Conventional digital paper systems, which include a digital writing surface and a digital pen device, have become very popular. The digital pen device determines its location in real time on the digital writing surface, which may include a visible or non-visible digital pattern. The writing surface may take the form of a digital tablet or digital paper, for example digital paper made by the Anoto Group AB and having an ANOTO® pattern. Various types of conventional digital pen devices include, but are not limited to, the MAXELL® digital pen, the NOKIA® digital pen, the LEAPFROG FLYFUSION® digital pen, LIVSCRIBE® Pulsepen, the ANOTO® digital pen, and the LOGITECH® digital pen. Besides knowledge of placement location, some digital paper systems also maintain records of information like pressure or time as well as various “state” values such as color or width.
The digital pattern enables the digital pen to interact with printed content, text, lines, images, etc. which may take the form of spreadsheets, maps, AutoCAD layouts, etc. The printed content is overlaid on top of, or otherwise applied to the digital pattern, which allows the digital pen to “see through” the printed content and capture its exact position from the digital pattern.
Preferred and alternative examples of the present invention are described in detail below with reference to the following drawings:
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details or with various combinations of these details. In other instances, well-known systems and methods associated with, but not necessarily limited to, converting digital ink into text, digital paper systems, digital pens and methods for operating the same may not be shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments of the invention. For purposes of the description herein, the phrase “digital ink” refers generally to the handmade strokes made and optionally recorded by a digital pen.
The present invention is generally directed to systems and methods for reviewing digital pen data. For example, error checking digital ink to text conversions. By way of example, one such reviewing method includes using a confidence factor, output from a digital ink to text conversion program, to determine if a predetermined threshold value has been obtained. The threshold value may be ore-set or set by a user to correspond to a level of confidence considered acceptable during ink to text conversion. If the confidence factor obtained during ink conversion is lower than the threshold value, then a visible indicator is displayed to a user showing an area of potential error. The visual indicator alerts the user to a likely incorrect ink to text conversion. In another embodiment, text and ink are displayed simultaneously to aid in a user's conceptual review of the ink to text conversion.
Generally, when using digital ink and digital paper, handwritten strokes made by a digital pen are converted automatically into text with a handwriting recognition program. While there have been significant improvements in the handwriting-to-text conversions, it may still be prudent to review the converted digital pen data. However, checking every term may be time consuming, costly, and relatively unwielding when applied to large scale reviews of multiple forms or documents, which may be from multiple sources.
An embodiment of the present invention relates generally to error checking a document converted from digital ink to text. To focus a review and check only those terms that are most likely incorrect, the reviewing system “flags” text conversions having a confidence factor below a threshold value. By flagging the text, a user may quickly and visibly drawn to only those text conversions that are most likely to be incorrect.
Another type of reviewing system provides for error checking a digital form by contextually comparing handwritten digital ink with typographical text. When a user writes on a digital form in a region or cell using a digital pen, that handwriting is interpreted by the system in preparation for conversion to text. The handwritten ink is converted to produce a typographical symbol, which may take the form of one or more alphanumeric characters, symbols, and/or shapes. Both the handwritten ink and the typographical symbols are co-located, or optionally overlaid, when displayed to a user in the assigned text area of the digital document. The user is then able to selectively determine which of the ink or text is more visually prominent.
In a digital ink-to-text conversion process, the conversion of a particular term or marking is called a recognition event. A confidence factor is assigned to each recognition event, where the factor may be defined to be between zero “0” and one “1.” Alternatively, the confidence factor may be any normalized value. The confidence factor indicates a confidence level or correctness level of the text conversion. For example, the confidence factor closer to zero may mean the text conversion is likely incorrect whereas the confidence factor of closer to one may mean the conversion was more than likely correct. The confidence factor is compared to a threshold value, which is either statically or dynamically set. For text conversions having confidence factors below the threshold value, a visual indicator may be displayed. The visual indication may, for example, be a color, a format change, or an alert box. In addition, the threshold may be adjustable. So the user may vary an amount of review accuracy desired.
By way of example, a conventional personal computer , referred to herein as a computer 100, includes a processing unit 102, a system memory 104, and a system bus 106 that couples various system components including the system memory to the processing unit. The computer 100 will at times be referred to in the singular herein, but this is not intended to limit the application of the invention to a single computer since, in typical embodiments, there will be more than one computer or other device involved. The processing unit 102 may be any logic processing unit, such as one or more central processing units (CPUs), digital signal processors (DSPs), application-specific integrated circuits (ASICs), etc. Unless described otherwise, the construction and operation of the various blocks shown in
The system bus 106 can employ any known bus structures or architectures, including a memory bus with memory controller, a peripheral bus, and a local bus. The system memory 104 includes read-only memory (“ROM”) 108 and random access memory (“RAM”) 110. A basic input/output system (“BIOS”) 112, which can form part of the ROM 108, contains basic routines that help transfer information between elements within the computer 100, such as during start-up.
The computer 100 also includes a hard disk drive 114 for reading from and writing to a hard disk 116, and an optical disk drive 118 and a magnetic disk drive 120 for reading from and writing to removable optical disks 122 and magnetic disks 124, respectively. The optical disk 122 can be a CD-ROM, while the magnetic disk 124 can be a magnetic floppy disk or diskette. The hard disk drive 114, optical disk drive 118, and magnetic disk drive 120 communicate with the processing unit 102 via the bus 106. The hard disk drive 114, optical disk drive 118, and magnetic disk drive 120 may include interfaces or controllers (not shown) coupled between such drives and the bus 106, as is known by those skilled in the relevant art. The drives 114, 118, 120, and their associated computer-readable media, provide nonvolatile storage of computer readable instructions, data structures, program modules, and other data for the computer 100. Although the depicted computer 100 employs hard disk 116, optical disk 122, and magnetic disk 124, those skilled in the relevant art will appreciate that other types of computer-readable media that can store data accessible by a computer may be employed, such as magnetic cassettes, flash memory cards, digital video disks (“DVD”), Bernoulli cartridges, RAMs, ROMs, smart cards, etc.
Program modules can be stored in the system memory 104, such as an operating system 126, one or more application programs 128, other programs or modules 130 and program data 132. The system memory 104 also includes a browser 134 for permitting the computer 100 to access and exchange data with sources such as web sites of the Internet, corporate intranets, or other networks as described below, as well as other server applications on server computers such as those further discussed below. The browser 134 in the depicted embodiment is markup language based, such as Hypertext Markup Language (HTML), Extensible Markup Language (XML) or Wireless Markup Language (WML), and operates with markup languages that use syntactically delimited characters added to the data of a document to represent the structure of the document. Although the depicted embodiment shows the computer 10 as a personal computer, in other embodiments, the computer is some other computer-related device such as a personal data assistant (PDA), a cell phone, or other mobile device.
The operating system 126 may be stored in the system memory 104, as shown, while application programs 128, other programs/modules 130, program data 132, and browser 134 can be stored on the hard disk 116 of the hard disk drive 114, the optical disk 122 of the optical disk drive 118, and/or the magnetic disk 124 of the magnetic disk drive 120. A user can enter commands and information into the computer 100 through input devices such as a keyboard 136 and a pointing device such as a mouse 138. Other input devices can include a microphone, joystick, game pad, scanner, etc. These and other input devices are connected to the processing unit 102 through an interface 140 such as a serial port interface that couples to the bus 106, although other interfaces such as a parallel port, a game port, a wireless interface, or a universal serial bus (“USB”) can be used. A monitor 142 or other display device is coupled to the bus 106 via a video interface 144, such as a video adapter. The computer 100 can include other output devices, such as speakers, printers, etc.
The computer 100 can operate in a networked environment using logical connections to one or more remote computers, such as a server computer 146. The server computer 146 can be another personal computer, a server, another type of computer, or a collection of more than one computer communicatively linked together and typically includes many or all the elements described above for the computer 100. The server computer 146 is logically connected to one or more of the computers 100 under any known method of permitting computers to communicate, such as through a local area network (“LAN”) 148, or a wide area network (“WAN”) or the Internet 150. Such networking environments are well known in wired and wireless enterprise-wide computer networks, intranets, extranets, and the Internet. Other embodiments include other types of communication networks, including telecommunications networks, cellular networks, paging networks, and other mobile networks. The server computer 146 may be configured to run server applications 147.
When used in a LAN networking environment, the computer 100 is connected to the LAN 148 through an adapter or network interface 152 (communicatively linked to the bus 106). When used in a WAN networking environment, the computer 100 often includes a modem 154 or other device, such as the network interface 152, for establishing communications over the WAN/Internet 150. The modem 154 may be communicatively linked between the interface 140 and the WAN/Internet 150. In a networked environment, program modules, application programs, or data, or portions thereof, can be stored in the server computer 146. In the depicted embodiment, the computer 100 is communicatively linked to the server computer 146 through the LAN 148 or the WAN/Internet 150 with TCP/IP middle layer network protocols; however, other similar network protocol layers are used in other embodiments. Those skilled in the relevant art will readily recognize that the network connections are only some examples of establishing communication links between computers, and other links may be used, including wireless links.
The server computer 146 is further communicatively linked to a legacy host data system 156 typically through the LAN 148 or the WAN/Internet 150 or other networking configuration such as a direct asynchronous connection (not shown). Other embodiments may support the server computer 146 and the legacy host data system 156 on one computer system by operating all server applications and legacy host data system on the one computer system. The legacy host data system 156 may take the form of a mainframe computer. The legacy host data system 156 is configured to run host applications 158, such as in system memory, and store host data 160 such as business related data.
The text is displayed showing potential errors in the text conversion using an error checker 328 and/or showing ink transposed on the text 327. The error checker 328, inputs a confidence factor for each term based on the likelihood that the ink to text conversion was correct. If the confidence factor is below a particular threshold then a visual indicator is displayed on or near the text. Alternatively in display 327, the ink is overlaid on top of the converted text. The level of transparency can be selectively altered as shown in
A further embodiment of the current invention further includes the storage of forms as a portable document format. Forms can be rendered as a portable document format document that incorporates the full set of metadata, stored as layers related to the digital ink and its textual interpretations. Information about the author associated with the digital pen used to fill out the form, date/time each field was been filled out with a digital pen, as well as detailed ink stroke information and its textual interpretation are represented in portable document format documents as native annotations. All annotations are preferably locked so that they cannot be deleted or modified by users. These annotations therefore represent the content of the corresponding handwritten annotations and sketching performed on the paper printout that corresponds to the electronic rendition.
An additional view of the metadata can be activated by right-clicking on an annotation and selecting to view its Properties. The information displayed is for example the author, name of the field in the original form template (in the Subject Field), as well as the modified date showing when this field was last inked on.
Ink annotation further contains a detailed set of coordinates organized as sets of strokes that represent the coordinates traced by the digital pen by the user as she filled out the paper form. The relative coordinates of the paper are automatically converted into equivalent matching coordinates in the native portable document format coordinate system. The result is that the electronic rendition displays the electronic ink within a position that is less than 0.2 mm away from the corresponding position of the actual ink on the paper printout that got filled out with the digital pen.
Alternative ink interpretation hypotheses are stored, along their respective recognition levels of confidence as custom metadata embedded in each textual annotation field. While this extra information may or may not be visible to users via a portable document format viewer user interface.
In an embodiment, the interpreted textual data is presented within form fields, rather than as textual annotations. In this case, the alternative ink interpretation hypotheses may be presented for instance within a dropdown list from which users can pick an alternate interpretation. Picking an interpretation may take place by directly selection of the element on the list, or by predictive completion. If the intended value of a field is not present in the list, users may then type in the new value.
Form instances that have been populated with data prior to printing are represented in a portable document format document as portable document format elements such as textual annotations that are always displayed, independently of the state of the layers.
Such pre-populated data is displayed as if it were part of the underlying background image of the form. Fields containing pre-populated data is protected from user input. If a user inks over one of the pre-populated fields, the value of the field does not change. The ink is displayed as if it were part of the General Ink.
When users write with a digital pen on the same form that has already been uploaded to a system and rendered as a portable document format, this causes the ink from previous uploads to be displayed “dimmed out”. The older the ink (according to its ink upload history), the more dimmed it displays. Ink corresponding to the most recent upload is not dimmed. This permits users to determine at a glance how old each patch of digital ink is, and be able to identify the most recent one.
To support ink upload on disconnected computers, portable document format documents representing the background images of forms are stored locally e.g. during form printing in a portable document format background cache. On a local disconnected upload, the ink may be rendered on a copy of the portable document format background that corresponds to the paper form the user inked on. Users may then use local portable document format viewers to visualize the ink, and depending on the device, examine and correct the textual interpretations generated locally. A portable document format document containing the ink meta-data and optionally the textual interpretation may then be imported into a SharePoint (or other form repository). The import operation extracts the identity of the form, the digital ink and optionally the textual interpretations, and creates a corresponding electronic form in the system into which it is being imported.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow.
This application claims priority to U.S. Provisional Patent Application No. 61/155,012 filed on Feb. 24, 2009 and also claims priority to U.S. Provisional Patent Application No. 61/170,540 filed on Apr. 17, 2009, the subject matter of each is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61155012 | Feb 2009 | US | |
61170540 | Apr 2009 | US |