1. Field of the Invention
The present invention relates, in general, to the field of medication dispensing systems and methods. More specifically, the present invention is directed to systems and methods for rapidly removing solid pharmaceutical medications and nutraceuticals from blister packages.
2. Description of the Related Art
The present invention overcomes the shortcomings and the deficiencies of the prior art systems and methods for removing solid pharmaceuticals from blister packages and is directed to systems and methods which substantially increase the number of blister packages which may be emptied in a given amount of time.
Over the last few years in the field of drug therapy, there has been an increase in the number of treatments that utilize more then one pharmaceutical product to treat any particular ailment. Moreover, as the world population ages, more patients are taking a plurality of medications on a daily basis to treat multiple ailments or diseases. In response, various forms of packaging have been developed in order to organize the medications by time of day and/or day of the week in order to ensure that the proper doses of medication are taken at the correct time of day.
In most instances, an individual receives one or more prescriptions from a doctor, and a pharmacy provides a pre-determined supply of each medication properly distributed amongst cavities of a single container, sometimes called a custom pharmaceutical package. Each cavity in the container or package is labeled for a different day or time of day to ensure that the patient takes the proper medication and dosage throughout the time period prescribed by the doctor. Thus, when an individual is required to take numerous pharmaceutical products throughout a given day the individual simply accesses the proper individual cavity to retrieve the correct dose of medication(s).
As an example of such a package, a container is divided in both the x and y direction into a plurality of individual cavities. The labels in the x direction are, for example, the days of the week: “Monday, Tuesday, Wednesday,” etc. The labels in the y direction are, for example, “Morning, Afternoon, Evening, Bedtime,” etc.
In order to assist pharmacies in filling these packages, automated systems have been developed that disperse individual doses from a bulk supply into respective containers.
However, a problem has arisen in countries such as the United Kingdom which require all medications to be sold and distributed in individual blister packages. As a result, it has not been possible to utilize such automatic packaging devices without first manually removing each medication from the blister pack to form a bulk supply. Such a shortcoming reduces the usefulness of the apparatus and detrimentally causes reduced sales of the devices in these regions. Accordingly, there remains a need in the field for improved pharmaceutical dispensing devices that directly transfer medication doses from a blister pack into a cavity of a custom pharmaceutical package in accordance with a particular patient's needs.
One prior solution is described in earlier filed published United States patent application number 2006/0277870 which is incorporated herein by reference. This application describes an earlier technique in which individual blister packages were emptied through the use of a plunger mechanism which mechanically pushed against the blister cavity to eject the solid pharmaceutical product. One shortcoming and deficiency of this prior approach is the limited throughput achieved by this mechanism. In this prior approach, the system operator was only able to eject the solid product or products from a single blister package cavity at any given time. Although this approach improved over the prior art, greater processing speeds are still desired. Accordingly, there remains a need for new and improved systems and methods which are able to achieve greater throughput by more quickly ejecting solid pharmaceutical and nutraceutical products from blister package cavities.
Other objects and advantages of the present invention will be apparent in light of the following Summary and detailed description of presently preferred embodiments.
The present invention is directed to systems and methods for rapidly ejecting solid pharmaceutical and nutraceutical products from a plurality of blister package cavities.
In accordance with a first preferred exemplary embodiment of the present invention, the medication dispensing system and method employs a de-blister apparatus which incorporates a mechanical structure for removing individual doses from a blister pack. The de-blister apparatus is preferably comprised of a de-blister roller, cylinder or elongated cylindrical toothed gear which pushes against a first side of packaging material to remove individual doses from a conventional blister package.
In a preferred exemplary embodiment, the invention comprises a positioning mechanism that alters the spacing between portions of the de-blister apparatus. The apparatus may operate under manual or automatic control and preferably includes adjustable or movable package holding rollers or gear members which are preferably aligned with portions of packaging material between the rows of blister cavities at a side of the packaging material opposite the side at which the roller or cylinder is located. The de-blister apparatus enables the rapid removal of solid pharmaceutical or nutraceutical products from blister cavities and provides a convenient mechanism for altering the device in order to accommodate different sizes of packaging material.
The de-blister roller, cylinder or elongated cylindrical toothed gear pushes against a first side of packaging material to remove individual doses from a conventional blister package. Preferably the de-blister roller, cylinder or elongated cylindrical toothed gear pushes against the actual blister members to force the solid pharmaceutical products or nutraceuticals out from the blister package cavities by pushing them through the blister package cavity sealing material. The adjustable or movable package holding rollers or gear members are preferably aligned with portions of packaging material between the rows of blister cavities at a side of the packaging material opposite the side at which the de-blister roller, cylinder or elongated cylindrical toothed gear is located. The adjustable or movable package holding rollers or gear members are provided for the purpose of securing and moving the package and ensuring that the de-blister roller, cylinder or elongated cylindrical toothed gear pushes against a first side of packaging material to remove individual doses from a conventional blister package.
A hand crank or motor is provided to drive the de-blister roller, cylinder or elongated cylindrical toothed gear and force the packaging material between the de-blister roller, cylinder or elongated cylindrical toothed gear and the adjustable or movable package holding rollers or gear members. In accordance with a preferred exemplary embodiment, the de-blister roller, cylinder or elongated cylindrical toothed gear preferably has teeth which engage with corresponding teeth of the adjustable or movable package holding rollers or gear members. Placement of the packaging material between these rotating bodies forces the packaging material between the structures thereby ejecting pills from the blister package cavities. A tray is preferably provided beneath the location at which the pills are ejected for conveniently receiving and temporarily storing the solid pharmaceutical or nutraceutical products that have been removed from the blister package cavities.
In a preferred embodiment of the invention, the lateral spacing between the adjustable or movable package holding rollers or gear members may be altered so that the solid pharmaceutical or nutraceutical de-blister mechanism will accommodate a variety of different blister packages wherein the spacing between the rows of blister package cavities is different. In one preferred embodiment of the present invention, a barrel cam is provided and rotation of the barrel cam alters the spacing between a plurality of fingers, each of which are in contact with one of the adjustable or movable package holding rollers or gear members. The barrel cam may be conveniently rotated manually with a knob or alternatively, a motor may be provided. Adjusting the spacing between a plurality of fingers with the barrel cam, each of which are in contact with one of the adjustable or movable package holding rollers or gear members thereby also adjusts the spacing between the adjustable or movable package holding rollers or gear members.
Locating the adjustable or movable package holding rollers or gear members in the rows between the blister package cavities ensures that the package material is secured between the de-blister roller, cylinder or elongated cylindrical toothed gear and the adjustable or movable package holding rollers or gear members while also enabling these solid pharmaceuticals or nutraceuticals to be conveniently ejected through the sealing portion of the blister package cavity.
In an alternate embodiment, a plate cam may be utilized for the same purpose of altering the lateral spacing between a plurality of fingers, each of which are in contact with one of the adjustable or movable package holding rollers or gear members thereby also adjusting the spacing between the adjustable or movable package holding rollers or gear members.
Hand crank 22 preferably rotates the de-blister roller, cylinder or elongated cylindrical toothed gear 24 which preferably has teeth which engage with corresponding teeth of adjustable or movable package holding rollers or gear members which are not seen in this illustration and which are described later. A knob 26 is used to alter the spacing between the adjustable or movable package holding rollers or gear members as described in more detail below. The rotation of the knob 26 advantageously places the adjustable or movable package holding rollers or gear members preferably at locations corresponding to the spaces in between the vertical columns of blister package cavities of package 14.
The de-blister roller, cylinder or elongated cylindrical toothed gear 24 pushes against the blister package cavities of the package 14 thereby ejecting solid pharmaceutical products or nutraceuticals from the cavities. The solid pharmaceutical products or nutraceuticals drop away from the packaging and fall down slide 28 through opening 30 into tray 32 which conveniently catches and temporarily stores these solid pharmaceutical products and nutraceuticals which are ejected from the package 14.
The illustration of
Those skilled in the art will appreciate that the handcrank or motor that drives the de-blister roller, cylinder or elongated cylindrical toothed gear 24 may alternatively be used to rotate fixed package holding rollers or gear members in the embodiment described above wherein adjustable or movable package holding rollers or gear members 66 are replaced so that no barrel cam is needed. This alternate embodiment simply changes the location of the rotation driving force.