 B1
6224570 Le et al. May 2001 B1
6224585 Pfeiffer May 2001 B1
6238405 Findlay et al. May 2001 B1
6258061 Drasler et al. Jul 2001 B1
6283719 Frantz et al. Sep 2001 B1
6293960 Ken Sep 2001 B1
6331171 Cohen Dec 2001 B1
6348040 Stalker et al. Feb 2002 B1
6375635 Moutafis et al. Apr 2002 B1
6423032 Parodi Jul 2002 B2
6440148 Shiber Aug 2002 B1
6454741 Muni et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6471683 Drasler et al. Oct 2002 B2
6481439 Lewis et al. Nov 2002 B1
6488672 Dance et al. Dec 2002 B1
6508823 Gonon Jan 2003 B1
6511454 Nakao et al. Jan 2003 B1
6533772 Sherts et al. Mar 2003 B1
6544209 Drasler et al. Apr 2003 B1
6544231 Palmer et al. Apr 2003 B1
6551302 Rosinko et al. Apr 2003 B1
6554794 Mueller et al. Apr 2003 B1
6554799 Hatamura et al. Apr 2003 B1
6558366 Drasler et al. May 2003 B1
6558401 Azizi May 2003 B1
6569147 Evans et al. May 2003 B1
6569148 Bagaoisan et al. May 2003 B2
6572578 Blanchard Jun 2003 B1
6579270 Sussman et al. Jun 2003 B2
6585705 Maginot et al. Jul 2003 B1
6599271 Easley Jul 2003 B1
6615835 Cise et al. Sep 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6622367 Bolduc et al. Sep 2003 B1
6623495 Findlay et al. Sep 2003 B2
6635034 Cosmescu Oct 2003 B1
6635070 Leeflang et al. Oct 2003 B2
6638235 Miller et al. Oct 2003 B2
6652546 Nash et al. Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6663613 Evans et al. Dec 2003 B1
6669710 Moutafis et al. Dec 2003 B2
6676637 Bonnette et al. Jan 2004 B1
6702830 Demarais et al. Mar 2004 B1
6719717 Johnson et al. Apr 2004 B1
6723081 Hektner Apr 2004 B1
6726675 Beyar Apr 2004 B1
6752800 Winston et al. Jun 2004 B1
6755803 Le et al. Jun 2004 B1
6755812 Peterson et al. Jun 2004 B2
6790215 Findlay et al. Sep 2004 B2
6805684 Bonnette et al. Oct 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6824545 Sepetka et al. Nov 2004 B2
6824550 Noriega et al. Nov 2004 B1
6830577 Nash et al. Dec 2004 B2
6875193 Bonnette et al. Apr 2005 B1
6899712 Moutafis et al. May 2005 B2
6926726 Drasler et al. Aug 2005 B2
6929633 Evans et al. Aug 2005 B2
6936056 Nash et al. Aug 2005 B2
6945977 Demarais et al. Sep 2005 B2
6958059 Zadno-Azizi Oct 2005 B2
6984239 Drasler et al. Jan 2006 B1
6986778 Zadno-Azizi Jan 2006 B2
6991625 Gately et al. Jan 2006 B1
7008434 Kurz et al. Mar 2006 B2
7044958 Douk et al. May 2006 B2
7108704 Trerotola Sep 2006 B2
7122017 Moutafis et al. Oct 2006 B2
7220269 Ansel et al. May 2007 B1
7232452 Adams et al. Jun 2007 B2
7374560 Ressemann et al. May 2008 B2
7431711 Moutafis et al. Oct 2008 B2
7479147 Honeycutt et al. Jan 2009 B2
7481222 Reissmann Jan 2009 B2
7588033 Wondka Sep 2009 B2
7591816 Wang et al. Sep 2009 B2
7604612 Ressemann et al. Oct 2009 B2
7615042 Beyar et al. Nov 2009 B2
7621886 Burnett Nov 2009 B2
7654996 Lynn Feb 2010 B2
7655016 Demarais et al. Feb 2010 B2
7666161 Nash et al. Feb 2010 B2
7699804 Barry et al. Apr 2010 B2
7713235 Torrance et al. May 2010 B2
7717685 Moutafis et al. May 2010 B2
7717898 Gately et al. May 2010 B2
7736355 Tou et al. Jun 2010 B2
7753868 Hoffa Jul 2010 B2
7753880 Malackowski Jul 2010 B2
7766894 Weitzner et al. Aug 2010 B2
7776005 Haggstrom et al. Aug 2010 B2
7798996 Haddad et al. Sep 2010 B1
7798999 Bailey et al. Sep 2010 B2
7806864 Haddad et al. Oct 2010 B2
7833239 Nash Nov 2010 B2
7842055 Pintor et al. Nov 2010 B2
7846175 Bonnette et al. Dec 2010 B2
7862575 Tal Jan 2011 B2
7867192 Bowman et al. Jan 2011 B2
7875004 Yodfat et al. Jan 2011 B2
7879022 Bonnette et al. Feb 2011 B2
7887510 Karpowicz et al. Feb 2011 B2
7905710 Wang et al. Mar 2011 B2
7909801 Hinchliffe Mar 2011 B2
7909810 Noone Mar 2011 B2
7914482 Urich et al. Mar 2011 B2
7914549 Morsi Mar 2011 B2
7918654 Adahan Apr 2011 B2
7918822 Kumar et al. Apr 2011 B2
7918835 Callahan et al. Apr 2011 B2
7935077 Thor et al. May 2011 B2
7951073 Freed May 2011 B2
7951107 Staid et al. May 2011 B2
7951112 Patzer May 2011 B2
7959603 Wahr et al. Jun 2011 B2
7959608 Nash et al. Jun 2011 B2
7976528 Nash et al. Jul 2011 B2
7981128 To et al. Jul 2011 B2
7981129 Nash et al. Jul 2011 B2
7998114 Lombardi Aug 2011 B2
8007490 Schaeffer et al. Aug 2011 B2
8012766 Graham Sep 2011 B2
8021351 Boldenow et al. Sep 2011 B2
8034018 Lutwyche Oct 2011 B2
8043312 Noriega et al. Oct 2011 B2
8043313 Krolik et al. Oct 2011 B2
8062246 Moutafis et al. Nov 2011 B2
8062257 Moberg et al. Nov 2011 B2
8065096 Moberg et al. Nov 2011 B2
8066677 Lunn et al. Nov 2011 B2
8070694 Galdonik et al. Dec 2011 B2
8075546 Carlisle et al. Dec 2011 B2
8092483 Galdonik et al. Jan 2012 B2
8123777 Krolik et al. Feb 2012 B2
8140146 Kim et al. Mar 2012 B2
8142458 Shturman Mar 2012 B2
8152782 Jang et al. Apr 2012 B2
8152951 Zawacki et al. Apr 2012 B2
8157787 Nash et al. Apr 2012 B2
8162877 Bonnette et al. Apr 2012 B2
8162966 Connor et al. Apr 2012 B2
8177739 Cartledge et al. May 2012 B2
8182462 Istoc et al. May 2012 B2
8187228 Bikovsky May 2012 B2
8187229 Weitzner et al. May 2012 B2
8202243 Morgan Jun 2012 B2
8209060 Ledford Jun 2012 B2
8221348 Hackett et al. Jul 2012 B2
8226673 Nash et al. Jul 2012 B2
8246573 Ali et al. Aug 2012 B2
8246580 Hopkins et al. Aug 2012 B2
8257298 Hamboly Sep 2012 B2
8257343 Chan et al. Sep 2012 B2
8262645 Bagwell et al. Sep 2012 B2
8267893 Moberg et al. Sep 2012 B2
8287485 Kimura et al. Oct 2012 B2
8291337 Gannin et al. Oct 2012 B2
8292841 Gregersen Oct 2012 B2
8308745 Seto et al. Nov 2012 B2
8317739 Christoph Nov 2012 B2
8317770 Miesel et al. Nov 2012 B2
8317773 Appling et al. Nov 2012 B2
8317786 Dahla et al. Nov 2012 B2
8323239 Bednarek et al. Dec 2012 B2
8323268 Ring et al. Dec 2012 B2
8337175 Dion et al. Dec 2012 B2
8337451 Lareau et al. Dec 2012 B2
8343097 Pile-Spellman et al. Jan 2013 B2
8343131 Jakob Jan 2013 B2
8348896 Wagner Jan 2013 B2
8353858 Kozak et al. Jan 2013 B2
8353860 Boulais et al. Jan 2013 B2
8357138 Pierpont et al. Jan 2013 B2
8372038 Urich et al. Feb 2013 B2
8394078 Torrance et al. Mar 2013 B2
8398579 Morris et al. Mar 2013 B2
8398581 Panotopoulos Mar 2013 B2
8398582 Gordon et al. Mar 2013 B2
8414521 Baker et al. Apr 2013 B2
8414522 Kamen et al. Apr 2013 B2
8414943 Wijngaarden et al. Apr 2013 B2
8419709 Haddad et al. Apr 2013 B2
8425458 Scopton Apr 2013 B2
8430837 Jenson et al. Apr 2013 B2
8430845 Wahr et al. Apr 2013 B2
8430861 Schwartz et al. Apr 2013 B2
8439876 Spohn et al. May 2013 B2
8454557 Qi et al. Jun 2013 B1
8465456 Stivland Jun 2013 B2
8465867 Kim Jun 2013 B2
8483980 Moberg et al. Jul 2013 B2
8491523 Thor et al. Jul 2013 B2
8500697 Kurth et al. Aug 2013 B2
8506537 Torstensen et al. Aug 2013 B2
8523801 Nash et al. Sep 2013 B2
8529498 Moutafis et al. Sep 2013 B2
8545432 Renati et al. Oct 2013 B2
8545514 Ferrera Oct 2013 B2
8562555 Macmahon et al. Oct 2013 B2
8579926 Pintor et al. Nov 2013 B2
8597238 Bonnette et al. Dec 2013 B2
8608699 Blomquist Dec 2013 B2
8613618 Brokx Dec 2013 B2
8613724 Lanier et al. Dec 2013 B2
8617110 Moberg et al. Dec 2013 B2
8617127 Woolston et al. Dec 2013 B2
8623039 Seto et al. Jan 2014 B2
8628549 To et al. Jan 2014 B2
8641671 Michaud et al. Feb 2014 B2
8647294 Bonnette et al. Feb 2014 B2
8652086 Gerg et al. Feb 2014 B2
8657777 Kozak et al. Feb 2014 B2
8657785 Torrance et al. Feb 2014 B2
8663259 Levine et al. Mar 2014 B2
8668464 Kensy et al. Mar 2014 B2
8668665 Gerg et al. Mar 2014 B2
8670836 Aeschlimann et al. Mar 2014 B2
8672876 Jacobson et al. Mar 2014 B2
8681010 Moberg et al. Mar 2014 B2
8715237 Moberg et al. May 2014 B2
8721674 Kusleika May 2014 B2
8758325 Webster et al. Jun 2014 B2
8758364 Eckhouse et al. Jun 2014 B2
8783151 Janardhan et al. Jul 2014 B1
8803030 Janardhan et al. Aug 2014 B1
8814892 Galdonik et al. Aug 2014 B2
8851866 Moutafis et al. Oct 2014 B2
8852219 Wulfman et al. Oct 2014 B2
8864792 Eckhouse et al. Oct 2014 B2
8888801 To et al. Nov 2014 B2
8900179 Jenson et al. Dec 2014 B2
8900214 Nance et al. Dec 2014 B2
8920402 Nash et al. Dec 2014 B2
8932320 Janardhan et al. Jan 2015 B1
8932321 Janardhan et al. Jan 2015 B1
8936447 Abal Jan 2015 B2
8945030 Weston Feb 2015 B2
8962561 Shalgi et al. Feb 2015 B2
8970384 Yodfat et al. Mar 2015 B2
8974418 Bonnette et al. Mar 2015 B2
8979798 Shener et al. Mar 2015 B2
8986241 Evans et al. Mar 2015 B2
8986252 Cummings et al. Mar 2015 B2
8998843 Bonnette et al. Apr 2015 B2
9005237 Eckhouse et al. Apr 2015 B2
9011114 Farrell et al. Apr 2015 B2
9017294 McGuckin et al. Apr 2015 B2
9023070 Levine et al. May 2015 B2
9024768 Mandro et al. May 2015 B2
9033925 Moberg et al. May 2015 B2
9034008 Eckhouse et al. May 2015 B2
9042938 Nimbalker et al. May 2015 B2
9078691 Morris et al. Jul 2015 B2
9113955 Noriega et al. Aug 2015 B2
9119941 Rollins et al. Sep 2015 B2
9119942 Rollins et al. Sep 2015 B1
9198679 To et al. Dec 2015 B2
9238122 Malhi et al. Jan 2016 B2
9248221 Look et al. Feb 2016 B2
9254144 Nguyen et al. Feb 2016 B2
9278189 Corbett Mar 2016 B2
9282992 Levine et al. Mar 2016 B2
9283040 Hendrick et al. Mar 2016 B2
9308016 Escudero et al. Apr 2016 B2
9314263 Escudero et al. Apr 2016 B2
9332999 Ray et al. May 2016 B2
9333007 Escudero et al. May 2016 B2
9358035 Kojima Jun 2016 B2
9402938 Aklog et al. Aug 2016 B2
9433427 Look et al. Sep 2016 B2
9456872 Hendrick et al. Oct 2016 B2
9474543 McGuckin et al. Oct 2016 B2
9492192 To et al. Nov 2016 B2
9492193 To et al. Nov 2016 B2
9510854 Mallaby Dec 2016 B2
9586023 Bonnette et al. Mar 2017 B2
9592073 Kojima et al. Mar 2017 B2
9597480 Purdy et al. Mar 2017 B2
9693789 Garrison et al. Jul 2017 B2
9700346 Levine et al. Jul 2017 B2
9770551 Faden Sep 2017 B1
9782195 Mactaggart et al. Oct 2017 B2
9795406 Levine et al. Oct 2017 B2
9808266 Ray et al. Nov 2017 B2
9827404 Nance et al. Nov 2017 B2
9833257 Bonnette et al. Dec 2017 B2
9883877 Look et al. Feb 2018 B2
10238853 Kume et al. Mar 2019 B2
10314608 Jenson et al. Jun 2019 B2
10383983 Aklog et al. Aug 2019 B2
10390926 Janardhan et al. Aug 2019 B2
10426885 Criado et al. Oct 2019 B2
10492805 Culbert et al. Dec 2019 B2
10499944 Mallaby Dec 2019 B2
10531883 Deville et al. Jan 2020 B1
10702292 Look et al. Jul 2020 B2
10716880 Culbert et al. Jul 2020 B2
11490909 Look et al. Nov 2022 B2
11497521 Mallaby Nov 2022 B2
11653945 Jenson et al. May 2023 B2
11672561 Look et al. Jun 2023 B2
11678905 Look et al. Jun 2023 B2
20010004700 Honeycutt et al. Jun 2001 A1
20010051811 Bonnette et al. Dec 2001 A1
20020016564 Courtney et al. Feb 2002 A1
20020029052 Evans et al. Mar 2002 A1
20020058904 Boock et al. May 2002 A1
20020068895 Beck Jun 2002 A1
20020133114 Toh et al. Sep 2002 A1
20020138095 Mazzocchi et al. Sep 2002 A1
20020165575 Saleh Nov 2002 A1
20020173812 McGuckin et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020176788 Moutafis et al. Nov 2002 A1
20020177789 Ferry et al. Nov 2002 A1
20030032918 Quinn Feb 2003 A1
20030040694 Dorros et al. Feb 2003 A1
20030055404 Moutafis Mar 2003 A1
20030069549 MacMahon et al. Apr 2003 A1
20030083681 Moutafis et al. May 2003 A1
20030088187 Saadat et al. May 2003 A1
20030088209 Chiu et al. May 2003 A1
20030139751 Evans et al. Jul 2003 A1
20030144688 Brady et al. Jul 2003 A1
20030216760 Welch et al. Nov 2003 A1
20030220556 Porat et al. Nov 2003 A1
20030236533 Wilson et al. Dec 2003 A1
20040030281 Goble et al. Feb 2004 A1
20040049149 Drasler et al. Mar 2004 A1
20040049225 Denison Mar 2004 A1
20040054322 Vargas Mar 2004 A1
20040082915 Kadan Apr 2004 A1
20040087988 Heitzmann et al. May 2004 A1
20040097829 McRury et al. May 2004 A1
20040143225 Callan et al. Jul 2004 A1
20040147871 Burnett Jul 2004 A1
20040153109 Tiedtke et al. Aug 2004 A1
20040158136 Gough et al. Aug 2004 A1
20040167463 Zawacki et al. Aug 2004 A1
20040193046 Nash et al. Sep 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20040215222 Krivoruchko Oct 2004 A1
20040236214 Opie et al. Nov 2004 A1
20040243157 Connor et al. Dec 2004 A1
20050004594 Nool et al. Jan 2005 A1
20050043682 Kucklick et al. Feb 2005 A1
20050049547 Anspach et al. Mar 2005 A1
20050065426 Porat et al. Mar 2005 A1
20050085769 MacMahon Apr 2005 A1
20050102165 Oshita et al. May 2005 A1
20050159716 Kobayashi et al. Jul 2005 A1
20050196748 Ericson Sep 2005 A1
20050238503 Rush et al. Oct 2005 A1
20050240116 Saadat et al. Oct 2005 A1
20050240120 Modesitt Oct 2005 A1
20050240146 Nash et al. Oct 2005 A1
20050244521 Strickland et al. Nov 2005 A1
20050256457 Rome Nov 2005 A1
20050277851 Whittaker et al. Dec 2005 A1
20050283150 Moutafis et al. Dec 2005 A1
20060009785 Maitland et al. Jan 2006 A1
20060041245 Ferry et al. Feb 2006 A1
20060058836 Bose et al. Mar 2006 A1
20060063973 Makower et al. Mar 2006 A1
20060064051 Gross Mar 2006 A1
20060064123 Bonnette et al. Mar 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060093989 Hahn et al. May 2006 A1
20060142630 Meretei Jun 2006 A1
20060149191 DiFiore Jul 2006 A1
20060184186 Noone Aug 2006 A1
20060212055 Karabey et al. Sep 2006 A1
20060229550 Staid et al. Oct 2006 A1
20060229587 Beyar et al. Oct 2006 A1
20060264808 Staid et al. Nov 2006 A1
20060282150 Olson et al. Dec 2006 A1
20070016105 Mamourian Jan 2007 A1
20070060879 Weitzner et al. Mar 2007 A1
20070073233 Thor et al. Mar 2007 A1
20070073268 Goble et al. Mar 2007 A1
20070078438 Okada Apr 2007 A1
20070118165 Demello et al. May 2007 A1
20070135812 Sartor Jun 2007 A1
20070167804 Park et al. Jul 2007 A1
20070197956 Le et al. Aug 2007 A1
20070197963 Griffiths et al. Aug 2007 A1
20070219467 Clark et al. Sep 2007 A1
20070225615 Chechelski et al. Sep 2007 A1
20070225739 Pintor et al. Sep 2007 A1
20070239182 Glines et al. Oct 2007 A1
20070249990 Cosmescu Oct 2007 A1
20070270755 Von et al. Nov 2007 A1
20070299306 Parasher et al. Dec 2007 A1
20080009784 Leedle et al. Jan 2008 A1
20080091061 Kumar et al. Apr 2008 A1
20080097339 Ranchod et al. Apr 2008 A1
20080097465 Rollins et al. Apr 2008 A1
20080097563 Petrie et al. Apr 2008 A1
20080108960 Shapland et al. May 2008 A1
20080119824 Weitzner et al. May 2008 A1
20080125698 Gerg et al. May 2008 A1
20080125798 Osborne et al. May 2008 A1
20080195058 Moutafis et al. Aug 2008 A1
20080195139 Donald et al. Aug 2008 A1
20080243054 Mollstam et al. Oct 2008 A1
20080243153 Nguyen et al. Oct 2008 A1
20080249501 Yamasaki Oct 2008 A1
20080255539 Booth Oct 2008 A1
20080255596 Jenson et al. Oct 2008 A1
20080294008 Toyama Nov 2008 A1
20080294181 Wensel et al. Nov 2008 A1
20080306465 Bailey et al. Dec 2008 A1
20080319376 Wilcox et al. Dec 2008 A1
20090018566 Escudero et al. Jan 2009 A1
20090048607 Rockley Feb 2009 A1
20090054825 Melsheimer et al. Feb 2009 A1
20090082722 Munger et al. Mar 2009 A1
20090105645 Kidd et al. Apr 2009 A1
20090105690 Schaeffer et al. Apr 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090198172 Garrison et al. Aug 2009 A1
20090264940 Beale et al. Oct 2009 A1
20090292212 Ferren et al. Nov 2009 A1
20090306476 Banik et al. Dec 2009 A1
20090306692 Barrington et al. Dec 2009 A1
20100010524 Barrington et al. Jan 2010 A1
20100030134 Fitzgerald et al. Feb 2010 A1
20100030186 Stivland Feb 2010 A1
20100094201 Mallaby Apr 2010 A1
20100145302 Cull et al. Jun 2010 A1
20100160851 Dimalanta et al. Jun 2010 A1
20100174233 Kuban et al. Jul 2010 A1
20100191178 Ross et al. Jul 2010 A1
20100204613 Rollins et al. Aug 2010 A1
20100204672 Lockhart et al. Aug 2010 A1
20100217275 Carmeli et al. Aug 2010 A1
20100217276 Garrison et al. Aug 2010 A1
20100228273 Staid et al. Sep 2010 A1
20100268236 Moutafis et al. Oct 2010 A1
20100274191 Ting Oct 2010 A1
20100280534 Sher Nov 2010 A1
20110034986 Chou et al. Feb 2011 A1
20110040314 McGuckin, Jr. et al. Feb 2011 A1
20110091331 Moutafis et al. Apr 2011 A1
20110092892 Nitsan et al. Apr 2011 A1
20110106019 Bagwell et al. May 2011 A1
20110152920 Eckhouse et al. Jun 2011 A1
20110160683 Pinotti et al. Jun 2011 A1
20110282426 Mitra et al. Nov 2011 A1
20120053557 Abal Mar 2012 A1
20120059340 Larsson Mar 2012 A1
20120059354 Zarate Mar 2012 A1
20120065656 Karwei Mar 2012 A1
20120065660 Ferrera et al. Mar 2012 A1
20120071907 Pintor et al. Mar 2012 A1
20120078080 Foley et al. Mar 2012 A1
20120123509 Merrill et al. May 2012 A1
20120130415 Tal et al. May 2012 A1
20120165756 Root et al. Jun 2012 A1
20120239008 Fojtik Sep 2012 A1
20120239064 Cartier et al. Sep 2012 A1
20120239066 Levine et al. Sep 2012 A1
20120259265 Salehi et al. Oct 2012 A1
20120277665 Tachoire et al. Nov 2012 A1
20120277698 Andrew et al. Nov 2012 A1
20120289910 Shtul et al. Nov 2012 A1
20120291811 Dabney et al. Nov 2012 A1
20120330196 Nita Dec 2012 A1
20130085381 Comerota et al. Apr 2013 A1
20130184734 Morris et al. Jul 2013 A1
20130190701 Kirn Jul 2013 A1
20130218186 Dubois et al. Aug 2013 A1
20130245543 Gerg et al. Sep 2013 A1
20130267891 Malhi et al. Oct 2013 A1
20130281788 Garrison Oct 2013 A1
20130310809 Armstrong et al. Nov 2013 A1
20130310845 Thor et al. Nov 2013 A1
20130331776 Klein et al. Dec 2013 A1
20140005699 Bonnette et al. Jan 2014 A1
20140058361 Gordon Feb 2014 A1
20140142594 Fojtik May 2014 A1
20140147246 Chappel et al. May 2014 A1
20140148830 Bowman May 2014 A1
20140155931 Bose et al. Jun 2014 A1
20140228569 Okumura et al. Aug 2014 A1
20140228869 Bonnette et al. Aug 2014 A1
20140257097 Bonnette et al. Sep 2014 A1
20140276920 Hendrick et al. Sep 2014 A1
20140309589 Momose et al. Oct 2014 A1
20140323906 Peatfield et al. Oct 2014 A1
20140360494 Herskovic Dec 2014 A1
20140378951 Dye Dec 2014 A1
20150025446 Jacobson et al. Jan 2015 A1
20150032138 Jenson et al. Jan 2015 A1
20150094673 Pratt et al. Apr 2015 A1
20150094748 Nash et al. Apr 2015 A1
20150142030 Mactaggart et al. May 2015 A1
20150257724 Lautenschläger Sep 2015 A1
20150283309 Look et al. Oct 2015 A1
20150305765 Fojtik et al. Oct 2015 A1
20150306286 Ross et al. Oct 2015 A1
20150327875 Look et al. Nov 2015 A1
20150343182 Vazales et al. Dec 2015 A1
20150374391 Quick et al. Dec 2015 A1
20160051323 Stigall et al. Feb 2016 A1
20160058614 Ross Mar 2016 A1
20160143721 Rosenbluth et al. May 2016 A1
20160220741 Garrison et al. Aug 2016 A1
20160331645 Bagwell et al. Nov 2016 A1
20170065396 Ook et al. Mar 2017 A1
20170079672 Quick Mar 2017 A1
20170105745 Rosenbluth et al. Apr 2017 A1
20170172603 Bonnette et al. Jun 2017 A1
20170181760 Look et al. Jun 2017 A1
20170216503 Look et al. Aug 2017 A1
20170245885 Lenker Aug 2017 A1
20170265885 Bonnette et al. Sep 2017 A1
20170281204 Garrison et al. Oct 2017 A1
20170290598 Culbert et al. Oct 2017 A1
20180207397 Look Jul 2018 A1
20180214172 Donnelly et al. Aug 2018 A1
20180338770 Mogi et al. Nov 2018 A1
20180368876 Malhi et al. Dec 2018 A1
20190328412 Mazhar et al. Oct 2019 A1
20190381223 Culbert et al. Dec 2019 A1
20200022711 Look et al. Jan 2020 A1
20200345904 Casey et al. Nov 2020 A1
20200367917 Teigen et al. Nov 2020 A1
Foreign Referenced Citations (57)
Number Date Country
1120805 Apr 1996 CN
201079629 Jul 2008 CN
101730507 Jun 2010 CN
201603160 Oct 2010 CN
103251440 Aug 2013 CN
103767760 May 2014 CN
104905769 Sep 2015 CN
106456849 Feb 2017 CN
3715418 Nov 1987 DE
4018736 Jan 1992 DE
0701834 Mar 1996 EP
0709110 May 1996 EP
0726466 Aug 1996 EP
0806213 Nov 1997 EP
1092396 Apr 2001 EP
1488748 Dec 2004 EP
2301450 Mar 2011 EP
2859902 Apr 2015 EP
2131759 Oct 2017 EP
06-125915 May 1994 JP
06-205784 Jul 1994 JP
06-205785 Jul 1994 JP
07-299078 Nov 1995 JP
2001-161700 Jun 2001 JP
2003-010194 Jan 2003 JP
2003-101194 Apr 2003 JP
2003-514632 Apr 2003 JP
2003-260127 Sep 2003 JP
2003-290236 Oct 2003 JP
2004-514466 May 2004 JP
2007-160109 Jun 2007 JP
2009-039216 Feb 2009 JP
2010-517642 May 2010 JP
2013-154171 Aug 2013 JP
2013-180156 Sep 2013 JP
9005493 May 1990 WO
9601079 Jan 1996 WO
9635469 Nov 1996 WO
9901079 Jan 1999 WO
9918850 Apr 1999 WO
0069348 Nov 2000 WO
0137916 May 2001 WO
0219928 Mar 2002 WO
0226289 Apr 2002 WO
2004100772 Nov 2004 WO
2005004968 Jan 2005 WO
2006081238 Aug 2006 WO
2007087404 Aug 2007 WO
2007143633 Dec 2007 WO
2008097993 Aug 2008 WO
2008121481 Oct 2008 WO
2010023617 Mar 2010 WO
2010023671 Mar 2010 WO
2015179329 Nov 2015 WO
2016126974 Aug 2016 WO
2017112922 Jun 2017 WO
2018215840 Nov 2018 WO
Non-Patent Literature Citations (26)
Entry
Angiojet Ultra Power Pulse Kit Information for Use, Medrad, Inc., downloaded from internet Jan. 23, 2017.
Comparison of Dimensions and Aspiration Rate of the Pronto V3, Pronto LP, Export XT, Export AP, Fetch, Xtract, Diver C.E, and QuickCat Catheter, Vascular Solutions, Inc., downloaded from internet Oct. 22, 2014.
Dalal, J., Sahoo, P., Dhall, A., Kapoor, R., Krishnamurthy, A., Shetty, S., Trivedi, S., Kahali, D., Shah, B., Chockalingam, K., Abdullakutty, J., Shetty, P., Chopra, A., Ray, R., Desai, D., Pachiyappan, Ratnaparkhi, G., Sharma, M., Sambasivam, K. “Role of thrombysis in reperfusion therapy for management of AMI: Indian scenario,” Indian Heart Journal, 2013, pp. 566-585, vol. 63, Cardiological Society of India, Bombay, India.
Franetzki, M., “Confusion in the Terminology of Insulin Devices”, Diabetes Care, Jan.-Feb. 1982, pp. 74-75, vol. 5, No. 1, American Diabetes Association, Alexandria, USA.
Frolich, G., Meier, P., White, S., Yellon, D., Hausenloy, D., “Myocardial reperfusion injury: looking beyond primary PCI”, European Heart Journal Jun. 2013, pp. 1714-1722, vol. 34, No. 23, Elsevier, Amsterdam, The Netherlands.
Gousios, A, Shearn, M, “Effect of Intravenous Heparin on Human Blood Viscosity”, Circulation, Dec. 1959, pp. 1063-1066, vol. 20, American Heart Association, Dallas, USA.
Harvard Health; Normal Body Temperature: Rethinking the normal human body temperature; p. 1; published Apr. 1, 2006; http://www.health.harvard.edu/press.sub.--releases/normal.sub.-body.sub.- --temperature.
Infusion Liquid Flow Sensors—Safe, Precise and Reliable, Sensirion, downloaded from Internet Apr. 3, 2015.
Irsigler, K, Kritz, H., Hagmuller, G., Franezki, M., Prestele, K, Thurow, H., Geisen, K., “Long-term Continuous Intraperitoneal Insulin Infusion with an Implanted Remote-Controlled Insulin Infusion Device”, Diabetes, Dec. 1981, pp. 1072-1075, vol. 30, No. 12, American Diabetes Association, New York, USA.
Kritz, H., Hagmuller, G, Lovett, R., Irsigler, K., “Implanted Constant Basal Rate Insulin Infusion Devices for Type 1 (Insulin-Dependent) Diabetic Patients”, Diabetologia, Aug. 1983, pp. 78-81, vol. 25, No. 2, Springer-Verlag, Berlin, Germany.
Lipinski, M., Lee, R., Gaglia, M., Torguson, R., Garcia-Garcia, H., Pichard, A., Satler, L., Waksman, R. “Comparison of heparin, bivalirudin, and different glycoprotein IIb/IIIa inhibitor regimens for anticoagulation during percutaneous coronary intervention: A network meta-analysis,” Cardiovascular Revascularization Medicine, 2016, pp. 535-545, vol. 17, Elsevier, New York, USA.
Makes even the most difficult intervention a Fast and Smooth Run. GuideLiner brochure. Vascular Solutions,. Inc., downloaded from internet Apr. 9, 2015.
Metzler, L., “Miniature Sensor Combines with Micropump to Control Drug Delivery”, Medical Design Technology, Mar. 2017, pp. 22-23, MDTmag.com, Advantage Business Media, Rockaway, USA.
Parikh, A., Ali, F., “Novel Use of GuideLiner Catheter to Perform Aspiration Thrombectomy in a Saphenous Vein Graft” Cath Lab Digest, Oct. 2013, downloaded from internet Oct. 22, 2014.
Pechlaner, C., Knapp, E., Wiedermann, C. “Hypersensitivity reactions associated with recombinant tissue-type plasminogen activator and urokinase,” Blood Coagulation and Fibrinolysis, 2001, pp. 491-494, vol. 12, Lippincott Williams & Wilkins, Hagerstown, USA.
Prasad, A., Stone, G., Holmes, D., Gersh, B., Peperfusion Injury, Microvascular Dysfunction, and Carioprotection: The “Dark Side” of Reperfusion, Circulation, Nov. 24, 2009, pp. 2105-2112, vol. 120, American Heart Association, Dallas, USA.
Principles and Practice of Pharmacology for Anaesthetists, ed. Calvey, T., Williams, N., 2008, pp. 324-327, 5th Edition, Blackwell Publishing, Malden, USA.
Puddu, P., lanetta, L., Placanica, A., Cuturello, D., Schiariti, M., Manfrini, O., “The role of Glycoprotein Ilb/Illa inhibitors in acute coronary syndromes and the interference with anemia,” International Journal of Cardiology, 2016, pp. 1091-1096, vol. 222, Elsevier, Amsterdam, The Netherlands.
Rodriquez, R., Conde-Green, A., “Quantification of Negative Pressures Generated by Syringes of Different Calibers Used for Liposuction”, Plastic & Reconstructive Surgery, Aug. 2012; pp. 383e-384e, vol. 130, No. 2, Lippicott Williams & Wilkins, Philadelphia, USA.
Saudek, C., Selam, J-L, Pitt, H., Waxman, K., Rubio, M., Jeandidier, N., Turner, D., Fischell, R., Charles, M., “A Preliminary trial of the Programmable Implantable Medication System for Insulin Delivery”, The New England Journal of Medicine, Aug. 31, 1989, pp. 574-579, vol. 321, No. 9, Massachusetts Medical Society, Boston, USA.
Selam, J-L, “Development of Implantable Insulin Pumps: Long is the Road”, Diabetic Medicine, Nov. 1988, pp. 724-733, vol. 5, No. 8, Wiley, Chichester, UK.
Stys, A., Stys, T., Rajpurohit, N., Khan, M. “A Novel Application of GuideLiner Catheter for Thrombectomy in Acute Myocardial Infarction: A Case Series”, Journal of Invasive cardiology, Nov. 2013, pp. 620-624, vol. 25, No. 11, King of Prussia, USA.
Van De Werf, F, “The ideal fibrinolytic: can drug design improve clinical results?” European Heart Journal, 1999, pp. 1452-1458, vol. 20, Elsevier, Amsterdam, The Netherlands.
Warmerdam, P., Vanderlick, K., Vandervoort, P., de Smedt, H., Plaisance, S., De Maeyer, M., Collen, D. “Saphylokinase-Specific-Cell-Mediated Immunity in Humans,” The Journal of Immunology, 2002, pp. 155-161, vol. 168, Williams & Wilkins Co., Baltimore, USA.
Extended European Search Report dated Aug. 31, 2018, in EP App. No. 16843162.5 filed Sep. 3, 2016 (10 pages).
PCT International Search Report and Written Opinion for PCT/US2016/050302, Applicant: Vesatek, LLC, Forms PCT/ISA/220, 210, and 237 dated Nov. 29, 2016 (10 pages).
Related Publications (1)
Number Date Country
20230018792 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
63149623 Feb 2021 US
Continuations (1)
Number Date Country
Parent 17671462 Feb 2022 US
Child 17886151 US