Systems and methods for removing ingested material from a stomach

Abstract
When a patient is fitted with an external gastrostomy connection to the stomach, ingested food can be removed through the gastrostomy connection using a pump-based or siphon-based system to achieve weight loss. The process of removing ingested food can be improved by alternating the infusion of liquid into the stomach with the removal of material from the stomach. Optionally, stomach acid may be captured and returned to the stomach. Optionally, nutritional supplements or medicines may be added to the infused liquid. Optionally, a flush mount connectorized system with a built in valve may be used to simplify the interface with the gastrostomy hardware that remains installed in the patient. Optionally, the system may be configured to disable itself from further use after a triggering event (e.g., the passage of time or a predetermined number of uses) has occurred.
Description
BACKGROUND OF THE INVENTION

The invention generally relates to removing ingested material from a stomach of a patient, and the primary intended fields of the invention are facilitating weight loss and preventing weight gain.


BRIEF SUMMARY OF THE INVENTION

In one aspect of the invention, food that has been ingested is removed from the patient's stomach via a gastrostomy tube using a siphon action. In another aspect of the invention, food that has been ingested is removed from the patient's stomach via a gastrostomy tube, and the removal of food is facilitated by infusing fluid into the patient's stomach via the gastrostomy tube. In another aspect of the invention, matter that has been ingested is removed from the patient's stomach via a gastrostomy tube, and stomach acid is separated from the removed matter and returned to the patient's stomach. In another aspect of the invention, matter that has been ingested is removed from the patient's stomach via a gastrostomy tube, and the system is configured to disable itself from further use after the occurrence of a triggering event (e.g., the passage of time or a predetermined number of uses).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic representation of an embodiment of the invention for removing ingested material from a patient's stomach.



FIG. 2 is a schematic representation of a first embodiment for implementing the system shown in FIG. 1.



FIG. 3 is a schematic representation of a second embodiment for implementing the system shown in FIG. 1.



FIG. 4 shows a side view of a third embodiment for implementing the system depicted in FIG. 1.



FIG. 5A shows an isometric view of the FIG. 4 embodiment.



FIG. 5B shows a front view of internal components of the FIG. 4 embodiment.



FIG. 5C shows a back view of internal components of the FIG. 4 embodiment.



FIG. 6A shows an isometric view of another embodiment for implementing the system depicted in FIG. 1.



FIG. 6B shows a front view of internal components of the FIG. 6A embodiment.



FIG. 7A schematically shows an embodiment of a system for removing ingested material from a stomach, filtering select gastric contents, and returning filtered fluid to the stomach.



FIG. 7B schematically shows an embodiment of a system for removing ingested material from a stomach, filtering select gastric contents, and returning filtered fluid and water to the stomach.



FIG. 8A shows a patient with a skin connector coupled with a gastrostomy tube that is inserted into the stomach.



FIG. 8B shows a view of the skin connector prior to mating with a tube connector.



FIG. 8C shows a view of the skin connector mated with a tube connector.



FIGS. 9A, 9B, and 9C show side, top, and isometric views of a skin connector valve assembly for the embodiment shown in FIGS. 8A-8C.



FIGS. 10A, 10B, and 10C show side, top, and isometric views of an assembled flush skin connector for the embodiment shown in FIGS. 8A-8C.



FIGS. 11A, 11B, and 11C show side, top, and isometric views of a skin connector flange assembly for the embodiment shown in FIGS. 8A-8C.



FIG. 12 is an exploded view of the rotational valve assembly for the embodiment shown in FIGS. 8A-8C.



FIG. 13A shows a bottom view of a tube connector assembly for the embodiment shown in FIGS. 8A-8C.



FIG. 13B shows a side view of a tube connector assembly for the embodiment shown in FIGS. 8A-8C.



FIGS. 14A and 14B show the tube connector connected to the skin connector of the embodiment shown in FIGS. 8A-8C, in the closed and opened positions, respectively.



FIG. 15 shows the embodiment shown in FIGS. 8A-8C being used by a patient.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

This application discloses methods and apparatuses for removing material from a patient. In the exemplary embodiment disclosed herein, the methods and apparatuses are used for removing ingested material from a patient's stomach in patients that have been fitted with a gastrostomy tube. Examples of suitable gastrostomy tubes are described in U.S. Patent Application Publication Nos. US 2004/0220516, US 2005/0277900 and US 2005/0283130, each of which is incorporated herein by reference. Additional gastrostomy tubes are described in U.S. Provisional Patent Application 60/806,556, which is also incorporated herein by reference.


The primary contemplated use for the methods and apparatuses described herein is achieving weight loss in obese or overweight people. Although the exemplary embodiments are described herein in the context of removing ingested material from a patient's stomach, the methods and apparatus can also be used for removal of a variety of fluids from a patient (with, when necessary, appropriate modifications that will be apparent to persons skilled in the relevant arts).



FIG. 1 shows a patient 10 that is fitted with a gastrostomy tube with a system for removing ingested material from a stomach. An example of such a gastrostomy tube 45 is shown in FIG. 8A. The gastrostomy tube 45 interfaces with the outside world via connection 14, so the system communicates with the gastrostomy tube 45 through that connection. The system preferably includes an assembly 16 for infusing fluid into the stomach through the connection 14 in a manner permitting the fluid to mix with the ingested material or, for use in priming the system when desired, and a drain line 18 for draining content of the stomach received from the connection 14.


The drain line 18 may be in communication with the assembly 16, as shown. In alternative embodiments (not shown), the drain line 18 may be implemented independent of the assembly 16. For example, one line may be used to drain content of the stomach through the connection 14 and another line may infuse the fluid into the stomach through the connection. The system preferably includes a patient line 20 in communication with the assembly 16 and the connection 14 to the patient 10, and the patient line 20 preferably has a suitable connector at its upper end that mates with the connection 14. In alternative embodiments (not shown), the assembly 16 may be coupled directly to the external gastrostomy connection 14 without using an intermediate patient line. The assembly 16 may include a fluid source and may optionally include a valve arrangement and/or one or more pumps as described in more detail below.


In operation, the system is connected up to the connection 14 to remove the contents of the stomach via the connection. In some embodiments, the removal may be accomplished by pumping the stomach contents out via the connection 14. In alternative embodiments, this removal is accomplished by setting up a siphon system so that the contents of the stomach can be siphoned out of the patient's stomach.


In siphon-based systems, the drain line 18 preferably has a length in excess of 25 cm in order to create a pressure differential that is sufficient to form an effective, efficient siphon that can gently and passively drain content from the stomach. However, in alternative embodiments, the drain line 18 can be of a length less than 25 cm. Note that when the patient is standing, the overall siphon system is measured from the lowest point in the tube or line that is inserted into the stomach to the end of the drain line 18. Optionally, the siphon system may be designed to be long enough to run from the stomach of a standing patient to a position proximate to a floor-based disposal arrangement, such as a toilet or waste container. The drain line may include a siphon tube made from flat, collapsible tubing or other flexible tubing. Silicon is a suitable material for the patient line 20 and the drain line 18. However, in alternative embodiments, the patient line 20 can be made from any material known and used in the art of tubes or any material that could be used to impart the necessary function of the patient line 20.


In some situations (e.g., when the patient has drank a significant amount of liquids), an effective siphon effect can be achieved without infusing any liquids into the patient's stomach. In other situations, however, it may be necessary to add additional fluid into the patient's stomach to help start up the siphoning, so that the ingested material can be effectively removed from the patient's stomach. This may be done by having the patient drink additional fluids or by infusing additional fluid into the stomach through the connection 14.


In many cases, a single siphoning operation will be insufficient to remove the desired amount of ingested material from the patient's stomach. In those cases, it is desirable to introduce additional liquid into the stomach so that one or more additional siphoning operations can be done. A preferred approach for introducing additional liquid into the stomach is by infusing the liquid into the stomach through the connection 14. For example, after eating a meal and drinking liquids, the subject may attach the device to the connection 14, and siphon out a large portion of the stomach contents (e.g., fluid with solid particulate, pieces, and/or chunks of food). For a typical meal, the volume of this initial siphoning operation may be on the order of 750 cc, but that number will of course vary based on the volume and characteristics of the ingested meal. Once the siphon effect stops, the subject infuses water back through the connection 14 into the stomach and then initiates another siphoning operation to remove the infused water, which will carry out additional solid food particles, pieces and/or chunks. The infusing and siphoning steps may then be repeated until the desired amount of ingested material is removed from the stomach. An example of a suitable volume for infusing into the stomach during the infusing step is 180 cc, although any other volume may be used.


Note that the methods described herein are preferably used to remove a significant portion of the food that the patient has ingested (e.g., between 30 and 60%, and more preferably between 40 and 50%, of the ingested food). Removing all the food that was ingested by the patient is not preferred and will usually be impractical. Examples of systems that implement both the removal of ingested material and the infusion of fluids are described below.



FIG. 2 schematically shows a first embodiment of a system for alternately removing ingested material from a stomach and infusing fluid into the stomach. The fluid may be any biocompatible fluid such as water or saline, and may optionally include one or more nutrients and/or medications. As shown, the assembly 16 includes a fluid source 22 and a valve arrangement 24 in communication with the fluid source 22, the drain line 18, and the patient line 20. The valve arrangement 24 may include one or more valves and any type of valve, such as, but not limited to, check valves, blade occluder and diverter valves. For example, the valve arrangement 24 may be implemented using a single 3-way valve with two operating positions—one position that opens a path between the patient line 20 and the drain line 18, and another position that opens a path between the fluid source 22 and the patient line 20. Alternatively, the valve arrangement 24 may be implemented using two valves—a first valve used to open a path between the patient line 20 and the drain line 18 and a second check valve used to open a path between the fluid source 22 and the patient line 20 when fluid is pumped from the fluid source 22 into the patient's stomach via connection 14 (shown in FIG. 1). In operation, the first valve is opened to drain the contents of the stomach. The first valve is then closed and fluid is pumped from the fluid source 22 to the patient line 20. Optionally, the first valve may be closed automatically by the fluid when the fluid is pumped from the fluid source 22. The first valve may then be re-opened to drain content of the stomach when fluid is no longer pumped to the patient line 20.


Other embodiments may include a plurality of valves, such as shown in FIG. 3. FIG. 3 schematically shows an assembly 16 having a check valve, valve A, in communication with the fluid source 22 and also with two valves, valve B and valve F. Valve B is in communication with a check valve, valve C, which is in communication with the connection 14 (shown in FIG. 1) via the patient line 20. Valve F is in communication with a check valve, valve E, which is in communication with the drain line 18. Another valve, valve D is in communication with the patient line 20 and the drain line 18. Valve B and valve F may be coupled, such that valve B is opened when valve F is closed, and valve F is opened when valve B is closed. In operation, valve B is opened while valve F is closed. Valve D may then be opened to drain the contents of the stomach received from the patient line 20. Optionally, the system may be configured so that as fluid is pumped through valve B and valve C, the movement of the fluid closes valve D and permits the fluid to flow into the stomach through the patient line 20. When fluid is no longer pumped through valves B and C, valve D may be activated automatically or manually to re-open to drain content of the stomach. When finished removing content from the stomach, valve D is closed and valve B is closed, which in turn opens valve F. The fluid may then be pumped through valve A, valve F and valve E to the drain line 18 in order to clean the drain line after use.


Variations on the assembly 16 shown in FIG. 3 may be implemented using one or more pumps in communication with the valve arrangement 24, the fluid source 22 and/or the drain line 18. For example, a pump may be coupled between the fluid source 22 and the patient line 20 with a check valve in communication with the fluid source 22 and the pump and another check valve in communication with the pump and the patient line 20 to facilitate fluid flow to the connection 14 (shown in FIG. 1). A pump may be coupled between the patient line 20 and the drain line 18 with a check valve in communication with the patient line 20 and the pump and another check valve in communication with the pump and the drain line 18. A pump may also be provided by the squeezing of a hand, e.g., squeezing the fluid source. A combination of two or more pumps may be used, to facilitate fluid flow to the patient line 20, to the drain line 18, or both. For example, during operation, if the system becomes clogged with content of the stomach such that the draining and/or infusing is not functioning properly, a pump may be provided to clear the obstruction in the patient line 20 and/or the drain line 18. Various types of pumps may also be used, such as, but not limited to, a diaphragm pump, a spring loaded piston pump, a syringe pump, a peristaltic pump, a flexible vein pump, a pneumatically actuated pump or a combination thereof. The pump(s) may be removable from the system such that a pump is only provided when necessary.


Referring now to FIGS. 2 and 3, a removable syringe may be provided at an auxiliary port 25 to provide suction for removing clogs from the patient line 20 and/or drain line 18. Although various configurations have been discussed for the valves and pumps with respect to FIGS. 2 and 3, it will be apparent to those skilled in the art that any number, kind, and/or configuration of valves and pumps may be used.


FIGS. 4 and 5A-5C show an embodiment of a system for removing ingested material from the stomach. In this embodiment, the system includes the fluid source 22, the drain line 18, and the patient line 20 and also includes an actuation handle 26 for opening and closing a path between the patient line 20 and the drain line 18 and for opening and closing a path between the fluid source 22 and the patient line 20. In operation, the actuation handle 26 may toggle the assembly 16 between two modes, a drain mode and an infusion mode. For example, in the drain mode, the actuation handle 26 may be in its original or un-actuated position which may cause the path between the patient line 20 and the drain line 18 to be opened and the path between the fluid source 22 and the patient line 20 to be closed, thus permitting content of the stomach to be drained. When the actuation handle 26 is squeezed or actuated, the actuation handle 26 causes the path between the patient line 20 and the drain line 18 to be closed and the path between the fluid source 22 and the patient line 20 to be opened. The actuation handle 26 causes the fluid source 22 to be squeezed or pumped, forcing the fluid out of the fluid source 22, thus allowing fluid to flow into the stomach in the infusion mode. For example, a user may squeeze the actuation handle 26 and fluid source 22 by hand. When the actuation handle 26 is released, the actuation handle 26 is returned to its original position, e.g., by a spring force, such as an extension spring, causing the path between the patient line 20 and the drain line 18 to be re-opened and the path between the fluid source 22 and the patient line 20 to be re-closed. The actuation handle 26 may cause the various paths to be opened or closed using any of a variety of approaches that will be apparent to persons skilled in the relevant arts, e.g. by pressing or pinching the various fluid lines or actuating valves.


Still referring to FIGS. 4 and 5A-5C, the system may also include a patient line cap 28 and a patient port plug 30 for when the system is not in use and removed from the patient. For example, the assembly 16 may be removed from the patient line 20 and the patient line cap 28 may be used to terminate the patient line 20. Similarly, the patient port plug 30 may be used to plug the opening where the patient line 20 couples to the assembly 16.


The assembly 16 may also include a rinse slide 32 for opening and closing a path between the fluid source 22 and the drain line 18. After the system is used to infuse fluid into the stomach and drain contents out of the stomach, the fluid source 22 may be used to rinse out or clean the patient line 20, the drain line 18 or both. Upon completion of use, the actuation handle 26 may be squeezed with the fluid source 22 to cause fluid to flow through and clean the patient line 20. Once the patient line 20 is clear, the patient line 20 may be clamped while still holding the actuation handle 26 and the patient line 20 may be disconnected from the assembly 16. The actuation handle 26 may then be released. In order to clean the drain line 18, the rinse slide 32 may be activated, allowing fluid to flow from the fluid source 22 down the drain line. When the rinse slide is activated, both valves open and since the drain line is lower than the fluid source, the fluid flows out of the drain line 18. The actuation handle 26 may then be squeezed with the fluid source 22, causing fluid to be pumped out of the fluid source 22 and through the drain line 18, cleaning the drain line 18.


Referring now to FIG. 4, optionally, the system may include an attachment mechanism 34 such as a belt clip, for attaching the assembly 16 to the patient during use of the system. Now referring to FIGS. 4 and 5A-5C, the attachment mechanism 34 may be coupled to the assembly 16 at an attachment location 36. The fluid source 22 may be coupled to the assembly 16 at an attachment assembly 38.



FIGS. 6A and 6B depict an alternative assembly 16′ that may be used in place of the assembly 16 depicted in FIGS. 4 and 5A-5C. In this embodiment an actuation lever 44 alternately either (a) opens a path between the patient line 20 and the drain line 18 or (b) closes the path between the patient line and the drain line. Referring now to FIG. 6B, when the lever 44 is actuated in this embodiment, it causes the path between the patient line 20 and the drain line 18 to be clamped by clamp 49 and the path between the fluid source 22 and the patient line 20 to be opened. When the fluid source 22 is squeezed while the lever 44 is in an actuated position, fluid from the fluid source 22 will flow through a check valve, into the patient line and into the stomach. When the lever 44 is in a non-actuated position, the path between the patient line 20 and drain line 18 is open. Upon squeezing the fluid source 22 in a non-actuated position, water flows from the fluid source 22 through the drain line 18 and causes a rinsing effect, which obviates the need for the separate rinse slide. In the illustrated embodiment, the actuation lever 44 may cause the paths to be closed/opened by clamp 49 pressing or pinching on the tubing lines. However, persons skilled in the relevant arts will recognize that alternative approaches for opening and closing the various fluid flow paths may be substituted by making appropriate modifications.


Since water bottles may have varied thread designs which would not ordinarily mate with conventional female fittings, a universal fluid source receptacle 46 may optionally be implemented to accept any water bottle neck, and to lock around the bottle neck flange. Upon actuation the receptacle releases the flange on the fluid source. This feature may also be implemented in the other embodiments described herein.


The system is preferably connected to a gastrostomy tube that has previously been installed in a patient (e.g., through the patient's abdominal wall), with a port that extends out of the patient's body. Preferably, the port is relatively flush with the surface of the patient's abdomen and has a connector that mates with a mating connector of the system. A variety of ways to implement such a flush mount connection interface can be readily envisioned.



FIGS. 8-15 depict one preferred implementation of a flush mount connection interface. One part of the interface is the “skin connector” 60 (shown in FIGS. 9-12) which is an implementation of the connection 14 discussed above in connection with FIG. 1, and is affixed to the patient and the gastrostomy tube 45 that resides inside the patient's stomach. This embodiment of the skin connector 60 includes a rotational valve assembly that controls opening and closing of the pathway into the stomach, as shown in FIGS. 14A-14B. The other part of the interface is the “tube connector” 65, also shown in FIGS. 14A-14B, which is positioned at the upper end of the patient line 20 and is designed to mate with the skin-connector 60 with a fluid-tight interface.



FIGS. 9-11 depict a rotational valve assembly 50 that is assembled inside a skin flange 55 to create a flush mount skin connector 60, and FIG. 12 is an exploded view of the rotational valve assembly 50. Three of the valve assembly components 81, 82, 83 have a thru-hole biased to one quadrant, arranged so that the valve is opened when the thru-holes are aligned and so that the valve is closed when the thru-holes are not aligned. In the preferred embodiment, the size for the entire valve assembly is about 4 cm in diameter, and the size for the thru-holes is about 6-8 mm in diameter. However, in other embodiments, the valve assembly can be proportionally different size, either larger or smaller. The valve assembly 50 is preferably constructed of top platform 81 and a bottom platform 83, with a layer of elastomer 82 that is attached to the top platform 81 and sandwiched between the top platform and the bottom platform 83 with a force that is high enough to prevent leaks, yet low enough to permit rotation of the elastomer 82 with respect to the bottom platform 83. The elastomer is attached to the top platform using any adhesive that would attach the silicon to the plastic, however, in one embodiment, a primer and a fast curing adhesive is used. The top platform 81 is preferably made of a lubricious plastic for example, acetyl, and in some embodiments, DELRIN®, TEFLON®, polyethylene, etc, can be used, and the bottom platform 83 is preferably made of ABS or another hard plastic. However, in alternative embodiments, those components may be made of other materials that provide similar functionality. A top retaining ring 80 is configured to attach to the bottom platform 83 to retain the top platform 81 and the middle layer 82 while allowing those two layers to rotate with respect to the bottom platform 83. Attaching can be in the form of snap fitting, welding, gluing or any other method of attachment. The top retaining ring 80 is preferably also made of ABS or another hard plastic. In the illustrated embodiment, as best seen in FIGS. 9-11, the valve assembly 50 has protrusions 53 at its bottom that allows it to fasten to recesses 56 in the skin flange 55 to form the skin connector 60. The top face of the valve assembly preferably has a structure (e.g., the cut-outs 52) for mating with a corresponding surface on the tube connector 65. The valve assembly 50 can be disassembled from the skin connector 60 by pushing the protrusions 53 at its bottom out of the recesses 56 in the skin flange 55. With significant force, manually or with a tool directed at the bottom of the recesses 56, the barbed protrusions 53 can be freed from the recesses 56 in skin flange 55 and the valve assembly 50 can be removed.


Removal of the valve may be required when a course of treatment is finished or in connection with valve replacement due to wear, scheduled maintenance, cleanliness, or length adjustment. Using a removable valve permits adjustment of the length of the gastrostomy tube (e.g. after patient weight loss) to compensate for a shortened stoma tract. After the valve is removed, the tube is cut to a shorter length, and then the valve is replaced, advantageously avoiding the need to replace the gastrostomy tube.


Due to protrusions 66 on the contacting surface of the tube connector 65 being configured to mate and mechanically couple with the cut-outs 52 on the valve assembly 50 at a rotational distance of approximately 120° from the “open” position of valve assembly 50, fluid will not leak out of valve assembly 50 during tube connector 65 removal (i.e. disc 68 is always covering the passageway of skin connector 60 prior to removal.)


For a gastrostomy tube designed to aspirate food from a full stomach (i.e. larger diameter to accommodate food particles,) the fluid pressure may be higher than traditional feeding tubes, and the illustrated valve embodiments can withstand such higher pressures without leaking. The illustrated valve embodiments are also designed to provide a large, uniform lumen from the tube through the valve. The rotational gasket configuration allows sealing of the tube without restricting the lumen dimension when the valve is in the “open” position, thereby minimizing the probability of tube clogging during food aspiration.



FIGS. 13A and 13B depict a tube connector 65 that is connected at the upper end of the patient line 20. The tube connector 65 is designed to mate with the skin connector, and protrusions 66 on the contacting surface of the tube connector 65 are configured to mate with the cut-outs 52 on the valve assembly 50 (both shown in FIG. 9B). The body of the tube connector 65 is preferably constructed of a hard plastic such as ABS. The contacting surface of the tube connector 65 is preferably implemented using a disc 68 made of an elastomeric material such as silicone, with a biased thru-hole 67 that is dimensioned and positioned to match the thru-hole of the skin connector. In the illustrated embodiment, the tube connector 65 has a ridge 71 around the perimeter of its contacting surface that is configured to fit into a mating surface of the skin connector (i.e., the valley 61 around the perimeter of the skin connector 60, shown in FIG. 10C). The outer surface of the illustrated tube connector also has a handle 69 for grasping by the user and a barbed hollow protrusion 70 that is in fluid communication with the thru-hole on the contacting surface for fastening to the patient line tubing.


Referring now to FIGS. 10C and 12-14, when the tube connector 65 and the skin connector 60 are not mated, the valve assembly 50 on the skin connector 60 is in a “closed” position, with the thru-hole 51 in the top platform 81 and the middle layer 82 oriented out of phase with respect to the thru-hole 54 in the bottom platform 83. To connect the tube connector 65 and the skin connector 60, the thru-hole 67 of the tube connector is aligned with the thru-hole 51 in the top platform 81 of the valve assembly 50. The tube connector 65 is then turned by grasping the handle 69 and turning it clockwise. When this happens, the biased thru-hole 51 in the top platform 81 and the middle layer 82 and the thru-hole 67 in the tube connector 65 will all rotate together into alignment with the thru-hole 54 in the bottom platform 83 of the valve assembly 50, thereby opening a passage to the gastrostomy tube. Rotating the tube connector 65 clockwise also engages mating features 66 on the tube connector with corresponding cut-outs 52 on the valve assembly 50 (shown in FIG. 9B) to lock the tube connector 65 to the skin connector.


After the passage is open, removal of ingested material from the patient's stomach is performed, as described above (optionally in alternation with the infusing of liquids into the patient's stomach). Subsequently, the patient or practitioner rotates the tube connector 65 counterclockwise, which causes the thru-hole 67, the biased thru-hole 51 in the top platform 81, and the middle layer 82 to all rotate together away from the thru-hole 54 in the bottom platform 83 of the valve assembly 50, to the position shown in FIG. 14A, thereby closing the valve in the skin connector 60. The tube connector 65 can then be pulled away from the skin connector 60.


Referring now to FIGS. 10-11, the skin connector 60 is preferably constructed with an outer skirt 58 composed of a soft, compliant material (e.g. elastomer, foam, etc.) that tapers the fully assembled low-profile skin-port towards the skin to provide a more aesthetic appearance, to prevent the skin connector 60 from catching on the user's clothing, and to serve as a bumper against applied stresses. In alternative embodiments, the skin connector 60 and tube connector 65 can be configured in various other forms and/or can use different materials to optimize various characteristics. For example, both the skin connector 60 and tube connector 65 can be made with an oblong shape. The mating features and turning of the valve can be actuated by alternate means that will be apparent to persons skilled in the relevant arts, including but not limited to thumbwheel mechanisms, scissor mechanisms, etc.


One potential side-effect of aspirating food from the stomach is lowering of electrolytes, such as potassium. The removal of hydrochloric acid (HCl) from the stomach along with food particles can cause the human body to excrete potassium to maintain a charge balance, and excretion of too much potassium can cause hypokalemia. One method for preventing hypokalemia is to give the patient potassium supplements and a proton pump inhibitor.


Another method for preventing hypokalemia is to selectively remove HCl from the extracted material, and return it to the patient's stomach, in order to prevent electrolyte imbalance and obviate the need for additional therapeutics. To achieve acid return to the stomach, the device may be configured with one or more semi-permeable filters that selectively screen out waste product and retain HCl for return to the stomach. Examples of suitable filters include mechanical filters, chemical filters, ionic membranes (e.g. anionic exchange membrane, cationic exchange membrane, bipolar membrane), and electrochemical filtrations systems (or a combination of the above).


One way to implement food evacuation with the return of acid to the stomach is by using two filters in series. The first filter, or pre-filter, separates food particles from the fluid. Examples of suitable filters for performing this function include mechanical filters like standard glass-fiber or cellulose filters that selectively remove solids above a specified particle size, leaving “waste” fluid. A suitable porosity for such a filter is 2.5 μm porosity. The second filter removes hydrochloric acid from the pre-filtered fluid. Examples of suitable filters for performing this function include semi-permeable membranes, or an anionic exchange membrane (e.g. NEOSEPTA™, Tokuyama, Japan).



FIG. 7A depicts a first embodiment for returning acid to the stomach. A siphon effect or a pump is used to force evacuated stomach contents through the pre-filter 110 and into one compartment 122 of a dual chamber container 120, which is separated from the other compartment 126 by an anionic exchange membrane 124. The second chamber 126 contains deionized water. The difference in ionic concentration between the dual chambers of the cell 120 will drive a diffusion dialysis process to occur in which the Cl and H+ ions from hydrochloric acid selectively transfer across the membrane 124 into the water filled chamber 126. The waste fluid can then be released to exit to the toilet, and a pump 130 can then be actuated to force the HCl and water solution back into the patient's stomach. FIG. 7B depicts an alternative embodiment that is similar to the FIG. 7A embodiment, but adds a separate water infusion subsystem 140 to allow the subject to continue to flush and siphon the stomach while the diffusion dialysis process is occurring. More complex filtration system can also be used, including but not limited to electrodialysis, or an anode and a cathode to separate charged ions in an electrophoresis like fluid suspension. The electrofiltration process could potentially decrease the time to remove the HCl from the waste product.


Repeated removal of food from a patient's stomach to achieve weight loss requires close medical supervision to avoid complications (e.g., a drop in electrolyte levels). It may therefore be desirable for the physician to ensure that the patient returns for follow-up and blood testing to avoid improper use of the device, or at a minimum have data that reveals the patient compliance with proper use of the system. A shut-off mechanism may be built into the system to ensure that the patient returns for such follow-up. The shut-off mechanism preferably operates based on some measurement of usage such as the passage of time (e.g., to disable the device after one month), the number of cycles of use (e.g., to disable the device after 90 uses), or the volume of extracted matter (e.g., to disable the device after 50 liters of material have been removed).


The measurement of usage may be implemented by mechanical or electrical means, as will be appreciated by persons skilled in the relevant arts (e.g., using a mechanical counter such as a multi-decade geared mechanism that is incremented using a cam-actuated sprocket, or an electrical counter that is incremented by a suitable sensor). Suitable events that can be used to increment the count include, but are not limited to, the connection of a water bottle to the system, the connection of the tube connector to the skin connector, etc. The shut-off mechanism may also be implemented by mechanical or electrical means. One example of a suitable mechanical shut-off mechanism is a preloaded spring mechanism that, when actuated, blocks fluid from moving through one of the system's tubes. An example of a suitable electrical device for implementing shut-off is a solenoid actuated valve, and a wide variety of alternatives will be apparent to persons skilled in the relevant arts. The shut-off mechanism may be designed to permanently disable the device, in which case the patient would have to obtain a new device to continue using the system. Alternatively, it may be configured to be resettable by a doctor (e.g., using an electronic shut-off mechanism that can be reset by entry of a password or a biometric key such as a fingerprint detector). After the patient is examined by the doctor (e.g., using blood tests to confirm healthy electrolyte levels), the doctor could provide a new device or reset the shut-off mechanism.


One application of some of the above-described embodiments is to implement a method of removing ingested food from a patient's stomach via a gastrostomy tube that passes through the patient's abdominal wall into the patient's stomach. This method includes the steps of: (a) siphoning a first portion of the ingested food out of the patient's stomach via the gastrostomy tube; (b) infusing liquid into the patient's stomach via the gastrostomy tube; and (c) siphoning at least some of the infused liquid out of the patient's stomach via the gastrostomy tube, together with a second portion of the ingested food. Optionally, this method may further include the steps of: (d) infusing liquid into the patient's stomach via the gastrostomy tube; and (e) siphoning at least some of the infused liquid out of the patient's stomach via the gastrostomy tube, together with a third portion of the ingested food, wherein step (d) is performed after step (c), and wherein step (e) is performed after step (d).


Another application of some of the above-described embodiments is to implement an apparatus for removing food from a patient's stomach via a gastrostomy tube that passes through the patient's abdominal wall into the patient's stomach. This apparatus includes: a connector configured to connect to a proximal end of the gastrostomy tube with a fluid-tight connection; a first fluid path provided between the connector and a drain port, configured to permit siphoning or pumping food from the patient's stomach out to the drain port; a second fluid path provided between the connector and an input port, configured to permit infusion of liquid from the input port into the patient's stomach; and a fluid circuit configured to alternately (a) open the first fluid path during a first interval of time to permit siphoning or pumping food out of the patient's stomach and (b) open the second fluid path during a second interval of time to permit infusion of the liquid in the reservoir into the patient's stomach.


Another application of some of the above-described embodiments is to implement a method of removing ingested material from a stomach of a patient fitted with an external gastrostomy connection to the stomach. This method includes: coupling a siphon tube to the connection so as to create a siphon system having an aggregate length in excess of 25 cm; and draining content of the stomach through the siphon tube.


Another application of some of the above-described embodiments is to implement a method of removing ingested material from a stomach of a patient fitted with an external gastrostomy connection to the stomach. This method includes the steps of: pumping a fluid through the connection into the stomach to increase fluid in the stomach without ingestion of fluid; and draining content of the stomach through the connection. Optionally, the fluid may include one or more of the following: water, a nutrient, a medication, and returned gastric juices.


Another application of some of the above-described embodiments is to implement an apparatus for removing ingested material from a stomach of a patient fitted with an external gastrostomy connection to the stomach. This apparatus includes: a fluid source for infusing fluid into the stomach through the connection; and a drain line for draining content of the stomach received from the connection. Optionally, a siphon system is used for passively draining content of the stomach, preferably using flat tubing. Optionally, a pump may be coupled to the fluid source for pumping fluid through the connection into the stomach.


Another application of some of the above-described embodiments is to implement a method of removing ingested food from a patient's stomach via a gastrostomy tube that passes through the patient's abdominal wall into the patient's stomach. This method includes the steps of: (a) extracting a portion of the matter contained in the patient's stomach via the gastrostomy tube; (b) removing stomach acid from the matter extracted in the extracting step; and (c) returning the stomach acid removed in the removing step to the patient's stomach via the gastrostomy tube. Optionally, the removing step includes the steps of: (i) filtering out solid portions from the matter extracted in the extracting step; and (ii) filtering a liquid resulting from step (i) using a semi-permeable membrane or an anionic exchange membrane. In this application, the extracting step may be implemented by siphoning or pumping.


Another application of some of the above-described embodiments is to implement an apparatus for removing food from a patient's stomach via a gastrostomy tube that passes through the patient's abdominal wall into the patient's stomach. This apparatus includes: a connector configured to connect to a proximal end of the gastrostomy tube with a fluid-tight connection; a filter configured to separate stomach acid from other matter; a first path from the connector to the filter, configured to route matter extracted from the patient's stomach into the filter; a pump configured to pump stomach acid that has been separated by the filter back into the patient's stomach; and a second path configured to route the other matter to a waste outlet. In this application, the matter extracted from the patient's stomach may be routed into the filter by pumping or siphoning. Optionally, this apparatus may further include a reservoir configured to hold liquid and a pump configured to pump the liquid from the reservoir into the patient's stomach via the connector.


Another application of some of the above-described embodiments is to implement a method of removing ingested food from a patient's stomach via a gastrostomy tube that passes through the patient's abdominal wall into the patient's stomach. This method includes the steps of: providing an apparatus for siphoning or pumping ingested food out of the patient's stomach via the gastrostomy tube; and limiting the number of times that the siphoning or pumping operation can be performed by the apparatus. The number of times that the siphoning or pumping operation can be performed may be limited by a variety of factors such as (a) elapsed time from a first use, (b) how many times siphoning or pumping of food has been performed, (c) how many times the apparatus has been connected to the gastrostomy tube, or (d) the volume of matter that has been extracted from the patient's stomach. Optionally, this method may further include the step of infusing liquid into the patient's stomach via the gastrostomy tube, wherein the infusing step is performed in alternation with the siphoning or pumping.


Another application of some of the above-described embodiments is to implement an apparatus for removing food from a patient's stomach via a gastrostomy tube that passes through the patient's abdominal wall into the patient's stomach. This apparatus includes: a connector configured to connect to a proximal end of the gastrostomy tube with a fluid-tight connection; and a first fluid path provided between the connector and a drain port, configured to permit, for a limited number of times only, siphoning or pumping food from the patient's stomach out to the drain port. The number of times that the siphoning or pumping can be performed may be limited by a variety of factors such as (a) elapsed time from a first use, (b) how many times siphoning or pumping of food has been performed, (c) how many times the apparatus has been connected to the gastrostomy tube, or (d) the volume of matter that has been extracted from the patient's stomach. Optionally, this apparatus may further include: a reservoir for holding liquid to be infused into the patient's stomach; a second fluid path from the reservoir to the connector, configured to permit infusion of the liquid in the reservoir into the patient's stomach; and a fluid circuit configured to alternately (a) open the first fluid path during a first interval of time to permit siphoning or pumping food from the patient's stomach and (b) open the second fluid path during a second interval of time to permit infusion of the liquid in the reservoir into the patient's stomach.


Note that while the system is described herein in the context of removing the ingested material from the patient's stomach, it can also be used to remove the ingested material from other portions of the patient's upper digestive tract (e.g., the jejunum).


Although the above discussion discloses various exemplary embodiments of the invention, it should be apparent that those skilled in the art can make variations and modifications that will achieve some of the advantages of the invention without departing from the true scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

Claims
  • 1. An apparatus for removing food from a patient's stomach via a gastrostomy tube that passes through the patient's abdominal wall into the patient's stomach, the apparatus comprising: a connector configured to connect to a proximal end of the gastrostomy tube with a fluid tight connection;a first fluid path provided between the connector and a drain port, configured to permit draining food from the patient's stomach out to the drain port;a second fluid path provided between the connector and an input port, configured to permit infusion of fluid from the input port into the patient's stomach; anda fluid circuit configured to alternately (a) open the first fluid path during a first interval of time to permit draining food out of the patient's stomach and (b) open the second fluid path during a second interval of time to permit infusion of the liquid through the input port and into the patient's stomach;wherein the first fluid path and the second fluid path share a common portion that is located adjacent to the connector.
  • 2. The apparatus of claim 1, further comprising a pump coupled to the first fluid path for pumping content from the stomach through the first fluid path.
  • 3. The apparatus of claim 1, wherein the fluid circuit comprises an actuator and at least one valve.
  • 4. The apparatus of claim 3, wherein the actuator has a first position that causes the at least one valve to open the first fluid path and close the second fluid path, and wherein the actuator has a second position that causes the at least one valve to close the first fluid path and open the second fluid path.
  • 5. The apparatus of claim 3, wherein the at least one valve is a blade occluder.
  • 6. The apparatus of claim 3, wherein the at least one valve is a check valve.
  • 7. The apparatus of claim 3, wherein the actuator is configured to alternately (i) open the first fluid path and (ii) close the first fluid path.
  • 8. The apparatus of claim 1, further comprising a reservoir for holding liquid to be infused into the patient's stomach, wherein a fluid outlet of the reservoir is connected to the input port.
  • 9. The apparatus of claim 8, wherein the reservoir includes a pump for pumping fluid through the connector and into the stomach.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of pending U.S. patent application Ser. No. 11/675,525 filed Feb. 15, 2007 which claims the benefit of U.S. provisional application No. 60/821,333, filed Aug. 3, 2006.

US Referenced Citations (168)
Number Name Date Kind
2533915 Brooks Dec 1950 A
2933140 Gagliardo Apr 1960 A
3066672 Crosby, Jr. Dec 1962 A
3144868 Jascalevich Aug 1964 A
3214069 Dike Oct 1965 A
3232578 Cousins Feb 1966 A
3384342 Passer May 1968 A
3506237 Tometsko Apr 1970 A
3598150 Nolan Aug 1971 A
3752158 Kariher Aug 1973 A
3860000 Wootten et al. Jan 1975 A
3884808 Scott May 1975 A
3924625 Peterson Dec 1975 A
4082095 Mendelson et al. Apr 1978 A
4116589 Rishton Sep 1978 A
4189795 Conti et al. Feb 1980 A
4190173 Mason et al. Feb 1980 A
4315509 Smit Feb 1982 A
4315513 Nawash et al. Feb 1982 A
4344435 Aubin Aug 1982 A
4356824 Vazquez Nov 1982 A
4381765 Burton May 1983 A
4393873 Nawash et al. Jul 1983 A
4449972 Kruger May 1984 A
4464175 Altman et al. Aug 1984 A
4525156 Benusa et al. Jun 1985 A
4538653 Shea et al. Sep 1985 A
4551130 Herbert et al. Nov 1985 A
4553960 Lazarus et al. Nov 1985 A
4555242 Saudagar Nov 1985 A
4599081 Cohen Jul 1986 A
4642092 Moss Feb 1987 A
4668225 Russo et al. May 1987 A
4685901 Parks Aug 1987 A
4723547 Kullas et al. Feb 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4804375 Robertson Feb 1989 A
4822338 Longmore et al. Apr 1989 A
4834724 Geiss et al. May 1989 A
4863438 Gauderer et al. Sep 1989 A
4895562 Lopez Jan 1990 A
4899747 Garren et al. Feb 1990 A
4935009 Caldwell et al. Jun 1990 A
5071405 Piontek et al. Dec 1991 A
5074850 Chion Dec 1991 A
5098378 Piontek et al. Mar 1992 A
5234454 Bangs Aug 1993 A
5259399 Brown Nov 1993 A
5263367 Pippert Nov 1993 A
5306300 Berry Apr 1994 A
5345949 Shlain Sep 1994 A
5358488 Suriyapa Oct 1994 A
5379926 Mueller et al. Jan 1995 A
5411022 McCue et al. May 1995 A
5417664 Felix et al. May 1995 A
5468240 Gentelia et al. Nov 1995 A
5507419 Martin et al. Apr 1996 A
5520307 Miller et al. May 1996 A
5520634 Fox et al. May 1996 A
5520662 Moss May 1996 A
5527280 Goelz Jun 1996 A
5549657 Stern et al. Aug 1996 A
5601213 Daniello Feb 1997 A
5601604 Vincent Feb 1997 A
5618296 Sorensen et al. Apr 1997 A
5716347 Gibbs et al. Feb 1998 A
5730322 Iba et al. Mar 1998 A
5741287 Alden et al. Apr 1998 A
5743468 Laidler Apr 1998 A
5868141 Ellias Feb 1999 A
5871475 Frassica Feb 1999 A
5895377 Smith et al. Apr 1999 A
5897530 Jackson Apr 1999 A
5925075 Myers et al. Jul 1999 A
5927604 Laidler Jul 1999 A
5972399 Lapre et al. Oct 1999 A
5989231 Snow et al. Nov 1999 A
6019746 Picha et al. Feb 2000 A
6039251 Holowko et al. Mar 2000 A
6048329 Thompson et al. Apr 2000 A
6070624 Bilbrey et al. Jun 2000 A
6077243 Quinn Jun 2000 A
6077250 Snow et al. Jun 2000 A
6152911 Giannoble Nov 2000 A
6210347 Forsell Apr 2001 B1
6245039 Brugger et al. Jun 2001 B1
6315170 Thomson et al. Nov 2001 B1
6322495 Snow et al. Nov 2001 B1
6328720 McNally et al. Dec 2001 B1
6341737 Chang Jan 2002 B1
6378735 Chu Apr 2002 B1
6381495 Jenkins Apr 2002 B1
6447472 Moss Sep 2002 B1
6453907 Forsell Sep 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6506179 Tiefenthal et al. Jan 2003 B1
6511490 Robert Jan 2003 B2
6533734 Corley et al. Mar 2003 B1
6572629 Kalloo et al. Jun 2003 B2
6579301 Bales et al. Jun 2003 B1
6585681 Brugger et al. Jul 2003 B2
6615084 Cigaina Sep 2003 B1
6626884 Dillon et al. Sep 2003 B1
6627206 Lloyd Sep 2003 B2
6645183 Christensen et al. Nov 2003 B2
6659974 Moss Dec 2003 B1
6666853 Chu et al. Dec 2003 B2
6691981 Hart Feb 2004 B1
6736336 Wong May 2004 B2
6743193 Brugger et al. Jun 2004 B2
6752790 Coombs Jun 2004 B2
6755869 Geitz Jun 2004 B2
6757957 McClean et al. Jul 2004 B2
6758836 Zawacki Jul 2004 B2
6902541 McNally et al. Jun 2005 B2
6923786 Rouns et al. Aug 2005 B2
6976980 Brenner et al. Dec 2005 B2
7025791 Levine et al. Apr 2006 B2
7174916 Chang Feb 2007 B2
7175612 Felix et al. Feb 2007 B2
7383852 Pittaway et al. Jun 2008 B2
7434594 Robbins et al. Oct 2008 B1
7524445 Duran et al. Apr 2009 B2
7641648 Bouphavichith et al. Jan 2010 B2
7648479 Solovay et al. Jan 2010 B2
7682346 McNally et al. Mar 2010 B2
7708724 Weston May 2010 B2
7713246 Shia et al. May 2010 B2
7740624 Klein et al. Jun 2010 B2
7815629 Klein et al. Oct 2010 B2
8002727 Brugger et al. Aug 2011 B2
8002758 Kamen et al. Aug 2011 B2
8062285 Langloss et al. Nov 2011 B2
20010049490 Slanda et al. Dec 2001 A1
20020077604 Willis et al. Jun 2002 A1
20020115966 Christensen et al. Aug 2002 A1
20020193753 Rouns et al. Dec 2002 A1
20030032932 Stout Feb 2003 A1
20030040808 Stack et al. Feb 2003 A1
20030069553 Talamonti Apr 2003 A1
20030097097 Scagliarini et al. May 2003 A1
20030109935 Geitz Jun 2003 A1
20030149395 Zawacki Aug 2003 A1
20030158539 Bouphavichith et al. Aug 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030225369 McMichael et al. Dec 2003 A1
20040055948 Blum et al. Mar 2004 A1
20040082909 Shia et al. Apr 2004 A1
20040220516 Solomon et al. Nov 2004 A1
20050107743 Fangrow, Jr. May 2005 A1
20050277900 Klein et al. Dec 2005 A1
20050283130 Klein et al. Dec 2005 A1
20060079853 Christensen et al. Apr 2006 A1
20060122559 Shia et al. Jun 2006 A1
20060129092 Hanlon et al. Jun 2006 A1
20060135914 Chu et al. Jun 2006 A1
20060147665 Duran et al. Jul 2006 A1
20060264983 Holsten et al. Nov 2006 A1
20060270970 Moss Nov 2006 A1
20060289011 Helsel Dec 2006 A1
20070187406 Nobile et al. Aug 2007 A1
20080033364 Kamen et al. Feb 2008 A1
20080091146 Solovay et al. Apr 2008 A1
20100106130 Solovay et al. Apr 2010 A1
20100106131 Klein et al. Apr 2010 A1
20100241090 Klein et al. Sep 2010 A1
20110082442 Solovay et al. Apr 2011 A1
20110178480 Solovay et al. Jul 2011 A1
Foreign Referenced Citations (37)
Number Date Country
10239443 Mar 2004 DE
0059044 Sep 1982 EP
0194980 Sep 1986 EP
0691868 Jun 2002 EP
1374930 Jan 2004 EP
2389962 Nov 2011 EP
2412393 Feb 2012 EP
2630011 Oct 1989 FR
62-224358 Oct 1987 JP
3018378 Jan 1991 JP
04-002361 Jan 1992 JP
04-198680 Jul 1992 JP
05-115429 May 1993 JP
05-317325 Dec 1993 JP
07-096030 Apr 1995 JP
08-196621 Aug 1996 JP
08-266546 Oct 1996 JP
20010029434 Feb 2001 JP
2005-522269 Jul 2005 JP
2006-508711 Mar 2006 JP
2006-102539 Apr 2006 JP
2009-542349 Dec 2009 JP
2009-545383 Dec 2009 JP
WO 9415655 Jul 1994 WO
WO 9925418 May 1999 WO
WO 0168007 Sep 2001 WO
WO 0232477 Apr 2002 WO
WO 03086247 Oct 2003 WO
WO 2004098692 Nov 2004 WO
WO 2005060869 Jul 2005 WO
WO 2006014496 Feb 2006 WO
WO 2006020441 Feb 2006 WO
WO 2006022709 Mar 2006 WO
WO 2006088419 Aug 2006 WO
WO 2008005496 Jan 2008 WO
WO 2008019082 Feb 2008 WO
WO 2011031679 Mar 2011 WO
Non-Patent Literature Citations (34)
Entry
Annex to form PCT/ISA/206 Communication Relating to the Results of the Partial International Search for International Application No. PCT/US2007/015479 dated Dec. 7, 2007, 2 pages.
Brolin, “Bariatric surgery and long-term control of morbid obesity”, JAMA, Dec. 2002, 288(22), 2793-2796.
Buchwald et al., “Bariatric Surgery, a Systematic Review and Meta-Analysis”, JAMA, Oct. 13, 2004, 292(14), 1724-1737.
Cantor et al., “Animal Models of Human Psychology”, Animals' Agenda, 1997 (Book Review), 18(3), 1 page.
Doenz et al., “Versatility of the Proximal Cope Loop Catheter”, American Journal of Roentgenolog, Jan. 1989, 152, 1 page.
Duszak, “Percutaneous Gastrostomy and Jejunostomy”, eMedicine Instant access to the Minds of Medicine, http://www.emedicine.com/radio/topic798.htm Jul. 8, 2005, 18 pages.
European Patent Application No. EP 11179953: Extended European Search Report dated Jan. 20, 2012, 7 pages.
Felsher et al., “Decompressive Percutaneous Endoscopic Gastrotomy in Nonmalignant Disease”, The American Journal of Surgery, 2004, 187, 254-256.
Flegal et al., “Prevalence and Trends in Obesity Among US Adults, 1999-2000”, JAMA, Oct. 9, 2002, 288(1), 1723-1727.
Gehman et al., “Percutaneous Gastrojejunostomy with a Modified Cope Loop Catheter”, American Journal of Roentgenology, Jul. 1990, 155, 79-80.
Goldstein, “Beneficial Health Effects of Modest Weight Loss”, International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, Jun. 1992, 16(6), 397-415.
Gray et al., “Modified Catheter for Percutaneous Gastrojejunostomy”, Radiology, Oct. 1989, 173(1), 276-278.
Harper et al., “The Long Term Outcome in Crohn's Disease”, Am. Soc. Gastrointestinal Endoscopy, Mar. 1987, 30(3), 174-179.
Herman et al., “Percutaneous Endoscopic Gastrostomy for Decompression of the Stomach and Small Bowel”, Gastrointestinal Endoscopy, May-Jun. 1992, 38(3), 314-318.
International Patent Application No. PCT/US2012/051995: International Search Report and Written Opinion dated Apr. 12, 2013, 22 pages.
Japanese Application No. 2009-518367: Notice of Reasons for Rejection dated May 15, 2012, 5 pages (English Translation Attached).
Japanese Application No. 2009-522889: Notice of Reasons for Rejection dated May 22, 2012, 7 pages (English Translation Attached).
Lawerence et al., “Percutaneous Endoscopic Gastrostomy for Decompression of the Stomach and Small bowels”, Gastrointestinal Endoscopy, 1992, 314-318.
Lorentzen et al., “Percutaneous Gastrostomy guided by Ultrasound and Fluorscopy”, ACTA Radiologica, 1995, 3, 159-162.
Luck et al., “Laparoscopic Gastrostomy: Towards the Ideal Technique”, Aust. N.Z. J. Surg., 1998, 68, 281-283.
Meissner, “Adjuvant Surgical Decompression Gastrostomy: Audit of a Procedure Coming of Age”, Hepatogastroenterology, Mar.-Apr. 2004, 51(56), 462-464.
Michaud et al., “Gastrostomy as a Decompression Technique in Children with Chronic Gastrointestinal Obstruction”, J. Pediatr. Gastroenterol. Nutr., Jan. 2001, 32(1), 82-85.
Nassif, “Efficient Decompression and Immediate Enteral Hyperaliment via Gastrostomy as an Adjunct to Gastroplasty”, Obes Surg., Mar. 1991, 1(1), 99-102.
Ozmen et al., “Percutaneous Radiological Gastrrostomy”, European Journal of Radiology, Sep. 2002, 43(3), 186-195.
Pearce et al., “The ‘cut and push’ Method of Percutaneous Endoscopic Gastrostomy Tube Removal”, Clinical Nutrition, 2000, 19(2),133-135.
Shapiro, “Animal Models of Human Psychology: Critique of Science, Ethics, and Policy”, Seattle: Hogrefe and Huber, 1998, Chapter 4, 111-211.
Shike “Percutaneous Endoscopic Stomas for Enteral Feeding and Drainage”, Oncology (Huntingt), Jan. 1995, 9(1), 39-44.
Shike et al., “An Active Esophageal Prosthesis”, Gastrointestinal Endoscopy, Jan. 1995, 41(1), 64-67.
Shike et al., “Combined Gastric Drainage and Jejunal feeding through a Percutaneous Endoscopic Stoma”, Gastrointestinal Endoscopy, May-Jun. 1990, 36(3), 290-292.
Shike et al., “External Biliary Duodenal Drainage through a Percutaneous Endoscopic Duodensotomy”, Gastrointestinal Endoscopy, 1989, 35(2), 104-105.
Shike et al., “Skin-level Gastrostomies and Jejunostomies for Long-Term Enter Feeding”, JPEN J Parenter Enteral Nurt., Nov.-Dec. 1989, 13(6), 648-650.
Shike, “Percutaneous Endoscopic Gastrostomy and Jejunostomy for long-term feeding in Patients with Cancer of the head and neck”, Otolaryngology Head and Neck Surgery, Nov. 1989, 101(5), 549-554.
Suazo-Barahona et al., “Obesity: a Risk Factor for Severe Acute Biliary and Alcoholic Pancreatitis”. Am. J. Gastroenterology, Aug. 1998 98(3), 1324-1328.
Thornton et al., “Percutaneous Radiological Gastrostomy with and without T-Fastner Gastropexy: A Randomized Comparison Study”, Cardiovasc Interventional Radiology, Nov.-Dec. 2002, 25(6), 467-471.
Related Publications (1)
Number Date Country
20130289474 A1 Oct 2013 US
Provisional Applications (1)
Number Date Country
60821333 Aug 2006 US
Divisions (1)
Number Date Country
Parent 11675525 Feb 2007 US
Child 13783250 US