This application claims the priority of PCT Patent Application No. PCT/US12/67344, filed on Nov. 30, 2012, which is incorporated herein by reference.
Not applicable.
The present invention generally relates to systems and methods for reordering sequential actions. More particularly, the invention relates to reordering sequential actions in a process or workflow by determining which actions are required to enable another action in the process or workflow.
Often workflows or processes in any particular industry involve a series of actions or steps that are performed sequentially to produce an end result. As a result, performing any action in the process or workflow other than the initial action, requires performing all sequential actions leading up to the selected action to perform. Because some actions are not required to perform other actions, the sequential repetition of all actions preceding the selected action is often inefficient and time consuming. In the following example, a process or workflow includes five actions represented by the following five sequential steps:
Step 1: Read a file and produce object A;
Step 2: Read a file and produce object B;
Step 3: Read a file and produce object C;
Step 4: Use object A and object B to produce object D; and
Step 5: Use object D and object C to produce object E.
In this manner, each step representing an independent action is sequentially performed although steps 2 and 3 do not have prerequisite actions that are required to enable each of these steps and step 4 does not require step 3 to enable it. If, for example, the only action selected is step 4 to produce object D, then steps 1, 2 and 3 would be sequentially performed although step 3 is unnecessary to produce object D.
Other attempts to improve efficiency of a process or workflow comprising sequential steps have relied on the predetermined selective removal of unnecessary actions or steps in the process or workflow, which must be repeated each time an action is performed and/or may produce erroneous results due to the unintentional removal of necessary actions. In other words, these attempts fail to provide repeatability and reliability.
The present invention therefore, meets the above needs and overcomes one or more deficiencies in the prior art by providing systems and methods for reordering sequential actions in a process or workflow by determining which actions are required to enable another action in the process or workflow.
In one embodiment, the present invention includes a method for reordering multiple actions in a process or workflow, which comprises: i) selecting an action in the process or workflow to repeat; ii) determining each action in the process or workflow that is required to enable the selected action using a computer processor; and iv) reordering each action in the process or workflow that is required to enable the selected action.
In another embodiment, the present invention includes non-transitory program carrier device tangibly carrying computer-executable instructions for reordering multiple actions in a process or workflow, the instructions being executable to implement: i) selecting an action in the process or workflow to repeat; ii) determining each action in the process or workflow that is required to enable the selected action; and iv) reordering each action in the process or workflow that is required to enable the selected action.
Additional aspects, advantages and embodiments of the invention will become apparent to those skilled in the art from the following description of the various embodiments and related drawings.
The present invention is described below with references to the accompanying drawings in which like elements are referenced with like reference numerals, and in which:
The subject matter of the present invention is described with specificity, however, the description itself is not intended to limit the scope of the invention. The subject matter thus, might also be embodied in other ways, to include different steps or combinations of steps similar to the ones described herein, in conjunction with other technologies. Moreover, although the term “step” may be used herein to describe different elements of methods employed, the term should not be interpreted as implying any particular order among or between various steps herein disclosed unless otherwise expressly limited by the description to a particular order.
Referring now to
In step 102, each action in a process or workflow is selected and performed using the client interface and/or the video interface described in reference to
In step 104, the parameters for each action in the process or workflow are recorded such as, for example, the type of action performed, the time the action was performed, the input data (if any) that the action required, and the output data created or generated by the action.
In step 108, an action is selected from the process or a workflow to repeat using the client interface and/or the video interface described in reference to
In step 110, each action in the process or workflow that is required to enable the selected action is determined. One embodiment of a method for implementing this step is further described in reference to
In step 112, only each action in the process or workflow that is required to enable the selected action and the selected action are displayed in a reordered process or workflow using the client interface and/or the video interface described in reference to
In step 114, one or more parameters of one or more of the actions displayed in the reordered process or workflow may be edited using the client interface and/or the video interface described in reference to
In step 116, each action displayed in the reordered process or workflow is performed.
Alternatively, steps 102 and 104 may be iteratively repeated for a single action in the process or workflow until an action is selected to repeat.
Referring now to
In step 202, an empty List(Action), Map(Action, List(Action)) and List(InputData) are created using techniques well known in the art.
In step 204, the action selected in step 108 of the method 100 is added to List(Action).
In step 206, the method 200 determines if List(Action) is empty. If List(Action) is empty, then the method 200 proceeds to step 238. If List(Action) is not empty, then the method 200 proceeds to step 208.
In step 208, the first action in List(Action) is identified and named Action(x).
In step 210, List(Action(x)) is created using techniques well known in the art, which represents all actions in the process or workflow that are required to enable Action(x).
In step 212, all input data of Action(x) are added to List(InputData).
In step 214, the method 200 determines if List(InputData) is empty. If List(InputData) is empty, then the method 200 proceeds to step 234. If List(InputData) is not empty, then the method 200 proceeds to step 216.
In step 216, the first input data in List(InputData) is identified and named Input(i).
In step 218, a time T is initialized to when Action(x) was performed.
In step 220, the method 200 determines if there is an action in the process or workflow executed before time T. If there is an action in the process or workflow that is executed before time T, then the method 200 proceeds to step 226. If there is not an action in the process or workflow that is executed before time T, then the method proceeds to step 224.
In step 224, Input(i) is removed from List(InputData) and the method 200 returns to step 214.
In step 226, the last action executed in the process or workflow before time T is identified and named Action(y).
In step 228, the method 200 determines if Input(i) is one of the outputs of Action(y). If Input(i) is one of the outputs of Action(y), then the method 200 proceeds to step 232. If Input(i) is not one of the outputs of Action(y), then the method 200 proceeds to step 230.
In step 230, time T is initialized to when Action(y) was performed.
In step 232, Action(y) is added to List(Action(x)) and to List(Action), then the method 200 returns to step 224.
In step 234, Action(x) and List(Action(x)) are added to Map(Action, List(Action)), respectively. In this manner, Action(x) is mapped to Action and List(Action(x)) is mapped to List(Action).
In step 236, Action(x) is removed from List(Action) and the method 200 returns to step 206.
In step 238, Map(Action, List(Action)) is returned to step 110. In the conventional process or workflow described hereinabove with respect to the five actions represented by five sequential steps, Map(Action, List(Action)) would appear as illustrated in Table 1 below wherein the selected Action represented by step 5 requires the actions represented by steps 3 and 4 to enable it, the action represented by step 4 requires the actions represented by steps 1 and 2 to enable it and the actions represented by steps 1, 2 and 3 do not require any actions to enable them. In other words, the actions represented by steps 1, 2 and 3 require files as input that are external to the process or workflow and therefore, do not require actions to enable them.
Once Map(Action, List(Action)) is returned to step 110, the result may be displayed in step 112 in a reordered process or workflow as illustrated by the flow diagram in
The method 220 therefore, enables more efficient repeatability of processes and/or workflows by removing unnecessary actions in the process or workflow that are not required to enable a selected action. In this manner, computer resources are less constrained. In addition, the new reordered process or work flow visually enables improved traceability of each action required to enable the selected action and the corresponding input data.
The present invention may be implemented through a computer-executable program of instructions, such as program modules, generally referred to software applications or application programs executed by a computer. The software may include, for example, routines, programs, objects, components and data structures that perform particular tasks or implement particular abstract data types. The software forms an interface to allow a computer to react according to a source of input. DecisionSpace® Desktop, which is a commercial software application marketed by Landmark Graphics Corporation, may be used as an interface application to implement the present invention. The software may also cooperate with other code segments to initiate a variety of tasks in response to data received in conjunction with the source of the received data. Other code segments may provide optimization components including, but not limited to, neural networks, earth modeling, history matching, optimization, visualization, data management, reservoir simulation and economics. The software may be stored and/or carried on any variety of memory such as CD-ROM, magnetic disk, bubble memory and semiconductor memory (e.g., various types of RAM or ROM). Furthermore, the software and its results may be transmitted over a variety of carrier media such as optical fiber, metallic wire, and/or through any of a variety of networks, such as the Internet.
Moreover, those skilled in the art will appreciate that the invention may be practiced with a variety of computer-system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable-consumer electronics, minicomputers, mainframe computers, and the like. Any number of computer-systems and computer networks are acceptable for use with the present invention. The invention may be practiced in distributed-computing environments where tasks are performed by remote-processing devices that are linked through a communications network. In a distributed-computing environment, program modules may be located in both local and remote computer-storage media including memory storage devices. The present invention may therefore, be implemented in connection with various hardware, software or a combination thereof, in a computer system or other processing system.
Referring now to
The memory primarily stores the application programs, which may also be described as program modules containing computer-executable instructions, executed by the computing unit for implementing the present invention described herein and illustrated in
Although the computing unit is shown as having a generalized memory, the computing unit typically includes a variety of computer readable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. The computing system memory may include computer storage media in the form of volatile and/or nonvolatile memory such as a read only memory (ROM) and random access memory (RAM). A basic input/output system (BIOS), containing the basic routines that help to transfer information between elements within the computing unit, such as during start-up, is typically stored in ROM. The RAM typically contains data and/or program modules that are immediately accessible to, and/or presently being operated on, the processing unit. By way of example, and not limitation, the computing unit includes an operating system, application programs, other program module, and program data.
The components shown in the memory may also be included in other removable/nonremovable, volatile/nonvolatile computer storage media or they may be implemented in the computing unit through an application program interface (“API”) or cloud computing, which may reside on a separate computing unit connected through a computer system or network. For example only, a hard disk drive may read from or write to nonremovable, nonvolatile magnetic media, a magnetic disk drive may read from or write to a removable, nonvolatile magnetic disk, and an optical disk drive may read from or write to a removable, nonvolatile optical disk such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment may include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The drives and their associated computer storage media discussed above provide storage of computer readable instructions, data structures, program modules and other data for the computing unit.
A client may enter commands and information into the computing unit through the client interface, which may be input devices such as a keyboard and pointing device, commonly referred to as a mouse, trackball or touch pad. Input devices may include a microphone, joystick, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit through the client interface that is coupled to a system bus, but may be connected by other interface and bus structures, such as a parallel port or a universal serial bus (USB).
A monitor or other type of display device may be connected to the system bus via an interface, such as a video interface. A graphical user interface (“GUI”) may also be used with the video interface to receive instructions from the client interface and transmit instructions to the processing unit. In addition to the monitor, computers may also include other peripheral output devices such as speakers and printer, which may be connected through an output peripheral interface.
Although many other internal components of the computing unit are not shown, those of ordinary skill in the art will appreciate that such components and their interconnection are well-known.
While the present invention has been described in connection with presently preferred embodiments, it will be understood by those skilled in the art that it is not intended to limit the invention to those embodiments. It is therefore, contemplated that various alternative embodiments and modifications may be made to the disclosed embodiments without departing from the spirit and scope of the invention defined by the appended claims and equivalents thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2012/067344 | 11/30/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/084852 | 6/5/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5475843 | Halviatti et al. | Dec 1995 | A |
5757480 | Shimanaka | May 1998 | A |
5786814 | Moran et al. | Jul 1998 | A |
6226785 | Peterson et al. | May 2001 | B1 |
6335149 | Preston | Jan 2002 | B1 |
6532023 | Schumacher et al. | Mar 2003 | B1 |
6802052 | Andrews | Oct 2004 | B1 |
7139978 | Rojewshi et al. | Nov 2006 | B2 |
7587668 | Bala | Sep 2009 | B2 |
7627821 | Klementiev | Dec 2009 | B2 |
7634756 | Bjornson et al. | Dec 2009 | B2 |
7653896 | Herdeg, III | Jan 2010 | B2 |
7694223 | Corson | Apr 2010 | B2 |
7783927 | Joshi et al. | Aug 2010 | B2 |
7805675 | Cradick et al. | Sep 2010 | B2 |
7937243 | Yen et al. | May 2011 | B2 |
8191005 | Baier et al. | May 2012 | B2 |
8387066 | Becher | Feb 2013 | B1 |
20030142122 | Straut et al. | Jul 2003 | A1 |
20050055246 | Simon | Mar 2005 | A1 |
20060005140 | Crew et al. | Jan 2006 | A1 |
20060070025 | Mauceri, Jr. et al. | Mar 2006 | A1 |
20060143611 | Sadiq | Jun 2006 | A1 |
20060262115 | Shapiro | Nov 2006 | A1 |
20070150429 | Huelsman et al. | Jun 2007 | A1 |
20070299795 | Macbeth | Dec 2007 | A1 |
20080184250 | Hamadi | Jul 2008 | A1 |
20090037569 | O'Loughlin | Feb 2009 | A1 |
20090048896 | Anandan | Feb 2009 | A1 |
20090049108 | Forde | Feb 2009 | A1 |
20100023831 | Kim | Jan 2010 | A1 |
20100305991 | Diao et al. | Dec 2010 | A1 |
20100333109 | Milnor | Dec 2010 | A1 |
20110225565 | van Velzen | Sep 2011 | A1 |
20130247051 | Sun | Sep 2013 | A1 |
20130326537 | Edelstein | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
0567699 | Nov 1993 | EP |
2012079087 | Jun 2012 | WO |
Entry |
---|
Bausch et al, “BioOpera: Cluster-aware Computing”, 2002, IEEE, pp. 1-8. |
Young, Lee W.; International Search Report & Written Opinion; PCT/US12/67344; dated Feb. 5, 2013; 15 pgs; ISA/US; Alexandria, Virginia. |
Andre Boyce; International Preliminary Report on Patentability; PCT/US12/67344; dated Nov. 17, 2014; 18 pgs.; IPEA/US, Alexandria, Virginia. |
Uejio, et al, “A structured history for command recall,” Conference on System Sciences, 1991, p. 494-507, vol. 2. |
Clarence A. Ellis and Gary J. Nutt “Modeling and enactment of workflow systems” Application and Theory of Petri Nets, Lecture Notes in Computer Science, 1993, vol. 691/1993, 1-16, DOI: 10.1007/3-540-56863-8_36. |
Scaffidi, et al, “Scenario-Based Requirements for Web Macro Tools,” Symposium on Visual Languages and Human-Centric Computing, Sep. 23-27, 2007, p. 197. |
Wohlstadter, “Generating wrappers for command line programs: the Cal-Aggie Wrap-O-Matic project,” Proceedings of the 23rd International Conference on Software Engineering, May 12-19, 2001, p. 243-252. |
Atif M. Memon, “Automatically Repairing Event Sequence-Based GUI Test Suites for Regression Testing,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 18 Issue 2, Nov. 2008; 35 pgs. |
Subhraveti & Nieh, “Record and transplay: partial checkpointing for replay debugging across heterogeneous systems,” SIGMETRICS Performance Evaluation, Jun. 7, 11, 2011, San Jose, CA; pp. 109-120. |
Vishal Mistry, “Imitate: Recording multi-threaded programs for trace analysis and deterministic replay”; Jun. 2007; 76 pgs. |
E Lassila, “A macro expansion approach to embedded processor code generation,” IEEE Computer Society Press, 1996; 12 pgs. |
Chirag Mehta; Patent Examination Report No. 1; dated Jan. 20, 2016; 3 pages; Patent Application No. 2012395817; Australian Patent Office; Australia. |
Chirag Mehta; Patent Examination Report No. 2; dated May 6, 2016; 4 pages; Patent Application No. 2012395817; Australian Patent Office; Australia. |
Manfred Reichert, Clemens Hensinger & Peter Dadam; Supporting Adaptive Workflows in Advanced Application Environments; dated Mar. 1998; 10 pages; Ulm, Germany. |
FB Rice; Request to Amend a Complete Specification; dated Apr. 18, 2016; 20 pages; Patent Application No. 2012395817; FB Rice; Australia. |
Stallman, Richard M., & McGrath, Roland; A Program for Directing Recompilation, GNU Make; dated Apr. 2000; 161 pages; Version 3.79; Boston, Mass., USA. |
Hardeman, David; Extended Exam Report; dated Nov. 17, 2015; 5 pages; Patent Application No. 12889015.9; EPU; Munich, Germany. |
Number | Date | Country | |
---|---|---|---|
20150301870 A1 | Oct 2015 | US |