This invention relates to building wraps for buildings. The invention has example applications for retrofitting an existing building.
The carbon footprint of a building built using existing systems and methods can be large. There is a general desire to replace energy inefficient buildings with energy efficient buildings. This can be done by demolishing an existing energy inefficient building and constructing a brand new energy efficient building. However, demolishing and rebuilding involves significant amounts of time and/or resources (e.g. labour, energy, materials, etc.).
Retrofitting existing buildings offers a cost-effective solution for reducing energy consumption and carbon emissions. One way to retrofit an existing building is to install building panels which improve the insulating and/or weatherproofing characteristics of the building. Existing retrofit building panels are known to be expensive in terms of material and/or labor. Existing retrofit building panels are also known to be difficult to install.
There remains a need to provide building wraps which can efficiently and effectively improve the insulating and/or weatherproofing characteristics of a building.
There remains a need for practical and cost effective ways to retrofit an existing building using systems and methods that improve on existing technologies.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
Aspects of the invention include without limitation:
In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following detailed descriptions.
Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
Throughout the following description specific details are set forth in order to provide a more thorough understanding to persons skilled in the art. However, well known elements may not have been shown or described in detail to avoid unnecessarily obscuring the disclosure. Accordingly, the description and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
This description employs a number of simplifying directional conventions. Directions are described in relation to a building having an existing vertically extending building wall and an existing horizontally extending roof. Directions may be referred to as: “external”, “outward” or the like if they tend away from the building; “internal”, “inward” or the like if they tend toward the building; “upward” or the like if they tend toward the top of the building; “downward” or the like if they tend toward the bottom of the building; “vertical” or the like if they tend upwardly, or downwardly, or both upwardly and downwardly; “horizontal” or the like if they tend in a direction orthogonal to the vertical direction. Those skilled in the art will appreciate that these directional conventions are used for the purpose of facilitating the description and should not be interpreted in the literal sense. In particular, the invention may be adapted for buildings which have walls that are not strictly vertically oriented and/or roofing structures that are inclined.
As depicted in
Wall panels 30 refer to panels which are secured against the outside of the exterior wall of building 12. Wall panels 30 have a width which is typically in the range of about 10′ to about 14′, a length which is typically in the range of about 20′ to about 60′, and a thickness which is typically in the range of about 3″ to 24″. Two or more adjacent wall panels 30 are mechanically fastened and/or sealed together as described elsewhere herein to form a wall 300. Wall 300 may completely enclose the existing exterior walls of building 12 (e.g. see
Wall panel 30 may optionally comprise one or more cut-out regions 38 as shown in
Frame 31 is typically made of a rigid material. For example, frame 31 may be made of hollow structural section (HSS) steel, stainless steel, aluminum, fiberglass (FRP) and/or cementitious materials. Frame 31 may be embedded in a middle layer of panel body 32 such as insulating layer 32B as shown in
In some embodiments, frame 31 and/or members of frame 31 are galvanized.
In some embodiments, frame 31 comprises slotted holes 31A or the like (e.g. see
In some embodiments, the ratio between the number of clips 33 and the number of slotted holes 31A on a horizontal frame member of frame 31 may be 1:1. In some embodiments, a clip 33 and its corresponding slotted hole 31 are separated by a distance of no more than 1″. In some embodiments, adjacent clips 33 are coupled to frame 31 at different sides of adjacent slotted holes 31A. For example, a first clip 33 may be coupled to frame 31 at a right side of a first slotted hole 31A while a second adjacent clip 33 may be coupled to frame 31 at a left side of a second adjacent slotted hole 31A.
Clips 33 engage mounting rails 36 which are attached to the exterior of building 12 to secure wall panel 30 against building 12 (e.g. see
In the example embodiment shown in
In the example embodiment shown in
In some embodiments, building wrap 10 comprises means for securing the upper horizontal frame member of a lower wall panel 30-1 to the lower horizontal frame member of an upper wall panel 30-2. For example, the slotted holes 31A of an upper horizontal frame member of frame 31-1 of lower wall panel 30-1 and the slotted holes 31A of a lower horizontal frame member of frame 31-2 of upper wall panel 30-2 may be aligned with each other to receive pin 34 which secures the lower wall panel 30-1 to the upper wall panel 30-2 (e.g. see
In some embodiments, building wrap 10 comprises sealing means 37 provided between vertically and horizontally adjacent wall panels 30. Sealing means 37 may advantageously shield pin 34 from exposure to the ambient environment. Sealing means 37 may be provided between horizontally extending edges of vertically adjacent wall panels 30-1, 30-2 and/or vertically extending edges of horizontally adjacent wall panels 30-1, 30-3 to prevent water and/or air from penetrating building wrap 10 through gaps located at the interface of adjacent wall panels 30. In some embodiments, building wrap 10 comprises sealing means 37 provided between wall panels 30 and building 12 (i.e. sealing means 37 may be provided at air gap 35).
Examples of sealing means 37 include, but are not limited to, one or a combination of: backer rods, foam sealants, caulking, liquid applied membranes, mineral wool insulation, etc. In some embodiments, sealing means 37 comprises suitable fire rated caulking such as intumescent fire stop caulking or the like. In some embodiments, a fireproof seal is provided between wall panels 30 and building 12.
In the example embodiment shown in
In some embodiments, second portion 39C is coupled to a horizontal frame member of frame 31 of wall panel 30. In some embodiments, second portion 39C is coupled to a top horizontal frame member of frame 31. In some embodiments, second portion 39C is integrally formed as part of frame 31. As discussed elsewhere herein, connector 39 may be provided as a guide for securing wall panel 30 against building 12 in some cases and does not need to carry the weight of wall panel 30.
In some embodiments, adjacent wall panels 30 are mechanically secured to each other via suitable threads and/or connectors provided on frame 31 of panels 30.
Referring back to
In embodiments where lower edge 300B of wall 300 does not abut ground 11 (i.e. ground 11 does not carry the weight of wall 300), building wrap 10 preferably comprises foundation panels 40 which help support the weight of wall panels 30. Like wall panels 30, multiple foundation panels 40 may be joined together to form a retrofit foundation 400. In some embodiments, retrofit foundation 400 completely encloses the existing foundation 13 of building 12.
In some embodiments, building wrap 10 comprises foundation panels 40A which extend downwards to the elevation level of footing 13A of foundation 13. In these embodiments, foundation panels 40A may stand on footing 13A so that footing 13A carries at least part of the weight of foundation panels 40A and may also carry at least part of the weight of wall panels 30 supported by foundation panels 40A.
In some embodiments, building wrap 10 comprises foundation panels 40B which extend below grade, but not to the level of footing 13A of foundation 13 (e.g. see
In the example embodiment shown in
In some embodiments, foundation panels 40 share the same general composition as wall panels 30. For example, foundation panel 40 may comprise a structural frame 41 framed around a panel body 42 comprising an interior layer 42A made of cementitious material, a middle insulating layer 42B, and an exterior layer 42C made of cementitious material. Like wall panels 30, foundation panels 40 have a width which is typically in the range of about 10′ to about 14′, a length which is typically in the range of about 20′ to about 60′, and a thickness which is typically in the range of about 3″ to 24″.
Foundation panels 40 may optionally comprise additional structures which help carry the load of the panels located above them (e.g. wall panels 30). For example, foundation panels 40 may comprise one or more stiffening members coupled to frame 41. Foundation panels 40 may also comprise structures which are suitable for reinforcing and/or thickening the face of interior layer 42A. Foundation panels 40 may also comprise a water barrier membrane coated around one or more surfaces of foundation panel 40.
In some embodiments, building wrap 10 comprises a combination of foundation panels 40A which extend to footing 13A and foundation panels 40B which do not extend to footing 13B (e.g. see
Building wrap 10 comprises one or more roof panels 50 mounted on top of the existing roof of building 12.
In some embodiments, roof panels 50 share the same general composition as wall panels 30. For example, roof panel 50 may comprise a structural frame 51 framed around a panel body 52 comprising an interior layer 52A made of cementitious material, a middle insulating layer 52B, and an exterior layer 52C made of cementitious material. Like frame 31 of wall panel 30, frame 51 may be made of hollow structural section (HSS) steel, stainless steel, aluminum, fiberglass (FRP) and/or cementitious materials. Like frame 31 of wall panel 30, frame 51 may comprise frame members which have the shape of an angle beam, a channel beam, a flat beam, an I-Beam, etc.
In some embodiments, roof panels 50 share the same composition as wall panels 30 except that panel body 52 comprises additional layers which may partially or fully enclose frame 51 as shown in
Second insulating layer 52D has a thickness which is typically in the range of about ⅛″ to about ¼″. Second insulating layer 52D may be provided or shaped to form an angle relative to the surface of first insulating layer 52B (i.e. second insulating layer 52D may comprise a sloped surface facing towards the sky). For example, second insulating layer 52D may be angled towards the edges of building 12 to encourage water to drain towards the edges of building 12.
Roof panels 50 may optionally comprise slots 55 which face upwards (i.e. towards the sky) when roof panels 50 are mounted on top of the existing roof of building 12. As shown in
Roof panels 50 may comprise one or more exposed sides 50A and one or more enclosed sides 50B as shown in
Adjacent roof panels 50 may be joined together by suitable seals and/or mechanical fasteners to form a roof 500 having edges 501 which extend around the perimeter of roof 500 (e.g. see
Edges 501 or segments of edges 501 are adjacent to an upper edge 300A of wall 30 when building wrap 10 is installed on building 12. Wall panels 50 which form edges 501 typically comprise slots 55 which receive mechanical fasteners 56 to couple roof 500 to wall 300.
Roof 500 is depicted in
Building wrap 10 may optionally comprise parapet panels 70 which cover parapet 14 of building 12. Parapet panels 70 typically have a width in the range of 1′ to 14′, a length in the range of 20′ to 60′, and a thickness in the range of 3″ to 18″.
Building wrap 10 may in some cases be embodied as a “kit”, that is, as a collection of components that can be delivered to and/or assembled at the location of building 12 or any other suitable location to form all or parts of building wrap 10. Such a kit typically comprises one or a combination of components which form building wrap 10 as described elsewhere herein, which includes but is not limited to: wall panels 30, foundation panels 40, roof panels 50, parapet panels 70, clips 33, mounting rails 36, sealing means 37, etc.
Another aspect of the invention provides a method for retrofitting an existing building 12 with pre-fabricated panels (e.g. wall panels 30, foundation panels 40, roof panels 50, parapet panels 70, etc.).
At block 1001, building 12 is scanned using suitable 3-dimensional (3D) scanning technologies such as laser scanning to determine an exterior topography of building 12.
At block 1002, panels 30, 40, 50, 70 are designed based on the exterior topography determined in block 1001. Panels 30, 40, 50, 70 may be designed using suitable computer-aided design software and/or techniques such as 3D Building Information Modelling (BIM). Example design parameters include, but are not limited to: size, shape, material composition, thermal conductivity, and air permeability. Where the exterior topography of building 12 is similar to those of a known topography, panels 30, 40, 50, 70 may be designed based on the known topography.
At block 1003, panels 30, 40, 50, 70 are fabricated based on the design. Block 1003 preferably involves digital fabrication techniques such as Computer Numerical Control (CNC) machining. In some embodiments, block 1003 comprises providing casting beds which may be sized based on the desired dimensions of panels 30, 40, 50, 70. The casting beds may optionally comprise one or more block-outs to create opening(s) (e.g. windows, doors, etc.) on panels 30, 40, 50, 70. In some embodiments, block 1003 comprises providing suitable formworks and/or other structural reinforcements before the cementitious material is poured into the casting bed.
At block 1004, mounting rails 36 are attached to building 12. In some embodiments, mounting rails 36 are customized based on the exterior topography of building 12 and/or the design of panels 30, 40, 50, 70. In some embodiments, mounting rails 36 comprise standardized commercially available tracks (e.g. 0.188″ thick steel channel tracks).
At block 1005, wall panels 30 are secured against mounting rails 36. In some embodiments, roof panels 50 are mounted on top of building 12. In some embodiments, foundation panels 40 are installed below grade 11A to support the weight of wall panels 30.
Unless the context clearly requires otherwise, throughout the description and the claims:
While processes or blocks are presented in a given order, alternative examples may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.
Specific examples of systems, methods and apparatus have been described herein for purposes of illustration. These are only examples. The technology provided herein can be applied to systems other than the example systems described above. Many alterations, modifications, additions, omissions, and permutations are possible within the practice of this invention. This invention includes variations on described embodiments that would be apparent to the skilled addressee, including variations obtained by: replacing features, elements and/or acts with equivalent features, elements and/or acts; mixing and matching of features, elements and/or acts from different embodiments; combining features, elements and/or acts from embodiments as described herein with features, elements and/or acts of other technology; and/or omitting combining features, elements and/or acts from described embodiments.
Various features are described herein as being present in “some embodiments”. Such features are not mandatory and may not be present in all embodiments. Embodiments of the invention may include zero, any one or any combination of two or more of such features. This is limited only to the extent that certain ones of such features are incompatible with other ones of such features in the sense that it would be impossible for a person of ordinary skill in the art to construct a practical embodiment that combines such incompatible features. Consequently, the description that “some embodiments” possess feature A and “some embodiments” possess feature B should be interpreted as an express indication that the inventors also contemplate embodiments which combine features A and B (unless the description states otherwise or features A and B are fundamentally incompatible).
It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions, omissions, and sub-combinations as may reasonably be inferred. The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.
permutations, additions and sub-combinations as are consistent with the broadest interpretation of the specification as a whole.
This application claims the benefit under 35 U.S.C. § 119 of U.S. application No. 63/065,380 filed 13 Aug. 2020 and entitled SYSTEMS AND METHODS FOR RETROFITTING AN EXISTING BUILDING which is hereby incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
63065380 | Aug 2020 | US |