The present disclosure relates to devices, systems, and methods for repositioning a fully deployed valve assembly.
Heart valves are sometimes damaged by disease or by aging, resulting in problems with the proper functioning of the valve. Heart valve replacement has become a routine surgical procedure for patients suffering from valve dysfunctions. Traditional open surgery inflicts significant patient trauma and discomfort, requires extensive recuperation times, and may result in life-threatening complications.
To address these concerns, minimally invasive techniques, such as transcatheter valve implantation techniques, have been developed to deliver and deploy valve prostheses. In such methods, the valve prosthesis or valve assembly generally includes a frame and a prosthetic valve, and is radially compressed for delivery in a catheter and then advanced to the location of a native valve, where the valve assembly is deployed by radial expansion. The catheter may be advanced, for example through an opening in the native vasculature remote from the native valve, such as the femoral artery, and advanced through the vasculature to the native valve. In other techniques, the catheter is advanced through an opening in the heart to the location of the native valve, such as transapical or transatrially, or through an opening in the ascending aorta.
In some patients, the valve assembly may not perform as desired following implantation. For example, due to the position of the valve assembly, the valve assembly may not properly seal with the native valve and/or walls surrounding the native valve. This may result in paravalvular leakage (PVL), and other post surgical complications. Further, the valve assembly may not function properly due to the position of the valve assembly at the native valve. However, once a valve assembly is fully deployed and released from the delivery device, there is no easy way to reposition to the valve assembly to a new location.
Accordingly, there is a need for a valve assembly, system and method of repositioning a fully deployed valve assembly.
Embodiments hereof relate to a valve assembly including a frame, a prosthetic valve, and a repositioning wire. The frame defines a central passage. The prosthetic valve is coupled to the frame and disposed in the central passage of the frame. The repositioning wire is coupled to the frame. The repositioning wire is configured such that with the valve assembly in a radially expanded fully deployed configuration, pulling the repositioning wire radially compresses the valve assembly from the radially expanded fully deployed configuration to a radially compressed repositioning configuration.
Embodiments hereof also relate to a valve assembly repositioning system for repositioning a valve assembly that is in a radially expanded fully deployed configuration. The valve assembly repositioning system includes the valve assembly and a snare device. The valve assembly includes a frame that defines a central passage, a prosthetic valve coupled to the frame, and a repositioning wire coupled to the frame. The snare device is configured to snare and pull the repositioning wire to radially compress the valve assembly from the radially expanded fully deployed configuration to a radially compressed repositioning configuration. The snare device is also configured to move the valve assembly when the valve assembly is in the radially compressed repositioning configuration.
Embodiments hereof also relate to a method of repositioning a valve assembly having a frame, a prosthetic valve coupled to the frame, and a repositioning wire coupled to the frame. The method includes advancing a snare device to a location of the valve assembly with the valve assembly in a radially expanded fully deployed configuration at a first location adjacent a native valve. The snare device snares the repositioning wire. The snare device is manipulated such that the repositioning wire is pulled to radially compress the valve assembly from the radially expanded fully deployed configuration to a radially compressed repositioning configuration. The valve assembly is moved from the first location to a second location adjacent the native valve by manipulation of the snare device. The repositioning wire is released from the snare device and the valve assembly radially expands from the radially compressed repositioning configuration back to the radially expanded fully deployed configuration.
Specific embodiments of the present invention are now described with reference to the figures, wherein like reference numbers indicate identical or functionally similar elements. The terms “distal” and “proximal”, when used in the following description to refer to a catheter or delivery device, are with respect to a position or direction relative to the treating clinician. Thus, “distal” and “distally” refer to positions distant from, or in a direction away from, the clinician and “proximal” and “proximally” refer to positions near, or in a direction toward, the clinician. When the terms “distal” and “proximal” are used in the following description to refer to a device implanted into a native artery, such as a valve assembly, they are used with reference to the direction of blood flow from the heart. Thus “distal” and “distally” refer to positions in a downstream direction with respect to the direction of blood flow and “proximal” and “proximally” refer to positions in an upstream direction with respect to the direction of blood flow.
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Although the description of the invention is in the context of a transcatheter aortic valve repositioning system, the invention may also be used in other body passageways where it is deemed useful. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary, or the following detailed description.
As used herein the terms “fully deployed”, “fully deployed configuration”, and “radially expanded fully deployed configuration” mean that the device, such as a valve assembly or frame, that is described using these terms has been deployed at a site within the body, has been radially expanded (such as by balloon expansion or self-expansion), and has been released from the delivery device. Thus, for example, a valve assembly wherein a portion of the valve assembly has been radially expanded but a portion of the valve assembly is either not radially expanded or is still attached to the delivery device, is not considered “fully deployed”, in a “fully deployed configuration”, or in a “radially expanded fully deployed configuration”.
In general terms, the valve assembly of the present disclosure includes a frame, a prosthetic valve, and at least one repositioning wire. The valve assembly has a radially expanded fully deployed configuration that is collapsible to a radially compressed repositioning configuration for repositioning the valve assembly after the valve assembly has been fully deployed adjacent a native valve. The valve assembly also has a radially compressed delivery configuration (not shown), which may be a smaller diameter than the radially compressed repositioning configuration.
The frame of the valve assembly is a generally tubular configuration having a proximal end, a distal end, and a lumen therebetween. The frame is a stent structure as is known in the art, as described in more detail below. The frame may be self expanding or may be balloon expandable. The frame may comprise a number of strut or wire portions arranged relative to each other to provide a desired compressibility, strength, and leaflet attachment zone(s). The frame is a generally tubular support structure, and leaflets are secured to the frame to provide a stented prosthetic valve.
The prosthetic valve of the valve assembly may be attached to the frame. The prosthetic valve may also include a skirt affixed to the frame. The prosthetic valve may include a plurality of prosthetic valve leaflets, which may be attached along their bases to the skirt, for example, using sutures or a suitable biocompatible adhesive, or may be attached to the skirt or frame in other ways known to those skilled in the art. Adjoining pairs of leaflets may be attached to one another at their lateral ends to form commissures with free edges of the leaflets forming coaptation edges that meet in an area of coaptation. The prosthetic valve leaflets may be formed from a variety of materials, such as autologous tissue, xenograph material, or synthetics as are known in the art. The leaflets may be provided as a homogenous, biological valve structure, such as a porcine, bovine, or equine valve. Alternatively, the leaflets can be provided independent of one another (e.g., bovine or equine pericardial leaflets) and subsequently assembled to the support structure of the frame. In another alternative, the frame and leaflets may be fabricated at the same time, such as may be accomplished using high strength nano-manufactured NiTi films of the type produced at Advanced Bio Prosthetic Surfaces Ltd. (ABPS) of San Antonio, Tex., for example.
The frame and prosthetic valve of the valve assembly may be similar to the Medtronic CoreValve® transcatheter aortic valve replacement valve prosthesis and as described in U.S. Patent Application Publication No. 2011/0172765 to Nguyen et al., which is incorporated by reference herein in its entirety. However, those skilled in the art would recognize that any suitable valve prosthesis may be used in the present embodiment as the frame and prosthetic valve of the valve assembly. For example, and not by way of limitation, the combination of a frame and prosthetic valve of the valve assembly may assume a variety of other configurations that differ from those shown and described, including any known prosthetic heart valve design. In various embodiments, the frame and the prosthetic valve may utilize certain features of known expandable prosthetic heart valve configurations, whether balloon expandable, self-expanding, or unfurling (as described, for example, in U.S. Pat. Nos. 3,671,979; 4,056,854; 4,994,077; 5,332,402; 5,370,685; 5,397,351; 5,554,185; 5,855,601; and 6,168,614; U.S. Patent Application Publication No. 2004/0034411; Bonhoeffer P., et al., “Percutaneous Insertion of the Pulmonary Valve”, Pediatric Cardiology, 2002; 39:1664-1669; Anderson H R, et al., “Transluminal Implantation of Artificial Heart Valves”, EUR Heart J., 1992; 13:704-708; Anderson, J. R., et al., “Transluminal Catheter Implantation of New Expandable Artificial Cardiac Valve”, EUR Heart J., 1990, 11: (Suppl) 224a; Hilbert S. L., “Evaluation of Explanted Polyurethane Trileaflet Cardiac Valve Prosthesis”, J Thorac Cardiovascular Surgery, 1989; 94:419-29; Block P C, “Clinical and Hemodynamic Follow-Up After Percutaneous Aortic Valvuloplasty in the Elderly”, The American Journal of Cardiology, Vol. 62, Oct. 1, 1998; Boudjemline, Y., “Steps Toward Percutaneous Aortic Valve Replacement”, Circulation, 2002; 105:775-558; Bonhoeffer, P., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position, a Lamb Study”, Circulation, 2000: 102:813-816; Boudjemline, Y., “Percutaneous Implantation of a Valve in the Descending Aorta In Lambs”, EUR Heart J, 2002; 23:1045-1049; Kulkinski, D., “Future Horizons in Surgical Aortic Valve Replacement: Lessons Learned During the Early Stages of Developing a Transluminal Implantation Technique”, ASAIO J, 2004; 50:364-68; the teachings of which are all incorporated herein by reference).
The valve assembly of the present disclosure adds at least one repositioning wire. The term “wire” as used herein means an elongated element or filament or group of elongated elements or filaments and is not limited to a particular cross-sectional shape or material, unless so specified. The repositioning wire of the present disclosure includes a first end coupled to the frame. The repositioning wire extends from the first end around a circumference of the frame to a second end disposed opposite the first end. The first end of the repositioning wire may be coupled to the frame of the valve assembly by methods such as, but not limited to laser or ultrasonic welding, adhesives, tying, or other methods suitable for the purposes disclosed herein. The repositioning wire wraps around at least a portion of the circumference of the valve assembly. In an embodiment, with the valve assembly is in the radially expanded fully deployed configuration, the repositioning wire wraps around at least 75% of the circumference of the frame at the location of the repositioning wire. The repositioning wire may be woven through the open spaces of the frame of the valve assembly, above some frame members and below others. The repositioning wire is configured such that when the second end of the repositioning wire is pulled, the valve assembly is compressed from the radially expanded fully deployed configuration to the radially compressed repositioning configuration. The repositioning wire may be constructed of materials such as, but not limited to stainless steel, Nitinol, nylon, polybutester, polypropylene, silk, and polyester or other materials suitable for the purposes described herein.
The present disclosure also discloses a valve assembly repositioning system, which includes a valve assembly, as described above, and a snare device. The snare device is an elongate member configured to snare and to pull the repositioning wire of the valve assembly such that the valve assembly is compressed from the radially expanded fully deployed configuration to the radially compressed repositioning configuration. The snare device is also configured to move the valve assembly from a first location adjacent a native valve to a second location adjacent a native valve when the valve assembly is in the radially compressed repositioning configuration.
With the above understanding in mind, an embodiment of a valve assembly 102 according to the present disclosure is shown in
Frame 104 is of a generally tubular configuration including a first end 104 and a second end 106, and defines a central passage 106 therethrough. Frame 104 is a support structure that comprises a number of wire members 110 arranged relative to each other to create open spaces 112. Prosthetic valve 108 is coupled to frame 104 and disposed within central passage 106 of frame 104.
Valve assembly 102 further includes a first repositioning wire 120A and a second repositioning wire 120B. In the embodiment shown, first repositioning wire 120A is disposed adjacent first end 114 (inflow end) of frame 104 and second repositioning wire 120B is disposed adjacent second end 116 (outflow end) of frame 104. Although
Each repositioning wire 120A, 120B is configured such that when respective second end 124A, 124B of each repositioning wire 120A, 120B is pulled, frame 104 of valve assembly 102 is compressed from the radially expanded fully deployed configuration to a radially compressed repositioning configuration, thereby also compressing valve assembly 102 from the radially expanded fully deployed configuration to the radially compressed repositioning configuration. As shown in
Snare device 130 is also configured to move valve assembly 102 longitudinally within the native vessel or valve when valve assembly 102 is in the radially compressed repositioning configuration. To move valve assembly 102 distally or proximally, the user pushes or pulls snare device 130, respectively. Stated another way, when snare device 130 has grasped and pulled repositioning wire 120 and valve assembly 102 is in the radially compressed repositioning configuration, moving snare device 130 distally moves valve assembly 102 distally (i.e., away from the clinician), and moving snare device 130 proximally moves valve assembly 102 proximally (i.e., towards the clinician).
Clasping mechanism 176 shown in
Similar to the embodiments described above, valve assembly further includes a repositioning wire 220. Repositioning wire 220 includes a first end 222 coupled to frame 204. Repositioning wire 220 wraps around a circumference of frame 204 to a second end 224, as shown in
In the embodiment shown in of
In the embodiment of
In an embodiment shown in
With snare mechanism 276 engaged with lasso 226 and repositioning wire 220 pulled such that valve assembly 202 is in the radially compressed repositioning configuration, snare device 230 may be manipulated to move valve assembly 202 within the native vessel/valve. To move valve assembly 202 distally or proximally, the user pushes or pulls snare device 230, respectively. Stated another way, when snare device 230 has snared and pulled lasso 226 of repositioning wire 220, and valve assembly 202 is in the radially compressed repositioning configuration, moving snare device 230 distally moves valve assembly 202 distally, and moving snare device 230 proximally moves valve assembly 202 proximally.
As noted above, valve assembly 202 may include more than one repositioning wire.
Snare device 330 may be advanced to a location of a fully deployed valve assembly in the configuration shown in
With first snare 376 engaged with first lasso 226A and second snare 386 engaged with second lasso 226B, first and second shafts 376, 386 may be moved in opposite directions, as indication by arrows Ld and Lp, respectively, in
With first and second snares 376, 386 engaged with first and second lassos 226A, 226B and first and second repositioning wires 220A, 220B pulled such that valve assembly 202 is in the radially compressed repositioning configuration, snare device 330 may be manipulated to move valve assembly 202 within the native vessel/valve. To move valve assembly 202 distally or proximally within the native valve, the user moves snare device 330 distally or proximally, respectively. Stated another way, when snare device 330 has snared and pulled first and second lassos 226A, 226B of first and second repositioning wires 220A, 220B, respectively, and valve assembly 202 is in the radially compressed repositioning configuration, moving snare device 330 distally moves valve assembly 202 distally, and moving snare device 330 proximally moves valve assembly 202 proximally.
An embodiment of a method of repositioning a fully deployed valve assembly in a native valve is schematically represented in
Snare device 130 is advanced through the patient's vasculature and is positioned adjacent valve assembly 102. Clasping mechanism 176 of snare device 130 is manipulated by the treating clinician to grasp a second end 124 of repositioning wire 120, as shown in
Snare device 130 is rotated in a direction R1 by the treating clinician, thereby pulling repositioning wire 120 as it wraps circumferentially around shaft 170 of snare device 130. The pulling of repositioning wire 120 compresses valve assembly 102 from the radially expanded fully deployed configuration to the radially compressed repositioning configuration, as shown in
Snare device 130 may then be moved proximally or distally to reposition valve assembly 102 from the first location of
Snare device 130 is rotated in a direction R2 opposite direction R1 by the treating clinician, thereby releasing the pulling force on repositioning wire 120 as repositioning wire 120 unwraps circumferentially from shaft 170 of snare device 130. As the pulling force is released, frame 104 of valve assembly 102 self-expands from the radially compressed repositioning configuration to the radially expanded fully deployed configuration at the second location, as shown in
Once valve assembly 102 is in its radially expanded fully deployed configuration at the second location, snare device 130 may be withdrawn from the patient. Valve assembly 102 remains fully deployed at the repositioned second location adjacent native valve 700, as shown in
A similar method may be used for a valve assembly 102 including a plurality of repositioning wires 120. For example, and not by way of limitation, a snare device may be used for each repositioning wire. In another example, a snare device may include multiple clasping mechanisms, one for each of the plurality of repositioning wires. Further, a similar method may be used to reposition valve assembly 202 of
Snare device 330 is advanced through the patient's and is positioned within valve assembly 202, as shown in
First snare 376 is manipulated by the treating clinician to snare first lasso 226A of first repositioning wire 220A and second snare 386 is manipulated by the treating clinician to snare second lasso 226B of second repositioning wire 220B, as shown in
Once first lasso 226A and second lasso 226B are snared by first snare 376 and second snare 386, respectively, snare device 330 is actuated by the treating clinician such that first snare 376 and second snare 386 are moved apart from each other. This movement causes first repositioning wire 220A and second repositioning wire 220B to be pulled in directions Ld and Lp, respectively, thereby compressing valve assembly 202 from the radially expanded fully deployed configuration to a radially compressed repositioning configuration, as shown in
Snare device 330 may then be moved proximally or distally to reposition valve assembly 202 from the first location of
When valve assembly 202 is positioned at the repositioned second location, the treating clinician may move first snare 376 and second snare 386 back toward each other such that the pulling force on first repositioning wire 220A and second repositioning wire 220B is released. As the pulling force on repositioning wires 220A and 220B is released, valve assembly 202 self-expands from the radially compressed repositioning configuration to the radially expanded fully deployed configuration at the second location, as shown in
Once valve assembly 202 is and in its radially expanded fully deployed configuration at the second location, snare device 330 may be withdrawn from the patient. Valve assembly 202 remains fully deployed at the repositioned second location adjacent native valve 700, as shown in
While only some embodiments and methods have been described herein, it should be understood that it has been presented by way of illustration and example only, and not limitation. Various changes in form and detail can be made therein without departing from the spirit and scope of the invention, and each feature of each embodiment discussed herein, and of each reference cited herein, can be used in combination with the features of any other embodiment. All patents and publications discussed herein are incorporated by reference herein in their entirety.