The present disclosure relates to systems and methods for secure reprovisioning, including the secure reprovisioning of contact-based cards and contactless cards.
Card-based transactions are becoming increasingly common. These transactions often involve the use of a card, such as a contact-based card or a contactless card, in communication with a point of sale device, a server, or other device. It is necessary to protect such communications from interception and unauthorized access. However, transmission of data is susceptible to phishing attacks and replay attacks, resulting in increased security risks and account or card misuse.
For contact-based cards, there is an increased security risk of card skimming which may further result in compromised security. Security risks may also be increased when using contactless cards, which communicate with other devices wirelessly. A contactless card using near field communication (NFC), Wi-Fi, or Bluetooth, for example, to transmit data encounters the risk that the data transmission will be intercepted or observed by an unauthorized or malicious reader.
If a security risk, misuse, unauthorized access, or other problem is encountered, reissuance of the card may be required. Reissuance of the card can further lead to security concerns, as malicious attackers may be aware of the original card, as well as the disruption of the ability of a user to engage in activity with the associated account. For example, a card that is mailed may be intercepted en route to a user and subject to misuse. Additionally, fraudulent actors may change the address such that the card is reissued to the address of their choice. Further, a card that has been mailed may be read contactlessly through the envelope and the card number may be skimmed.
These and other deficiencies exist. Accordingly, there is a need for systems and methods for authenticating secure card reprovisioning that overcome these deficiencies and results in a transition from a first account to a second account in a secure and reliable manner by protecting communications from interception and unauthorized access.
Embodiments of the present disclosure provide a secure reprovisioning system. The secure reprovisioning system may include a first device. The first device having an association with a first account. The first device may include a memory containing one or more applets, a counter value, and transmission data. The first device may include a communication interface. The first device may include one or more processors in communication with the memory and communication interface. The first device may be configured to create a cryptogram based on the counter value, wherein the cryptogram includes the counter value and the transmission data. The first device may be configured to transmit, after entry of the communication interface into a communication field, the cryptogram. The first device may be configured to update, after transmission of the cryptogram, the counter value. The first device may be configured to receive, via the communication interface, one or more encrypted keys and one or more parameters. The first device may be configured to decrypt the one or more encrypted keys. The first device may be configured to, after decryption of the one or more encrypted keys, switch an association from the first account to a second account.
Embodiments of the present disclosure provide a method for secure reprovisioning. The method may include creating a cryptogram based on a counter value, wherein the cryptogram includes the counter value and transmission data. The method may include transmitting, via a communication interface, the cryptogram. The method may include updating the counter value. The method may include receiving, via the communication interface, a first set of one or more encrypted keys and a first set of one or more parameters. The method may include decrypting the first set of one or more encrypted keys. The method may include changing an association from a first account to a second account.
Embodiments of the present disclosure provide a computer readable non-transitory medium comprising computer-executable instructions that are executed on a processor and comprising the steps of: creating a cryptogram based on a counter value, wherein the cryptogram includes the counter value and transmission data; transmitting, via a communication interface, the cryptogram; updating the counter value; receiving, via the communication interface, a command-application protocol data unit including one or more encrypted keys, one or more parameters, one or more applet identifiers, and one or more instructions associated with a class; decrypting the one or more encrypted keys in accordance with the one or more instructions; switching an association from a first account to a second account; and transmitting a response-application protocol data unit indicating an execution status associated with the one or more instructions.
These and other objects, features and advantages of the exemplary embodiments of the present disclosure will become apparent upon reading the following detailed description of the exemplary embodiments of the present disclosure, when taken in conjunction with the appended claims.
Various embodiments of the present disclosure, together with further objects and advantages, may best be understood by reference to the following description taken in conjunction with the accompanying drawings.
The following description of embodiments provides non-limiting representative examples referencing numerals to particularly describe features and teachings of different aspects of the invention. The embodiments described should be recognized as capable of implementation separately, or in combination, with other embodiments from the description of the embodiments. A person of ordinary skill in the art reviewing the description of embodiments should be able to learn and understand the different described aspects of the invention. The description of embodiments should facilitate understanding of the invention to such an extent that other implementations, not specifically covered but within the knowledge of a person of skill in the art having read the description of embodiments, would be understood to be consistent with an application of the invention.
Benefits of the systems and methods disclosed herein include improved security for authenticating secure card reprovisioning that results in a transition from a first account to a second account in a secure and reliable manner by protecting communications from interception and unauthorized access. The systems and methods disclosed herein allow for the avoidance of phishing attacks and preventing replay attacks, thereby increasing security. Security can also be increased by reducing the risks of other common attacks. For example, the systems and methods disclosed herein reduce the risk of card skimming attacks for contact-based cards and the risk of the unauthorized observance or interception of data transmissions for contactless cards through the use of encrypted data communications. As another example, the systems and methods disclosed herein provide for securely reprovisioning cards via multifactor authentication.
Accordingly, keys of cards may be securely generated, encrypted, and reissued, rather than collecting the cards, and programming each card for reissuance, thereby mitigating security risks, reducing costs, and improving transaction efficiency. These benefits may be achieved without inconveniencing the user or otherwise degrading the user experience with a reissuance process. This avoids disruption, reduces the time and costs associated with card reissuance processes, and allows the user to continue engaging in activity with the associated account. By having the card reissuance handled at an automated teller machine (ATM), authentication and controlled access to the ATM is more secure. As another benefit, the need to deliver cards through the mail can be reduced or eliminated, which improves security and reduces the risk of cards being intercepted in the mail, the risk of fraudulent manipulation of delivery addresses to redirect cards to incorrect or unauthorized addresses, and the risk of card number skimming of cards in the mail.
Accordingly, the systems and methods disclosed herein reduce the risk of fraudulent activity, such as misuse of the card or an account associated with the card, in a secure and unobtrusive manner that does not inconvenience the user.
System 100 may include a first device 105. The first device 105 may comprise a contactless card, a contact-based card, a network-enabled computer, or other device described herein. As further explained below in
First device 105 may include a communication interface 107. The communication interface 107 may comprise communication capabilities with physical interfaces and contactless interfaces. For example, the communication interface 107 may be configured to communicate with a physical interface, such as by swiping through a card swipe interface or inserting into a card chip reader found on an automated teller machine (ATM) or other device configured to communicate over a physical interface. In other examples, the communication interface 107 may be configured to establish contactless communication with a card reading device via a short-range wireless communication method, such as NFC, Bluetooth, Wi-Fi, RFID, and other forms of contactless communication. As shown in
First device 105 may be in data communication with any number of components of system 100. For example, first device 105 may transmit data via network 115 to second device 110, and/or server 120. First device 105 may transmit data via network 115 to database 125. In some examples, first device 105 may be configured to transmit data via network 115 after entry into one or more communication fields of any device. Without limitation, each entry may be associated with a tap, a swipe, a wave, and/or any combination thereof.
System 100 may include a second device 110. The second device 110 may include one or more processors 112, and memory 114. Memory 114 may include one or more applications 116, including but not limited to a first application. Second device 110 may be in data communication with any number of components of system 100. For example, second device 110 may transmit data via network 115 to server 120. Second device 110 may transmit data via network 115 to database 125. Without limitation, second device 110 may be a network-enabled computer. As referred to herein, a network-enabled computer may include, but is not limited to a computer device, or communications device including, e.g., a server, a network appliance, a personal computer, a workstation, a phone, a handheld PC, a personal digital assistant, a contactless card, a thin client, a fat client, an Internet browser, a kiosk, a tablet, a terminal, an ATM, or other device. Second device 110 also may be a mobile device; for example, a mobile device may include an iPhone, iPod, iPad from Apple® or any other mobile device running Apple's iOS® operating system, any device running Microsoft's Windows® Mobile operating system, any device running Google's Android® operating system, and/or any other smartphone, tablet, or like wearable mobile device.
The second device 110 may include processing circuitry and may contain additional components, including processors, memories, error and parity/CRC checkers, data encoders, anticollision algorithms, controllers, command decoders, security primitives and tamperproofing hardware, as necessary to perform the functions described herein. The second device 110 may further include a display and input devices. The display may be any type of device for presenting visual information such as a computer monitor, a flat panel display, and a mobile device screen, including liquid crystal displays, light-emitting diode displays, plasma panels, and cathode ray tube displays. The input devices may include any device for entering information into the user's device that is available and supported by the user's device, such as a touch-screen, keyboard, mouse, cursor-control device, touch-screen, microphone, digital camera, video recorder or camcorder. These devices may be used to enter information and interact with the software and other devices described herein.
System 100 may include a network 115. In some examples, network 115 may be one or more of a wireless network, a wired network or any combination of wireless network and wired network, and may be configured to connect to any one of components of system 100. For example, first device 105 may be configured to connect to server 120 via network 115. In some examples, network 115 may include one or more of a fiber optics network, a passive optical network, a cable network, an Internet network, a satellite network, a wireless local area network (LAN), a Global System for Mobile Communication, a Personal Communication Service, a Personal Area Network, Wireless Application Protocol, Multimedia Messaging Service, Enhanced Messaging Service, Short Message Service, Time Division Multiplexing based systems, Code Division Multiple Access based systems, D-AMPS, Wi-Fi, Fixed Wireless Data, IEEE 802.11b, 802.15.1, 802.11n and 802.11g, Bluetooth, NFC, Radio Frequency Identification (RFID), Wi-Fi, and/or the like.
In addition, network 115 may include, without limitation, telephone lines, fiber optics, IEEE Ethernet 902.3, a wide area network, a wireless personal area network, a LAN, or a global network such as the Internet. In addition, network 115 may support an Internet network, a wireless communication network, a cellular network, or the like, or any combination thereof. Network 115 may further include one network, or any number of the exemplary types of networks mentioned above, operating as a stand-alone network or in cooperation with each other. Network 115 may utilize one or more protocols of one or more network elements to which they are communicatively coupled. Network 115 may translate to or from other protocols to one or more protocols of network devices. Although network 115 is depicted as a single network, it should be appreciated that according to one or more examples, network 115 may comprise a plurality of interconnected networks, such as, for example, the Internet, a service provider's network, a cable television network, corporate networks, such as credit card association networks, and home networks.
System 100 may include one or more servers 120. In some examples, server 120 may include one or more processors 122 coupled to memory 124. Server 120 may be configured as a central system, server or platform to control and call various data at different times to execute a plurality of workflow actions. Server 120 may be configured to connect to first device 105. Server 120 may be in data communication with the applet 106 and/or application 116. For example, a server 120 may be in data communication with applet 106 via one or more networks 115. First device 105 may be in communication with one or more servers 120 via one or more networks 115, and may operate as a respective front-end to back-end pair with server 120. First device 105 may transmit, for example from applet 106 executing thereon, one or more requests to server 120. The one or more requests may be associated with retrieving data from server 120. Server 120 may receive the one or more requests from first device 105. Based on the one or more requests from applet 106, server 120 may be configured to retrieve the requested data. Server 120 may be configured to transmit the received data to applet 106, the received data being responsive to one or more requests.
In some examples, server 120 can be a dedicated server computer, such as bladed servers, or can be personal computers, laptop computers, notebook computers, palm top computers, network computers, mobile devices, wearable devices, or any processor-controlled device capable of supporting the system 100. While
Server 120 may include an application comprising instructions for execution thereon. For example, the application may comprise instructions for execution on the server 120. The application may be in communication with any components of system 100. For example, server 120 may execute one or more applications that enable, for example, network and/or data communications with one or more components of system 100 and transmit and/or receive data. Without limitation, server 120 may be a network-enabled computer. As referred to herein, a network-enabled computer may include, but is not limited to a computer device, or communications device including, e.g., a server, a network appliance, a personal computer, a workstation, a phone, a handheld PC, a personal digital assistant, a contactless card, a thin client, a fat client, an Internet browser, or other device. Server 120 also may be a mobile device; for example, a mobile device may include an iPhone, iPod, iPad from Apple® or any other mobile device running Apple's iOS® operating system, any device running Microsoft's Windows® Mobile operating system, any device running Google's Android® operating system, and/or any other smartphone, tablet, or like wearable mobile device.
The server 120 may include processing circuitry and may contain additional components, including processors, memories, error and parity/CRC checkers, data encoders, anticollision algorithms, controllers, command decoders, security primitives and tamperproofing hardware, as necessary to perform the functions described herein. The server 120 may further include a display and input devices. The display may be any type of device for presenting visual information such as a computer monitor, a flat panel display, and a mobile device screen, including liquid crystal displays, light-emitting diode displays, plasma panels, and cathode ray tube displays. The input devices may include any device for entering information into the user's device that is available and supported by the user's device, such as a touch-screen, keyboard, mouse, cursor-control device, touch-screen, microphone, digital camera, video recorder or camcorder. These devices may be used to enter information and interact with the software and other devices described herein.
System 100 may include one or more databases 125. The database 125 may comprise a relational database, a non-relational database, or other database implementations, and any combination thereof, including a plurality of relational databases and non-relational databases. In some examples, the database 125 may comprise a desktop database, a mobile database, or an in-memory database. Further, the database 125 may be hosted internally by any component of system 100, such as the first device 105 or server 120, or the database 125 may be hosted externally to any component of the system 100, such as the first device 105 or server 120, by a cloud-based platform, or in any storage device that is in data communication with the first device 105 and server 120. In some examples, database 125 may be in data communication with any number of components of system 100. For example, server 120 may be configured to retrieve the requested data from the database 125 that is transmitted by applet 106. Server 120 may be configured to transmit the received data from database 125 to applet 106 via network 115, the received data being responsive to the transmitted one or more requests. In other examples, applet 106 may be configured to transmit one or more requests for the requested data from database 125 via network 115.
In some examples, exemplary procedures in accordance with the present disclosure described herein can be performed by a processing arrangement and/or a computing arrangement (e.g., computer hardware arrangement). Such processing/computing arrangement can be, for example entirely or a part of, or include, but not limited to, a computer/processor that can include, for example one or more microprocessors, and use instructions stored on a computer-accessible medium (e.g., RAM, ROM, hard drive, or other storage device). For example, a computer-accessible medium can be part of the memory of the first device 105, second device 110, server 120, and/or database 125, or other computer hardware arrangement.
In some examples, a computer-accessible medium (e.g., as described herein above, a storage device such as a hard disk, floppy disk, memory stick, CD-ROM, RAM, ROM, etc., or a collection thereof) can be provided (e.g., in communication with the processing arrangement). The computer-accessible medium can contain executable instructions thereon. In addition or alternatively, a storage arrangement can be provided separately from the computer-accessible medium, which can provide the instructions to the processing arrangement so as to configure the processing arrangement to execute certain exemplary procedures, processes, and methods, as described herein above, for example.
The one or more processors 102 may be configured to create a cryptogram using the at least one key and the counter value. The cryptogram may include the counter value and the transmission data. The one or more processors 102 may be configured to transmit the cryptogram via the communication interface 107. For example, the one or more processors 102 may be configured to transmit the cryptogram to one or more applications. In some examples, the one or more processors 102 may be configured to transmit the cryptogram to application 116 comprising instructions for execution on a second device 110. The one or more processors 102 may be configured to update the counter value after transmission of the cryptogram.
In some examples, the application 116 comprising instructions for execution on the second device 110 may be configured to encrypt one or more keys. Without limitation, the second device 110 may comprise an ATM, a kiosk, a point of sale device, or other device. The application 116 may be configured to transmit the one or more encrypted keys. In some examples, the application 116 may be configured to transmit one or more parameters. Without limitation, the one or more parameters may include at least one selected from the group of primary account number information, expiration date information, card verification code, and/or any combination thereof. In some examples, the one or more parameters may comprise dynamic information, such as changed personalization data including but not limited to card master keys, such as secret and public/private keys, and one or more spending limits. The application 116 may be configured to transmit one or more commands-application protocol data unit (C-APDU) including the one or more encrypted keys, the one or more parameters, one or more applet identifiers, and one or more instructions associated with a class of a header. In some examples, the application 116 may be configured to transmit the one or more commands-application protocol data unit to the first device 105 after one or more entries of the communication interface 107 into a communication field of the second device 110. Communication between the application 116 and first device 105 via near field communication (NFC). Without limitation, the one or more commands-application protocol data unit may be transmitted via Bluetooth, Wi-Fi, and Radio-Frequency Identification (RFID).
The first device 105 may be configured to receive the one or more encrypted keys and one or more parameters after input authentication. The first device 105 may be configured to receive the command-application protocol data unit including the one or more encrypted keys, the one or more parameters, one or more applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device 110 or server 120, which may be used to encrypt one or more master keys. For example, one or more limited use session keys may be generated based on a cryptogram and a counter to encrypt data. The first device 105 may be configured to receive the encrypted data and decrypt it for storage. The one or more instructions may each be associated with a code, and include decrypting and/or confirmation of the one or more decrypted keys, storing and/or confirmation of the one or more decrypted keys. In some examples, the first device 105 may be configured to receive the one or more commands-application protocol data unit after input authentication. For example, input for the authentication may include, without limitation, at least one or more selected from the group of a personal identification number, a username and/or password, a mobile device number, an account number, a card number, and a biometric (e.g., facial scan, a retina scan, a fingerprint, and a voice input for voice recognition). The application 116 of the second device 110 may be configured to authenticate the input. In other examples, application 116 may be configured to transmit the input to server 120 for authentication of the input.
The first device 105 may be configured to receive the one or more commands-application protocol data unit on a predetermined basis. In some examples, the predetermined basis may be any number of seconds, minutes, hours, days, weeks, months, years, etc. In other examples, the first device may be configured to receive the one or more commands-application protocol data unit after determination of a security concern. For example, the server 120 may be configured to determine one or more security concerns. Without limitation, the one or more security concerns may be associated with identity theft, unauthorized usage based on transaction history and/or transaction frequency evaluated over any determined time period, a notice of fraudulent charges, and/or any combination thereof. For example, the server 120 may, responsive to determining any number of one or more security concerns associated with the first device 105, be configured to transmit one or more messages to the application 116 of the second device 110 to transmit the one or more commands-application protocol data unit. In this manner, the application 116 of the second device 110 may be configured to receive the one or more messages from the server 120, the one or more messages indicative of transmitting the one or more commands-application protocol data unit after determination of one or more security concerns.
The first device 105 may be subject to eligibility criteria. For example, after determination of the one or more security concerns, the first device 105 may subject to a prioritized list associated with eligibility prior to receipt of the one or more commands-application protocol data unit. In some examples, the server 120 may be configured to screen the first device 105 based on at least one selected from the group of time elapsed since issuance of the card, card usage for transactions, transaction type, card type, one or more determinations of the security concerns associated with the first device 105, and/or any combination thereof. In this manner, the server 120 may be configured to evaluate and rank how many first devices 105 and which types of first devices 105 may be configured to receive the one or more commands-application protocol data unit based on the eligibility criteria before signaling to the application 116 of the second device 110 to transmit the one or more commands-application protocol data unit. In one example, one or more sets of first devices 105 may be prioritized to receive the one or more commands-application protocol data unit after the server 120 is configured to determine whether the first device 105 is a credit card and is associated with a notice of fraudulent charges. In another example, one or more sets of first devices 105 may be prioritized to receive the one or more commands-application protocol data unit after the server 120 is configured to determine whether the first device 105 is an identification card that has been abnormally used, for example exceeding a predetermined threshold, for one or more transactions. In yet another example, one or more sets of first device 105 may be prioritized to receive the one or more commands-application protocol data unit after the server 120 is configured to determine how much time has elapsed since issuance of the first device 105. In these non-limiting examples, the server 120 may be further configured to prioritize which of these determinations are to be made first, second, third, etc. In this manner, a designated number of first devices 105 may be reprovisioned on an individual basis and/or in a batch. The first devices 105 may also be reprovisioned on an as-needed basis, according to a predetermined schedule, and/or any combination thereof.
The first device 105 may be configured to receive the one or more commands-application protocol data unit. For example, the first device 105 may be configured to receive the one or more commands-application protocol data unit from the application 116 of the second device 110. The first device 105 may be configured to decrypt the one or more encrypted keys. One or more applets, such as applet 106, of the first device 105 may be configured to store one or more decrypted keys in a secure element. An applet 106, such as a first applet, may be configured to transmit, via a communication channel 111, the one or more decrypted keys and the one or more parameters to a second applet 109. After decryption of the one or more encrypted keys, the first device 105 may be configured to change an association from a first account to a second account. Moreover, the first device 105 may be restricted to a predetermined usage after decryption of the one or more encrypted keys. In one example, the first device 105 may be subject to one or more predetermined spending thresholds. In another example, the first device 105 may be subject to a predetermined number of uses. For example, the first device 105 may be used for only a designated set of transactions, such as for lunch only and/or for office furniture. In another example, the first device 105 may be subject to a predetermined number of usages for one or more types of transactions, including but not limited to a debit card transaction or a credit card transaction.
In another example, the first device 105 may be used for only transactions occurring during a certain time (e.g., business hours of 9:00 am to 5:00 pm), on certain days of the week (e.g., weekdays, weekends, only Mondays, only Thursdays and Fridays), of on a certain date (e.g., Wednesday, Jul. 1, 2020). In another example, the first device 105 may be used only for certain purposes, such as for expense account purposes (e.g., travel expenses including airfare, meals, and hotels), for a designated project (e.g., a certain type of equipment or hardware needed for a project), with designated or approved merchants, or with a specified list of merchants known to offer goods or services needed for a particular purposes.
It is understood that the foregoing listings are exemplary and that any of these examples can be used in combination with one another. Thus, a user may use the same card configured for a variety of purposes and with a variety of accounts.
The first device 105 may be configured to transmit, responsive to the one or more commands-application protocol data unit, one or more responses-application protocol data unit (R-APDU). The one or more responses-application protocol data unit may include one or bytes indicative of a status of the command. For example, at least one of the one or more responses-application protocol data unit may be configured to indicate an execution status associated with the one or more instructions. The first device 105 may be configured to transmit the one or more responses-application protocol data unit to the application 116 of the second device 110. In some examples, the first device 105 may be configured to return a successful execution status associated with the one or more instructions. To the extent that the execution status of the one or more instructions is not successful, the first device 105 may be configured to return a warning or unsuccessful execution status. For example, the one or more responses-application protocol data unit may be configured to indicate if and when the one or more encrypted keys were decrypted and/or if and when the one or more decrypted keys were stored.
The application 116 may be configured to receive the one or more responses-application protocol data unit from the first device 105. For example, the one or more responses-application protocol data unit may be received after one or more entries of the communication interface 107 into a communication field of the second device 110. The one or more entries may be associated with at least one selected from the group of a tap, a swipe, a wave, and/or any combination thereof. Depending on the results of the execution status of the one or more instructions, the application 116 may be configured to take one or more corrective actions. In one example, the application 116 may be configured to re-send the one or more commands-application protocol data unit if the execution status of the one or more instructions is unsuccessful. In another example, the application 116 may be configured to re-send the one or more commands-application protocol data unit if the execution status of the one or more instructions is not received from the first device 105 within a predetermined time, including but not limited to any number of seconds, minutes, hours, days, etc. In yet another example, the application 116 may be configured to notify the server 120 if the one or more commands-application protocol data unit if the execution status of the one or more instructions is successful. In yet another example, the application 116 may be configured to notify the server 120 if the one or more commands-application protocol data unit if the execution status of the one or more instructions is received within the predetermined time.
First device 200 may be configured to communicate with one or more components of system 100. First device 200 may comprise a contact-based card or contactless card, which may comprise a payment card, such as a credit card, debit card, or gift card, issued by a service provider 205 displayed on the front or back of the first device 200. In some examples, the first device 200 is not related to a payment card, and may comprise, without limitation, an identification card, a membership card, and a transportation card. In some examples, the payment card may comprise a dual interface contactless payment card. The first device 200 may comprise a substrate 210, which may include a single layer or one or more laminated layers composed of plastics, metals, and other materials. Exemplary substrate materials include polyvinyl chloride, polyvinyl chloride acetate, acrylonitrile butadiene styrene, polycarbonate, polyesters, anodized titanium, palladium, gold, carbon, paper, and biodegradable materials. In some examples, the first device 200 may have physical characteristics compliant with the ID-1 format of the ISO/IEC 7810 standard, and the contactless card may otherwise be compliant with the ISO/IEC 14443 standard. However, it is understood that the first device 200 according to the present disclosure may have different characteristics, and the present disclosure does not require a contactless card to be implemented in a payment card.
The first device 200 may also include identification information 215 displayed on the front and/or back of the card, and a contact pad 220. The contact pad 220 may be configured to establish contact with another communication device, including but not limited to a user device, smart phone, laptop, desktop, or tablet computer. The first device 200 may also include processing circuitry, antenna and other components not shown in
As illustrated in
The memory 235 may be a read-only memory, write-once read-multiple memory or read/write memory, e.g., RAM, ROM, and EEPROM, and the first device 200 may include one or more of these memories. A read-only memory may be factory programmable as read-only or one-time programmable. One-time programmability provides the opportunity to write once then read many times. A write once/read-multiple memory may be programmed at a point in time after the memory chip has left the factory. Once the memory is programmed, it may not be rewritten, but it may be read many times. A read/write memory may be programmed and re-programed many times after leaving the factory. It may also be read many times.
The memory 235 may be configured to store one or more applets 240, one or more counters 245, and a customer identifier 250. The one or more applets 240 may comprise one or more software applications configured to execute on one or more contactless cards, such as Java Card applet. However, it is understood that the one or more applets 240 are not limited to Java Card applets, and instead may be any software application operable on contactless cards or other devices having limited memory. The one or more counters 245 may comprise a numeric counter sufficient to store an integer. The customer identifier 250 may comprise a unique alphanumeric identifier assigned to a user of the first device 200, and the identifier may distinguish the user of the contactless card from other contactless card users. In some examples, the customer identifier 250 may identify both a customer and an account assigned to that customer and may further identify the contactless card associated with the customer's account.
The processor and memory elements of the foregoing exemplary embodiments are described with reference to the contact pad, but the present disclosure is not limited thereto. It is understood that these elements may be implemented outside of the contact pad 220 or entirely separate from it, or as further elements in addition to processor 230 and memory 235 elements located within the contact pad 220.
In some examples, the first device 200 may comprise one or more antennas 255. The one or more antennas 255 may be placed within the first device 200 and around the processing circuitry 225 of the contact pad 220. For example, the one or more antennas 255 may be integral with the processing circuitry 225 and the one or more antennas 255 may be used with an external booster coil. As another example, the one or more antennas 255 may be external to the contact pad 220 and the processing circuitry 225.
In an embodiment, the coil of first device 200 may act as the secondary of an air core transformer. The terminal may communicate with the first device 200 by cutting power or amplitude modulation. The first device 200 may infer the data transmitted from the terminal using the gaps in the contactless card's power connection, which may be functionally maintained through one or more capacitors. The first device 200 may communicate back by switching a load on the contactless card's coil or load modulation. Load modulation may be detected in the terminal's coil through interference.
At block 305, the method 300 may include creating a cryptogram using at least one key and a counter value. For example, one or more processors of a first device may be configured to create a cryptogram using the at least one key and the counter value. The cryptogram may include the counter value and the transmission data. The first device may include a memory containing one or more keys, including the at least one key, a counter value, and the transmission data. The first device may further include a communication interface.
At block 310, the method 300 may include transmitting the cryptogram. For example, the one or more processors may be configured to transmit the cryptogram via the communication interface. For example, the one or more processors may be configured to transmit the cryptogram to one or more applications. In some examples, the one or more processors may be configured to transmit the cryptogram to an application comprising instructions for execution on a second device.
At block 315, the method 300 may include updating the counter value. For example, the one or more processors may be configured to update the counter value after transmission of the cryptogram.
At block 320, the method 300 may include receiving, via the communication interface, a first set of one or more encrypted keys and a first set of one or more parameters. In some examples, the application comprising instructions for execution on the second device may be configured to encrypt one or more keys. Without limitation, the second device may comprise an ATM, a kiosk, a register, or other point of sale device. The application may be configured to transmit the one or more encrypted keys. In some examples, the application may be configured to transmit one or more parameters. Without limitation, the one or more parameters may include at least one selected from the group of primary account number information, expiration date information, card verification code, and/or any combination thereof. In some examples, the one or more parameters may comprise dynamic information, such as changed personalization data including but not limited to card master keys, such as secret and public/private keys, and one or more spending limits. The application may be configured to transmit one or more commands-application protocol data unit including the one or more encrypted keys, the one or more parameters, one or more applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device or server, which may be used to encrypt one or more master keys. In some examples, the application may be configured to transmit the one or more commands-application protocol data unit to the first device after one or more entries of the communication interface into a communication field of the second device. Communication between the application and first device via NFC. Without limitation, the one or more commands-application protocol data unit may be transmitted via Bluetooth, Wi-Fi, and RFID.
The first device may be configured to receive the one or more commands-application protocol data unit on a predetermined basis. In some examples, the predetermined basis may be any number of seconds, minutes, hours, days, weeks, months, years, etc. In other examples, the first device may be configured to receive the one or more commands-application protocol data unit after determination of a security concern. For example, the server may be configured to determine one or more security concerns. Without limitation, the one or more security concerns may be associated with identity theft, unauthorized usage based on transaction history and/or transaction frequency evaluated over any determined time period, a notice of fraudulent charges, and/or any combination thereof. For example, the server may, responsive to determining any number of one or more security concerns associated with the first device, be configured to transmit one or more messages to the application of the second device to transmit the one or more commands-application protocol data unit. In this manner, the application of the second device may be configured to receive the one or more messages from the server, the one or more messages indicative of transmitting the one or more commands-application protocol data unit after determination of one or more security concerns.
The first device may be subject to eligibility criteria. For example, after determination of the one or more security concerns, the first device may subject to a prioritized list associated with eligibility prior to receipt of the one or more commands-application protocol data unit. In some examples, the server may be configured to screen the first device based on at least one selected from the group of time elapsed since issuance of the card, card usage for transactions, transaction type, card type, one or more determinations of the security concerns associated with the first device, and/or any combination thereof. In this manner, the server may be configured to evaluate and rank how many first devices and which types of first devices may be configured to receive the one or more commands-application protocol data unit based on the eligibility criteria before signaling to the application of the second device to transmit the one or more commands-application protocol data unit. In one example, one or more sets of first devices may be prioritized to receive the one or more commands-application protocol data unit after the server is configured to determine whether the first device is a credit card and is associated with a notice of fraudulent charges. In another example, one or more sets of first devices may be prioritized to receive the one or more commands-application protocol data unit after the server is configured to determine whether the first device is an identification card that has been abnormally used, for example exceeding a predetermined threshold, for one or more transactions. In yet another example, one or more sets of first device may be prioritized to receive the one or more commands-application protocol data unit after the server is configured to determine how much time has elapsed since issuance of the first device. In these non-limiting examples, the server may be further configured to prioritize which of these determinations are to be made first, second, third, etc. In this manner, a designated number of first devices may be reprovisioned on an individual basis and/or in a batch. The first devices may also be reprovisioned on an as-needed basis, according to a predetermined schedule, and/or any combination thereof.
The first device may be configured to receive the one or more encrypted keys and one or more parameters after input authentication. The first device may be configured to receive the command-application protocol data unit including the one or more encrypted keys, the one or more parameters, one or more applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device or server, which may be used to encrypt one or more master keys. For example, one or more limited use session keys may be generated based on a cryptogram and a counter to encrypt data. The first device may be configured to receive the encrypted data and decrypt it for storage. The one or more instructions may each be associated with a code, and include decrypting and/or confirmation of the one or more decrypted keys, storing and/or confirmation of the one or more decrypted keys. In some examples, the first device may be configured to receive the one or more commands-application protocol data unit after input authentication. For example, input for the authentication may include, without limitation, at least one or more selected from the group of a personal identification number, a username and/or password, a mobile device number, an account number, a card number, and a biometric (e.g., facial scan, a retina scan, a fingerprint, and a voice input for voice recognition). The application of the second device may be configured to authenticate the input. In other examples, application may be configured to transmit the input to a server for authentication of the input.
At block 325, the method 300 may include decrypting the first set of one or more encrypted keys. The first device may be configured to receive the one or more commands-application protocol data unit. For example, the first device may be configured to receive the one or more commands-application protocol data unit from the application of the second device. The first device may be configured to decrypt the one or more encrypted keys. One or more applets of the first device may be configured to store one or more decrypted keys in a secure element. A first applet may be configured to transmit, via a communication channel, the one or more decrypted keys and the one or more parameters to a second applet.
At block 330, the method 300 may include changing an association from a first account to a second account. After decryption of the one or more encrypted keys, the first device may be configured to change an association from a first account to a second account. Moreover, the first device may be restricted to a predetermined usage after decryption of the one or more encrypted keys. In one example, the first device may be subject to one or more predetermined spending thresholds. In another example, the first device may be subject to a predetermined number of uses. For example, the first device may be used for only a designated set of transactions, such as for lunch only and/or for office furniture. In another example, the first device may be subject to a predetermined number of usages for one or more types of transactions, including but not limited to a debit card transaction or a credit card transaction.
In another example, the first device may be used for only transactions occurring during a certain time (e.g., business hours of 9:00 am to 5:00 pm), on certain days of the week (e.g., weekdays, weekends, only Mondays, only Thursdays and Fridays), of on a certain date (e.g., Wednesday, Jul. 1, 2020). In another example, the first device may be used only for certain purposes, such as for expense account purposes (e.g., travel expenses including airfare, meals, and hotels), for a designated project (e.g., a certain type of equipment or hardware needed for a project), with designated or approved merchants, or with a specified list of merchants known to offer goods or services needed for a particular purposes.
It is understood that the foregoing listings are exemplary and that any of these examples can be used in combination with one another. Thus, a user may use the same card configured for a variety of purposes and with a variety of accounts.
The first device may be configured to transmit, responsive to the one or more commands-application protocol data unit, one or more responses-application protocol data unit. The one or more responses-application protocol data unit may include one or bytes indicative of a status of the command. For example, at least one of the one or more responses-application protocol data unit may be configured to indicate an execution status associated with the one or more instructions. The first device may be configured to transmit the one or more responses-application protocol data unit to the application of the second device. In some examples, the first device may be configured to return a successful execution status associated with the one or more instructions. To the extent that the execution status of the one or more instructions is not successful, the first device may be configured to return a warning or unsuccessful execution status. For example, the one or more responses-application protocol data unit may be configured to indicate if and when the one or more encrypted keys were decrypted and/or if and when the one or more decrypted keys were stored.
The application may be configured to receive the one or more responses-application protocol data unit from the first device. For example, the one or more responses-application protocol data unit may be received after one or more entries of the communication interface into a communication field of the second device. The one or more entries may be associated with at least one selected from the group of a tap, a swipe, a wave, and/or any combination thereof. Depending on the results of the execution status of the one or more instructions, the application may be configured to take one or more corrective actions. In one example, the application may be configured to re-send the one or more commands-application protocol data unit if the execution status of the one or more instructions is unsuccessful. In another example, the application may be configured to re-send the one or more commands-application protocol data unit if the execution status of the one or more instructions is not received from the first device within a predetermined time, including but not limited to any number of seconds, minutes, hours, days, etc. In yet another example, the application may be configured to notify the server if the one or more commands-application protocol data unit if the execution status of the one or more instructions is successful. In yet another example, the application may be configured to notify the server if the one or more commands-application protocol data unit if the execution status of the one or more instructions is received within the predetermined time.
At step 405, an application comprising instructions for execution on a device, such as an ATM, a kiosk, a point of sale device, or other device, may be configured to transmit input for authentication to a server. For example, input for the authentication may include, without limitation, at least one or more selected from the group of a personal identification number, a username and/or password, a mobile device number, an account number, a card number, and a biometric (e.g., facial scan, a retina scan, a fingerprint, and a voice input for voice recognition). The application may be configured to authenticate the input. In other examples, the application may be configured to transmit the input to server for authentication of the input.
The device may include one or more processors, and memory. The memory may include one or more applications, including but not limited to first application. The device may be in data communication with any number of components of
The device may include processing circuitry and may contain additional components, including processors, memories, error and parity/CRC checkers, data encoders, anticollision algorithms, controllers, command decoders, security primitives and tamperproofing hardware, as necessary to perform the functions described herein. The device may further include a display and input devices. The display may be any type of device for presenting visual information such as a computer monitor, a flat panel display, and a mobile device screen, including liquid crystal displays, light-emitting diode displays, plasma panels, and cathode ray tube displays. The input devices may include any device for entering information into the user's device that is available and supported by the user's device, such as a touch-screen, keyboard, mouse, cursor-control device, touch-screen, microphone, digital camera, video recorder or camcorder. These devices may be used to enter information and interact with the software and other devices described herein.
The network may be one or more of a wireless network, a wired network or any combination of wireless network and wired network, and may be configured to connect to any one of components of
In addition, the network may include, without limitation, telephone lines, fiber optics, IEEE Ethernet 902.3, a wide area network, a wireless personal area network, a LAN, or a global network such as the Internet. In addition, the network may support an Internet network, a wireless communication network, a cellular network, or the like, or any combination thereof. The network may further include one network, or any number of the exemplary types of networks mentioned above, operating as a stand-alone network or in cooperation with each other. The network may utilize one or more protocols of one or more network elements to which they are communicatively coupled. The network may translate to or from other protocols to one or more protocols of network devices. Although the network is depicted as a single network, it should be appreciated that according to one or more examples, the network may comprise a plurality of interconnected networks, such as, for example, the Internet, a service provider's network, a cable television network, corporate networks, such as credit card association networks, and home networks.
The server may include one or more processors coupled to memory. The server may be configured as a central system, server or platform to control and call various data at different times to execute a plurality of workflow actions. The server may be in data communication with one or more applets of a card and/or application of the device. For example, a server may be in data communication with an applet via one or more networks. A card may be in communication with one or more servers via one or more networks, and may operate as a respective front-end to back-end pair with server. The card may transmit, for example from applet executing thereon, one or more requests to server. The one or more requests may be associated with retrieving data from server. The server may receive the one or more requests from the card. Based on the one or more requests from the applet, the server may be configured to retrieve the requested data. The server may be configured to transmit the received data to the applet, the received data being responsive to one or more requests.
In some examples, the server can be a dedicated server computer, such as bladed servers, or can be personal computers, laptop computers, notebook computers, palm top computers, network computers, mobile devices, wearable devices, or any processor-controlled device capable of supporting the system of
The server may include an application comprising instructions for execution thereon. For example, the application may comprise instructions for execution on the server. The application may be in communication with any components of the system. For example, the server may execute one or more applications that enable, for example, network and/or data communications with one or more components of the system and transmit and/or receive data. Without limitation, server may be a network-enabled computer. As referred to herein, a network-enabled computer may include, but is not limited to a computer device, or communications device including, e.g., a server, a network appliance, a personal computer, a workstation, a phone, a handheld PC, a personal digital assistant, a contactless card, a contact-based card, a thin client, a fat client, an Internet browser, or other device. The server also may be a mobile device; for example, a mobile device may include an iPhone, iPod, iPad from Apple® or any other mobile device running Apple's iOS® operating system, any device running Microsoft's Windows® Mobile operating system, any device running Google's Android® operating system, and/or any other smartphone, tablet, or like wearable mobile device.
The server may include processing circuitry and may contain additional components, including processors, memories, error and parity/CRC checkers, data encoders, anticollision algorithms, controllers, command decoders, security primitives and tamperproofing hardware, as necessary to perform the functions described herein. The server may further include a display and input devices. The display may be any type of device for presenting visual information such as a computer monitor, a flat panel display, and a mobile device screen, including liquid crystal displays, light-emitting diode displays, plasma panels, and cathode ray tube displays. The input devices may include any device for entering information into the user's device that is available and supported by the user's device, such as a touch-screen, keyboard, mouse, cursor-control device, touch-screen, microphone, digital camera, video recorder or camcorder. These devices may be used to enter information and interact with the software and other devices described herein.
The database may comprise a relational database, a non-relational database, or other database implementations, and any combination thereof, including a plurality of relational databases and non-relational databases. In some examples, the database may comprise a desktop database, a mobile database, or an in-memory database. Further, the database may be hosted internally by any component of the system, such as the card, device, and/or the server, or the database may be hosted externally to any component of the system, such as the card, device, and/or the server, by a cloud-based platform, or in any storage device that is in data communication with the card, device, and/or the server. In some examples, the database may be in data communication with any number of components of the system. For example, the server may be configured to retrieve the requested data from the database that is transmitted by the applet. The server may be configured to transmit the received data from the database to one or more applets via network, the received data being responsive to the transmitted one or more requests. In other examples, the one or more applets may be configured to transmit one or more requests for the requested data from the database via network.
In some examples, exemplary procedures in accordance with the present disclosure described herein can be performed by a processing arrangement and/or a computing arrangement (e.g., computer hardware arrangement). Such processing/computing arrangement can be, for example entirely or a part of, or include, but not limited to, a computer/processor that can include, for example one or more microprocessors, and use instructions stored on a computer-accessible medium (e.g., RAM, ROM, hard drive, or other storage device). For example, a computer-accessible medium can be part of the memory of the card, device, server, and/or database, or other computer hardware arrangement.
In some examples, a computer-accessible medium (e.g., as described herein above, a storage device such as a hard disk, floppy disk, memory stick, CD-ROM, RAM, ROM, etc., or a collection thereof) can be provided (e.g., in communication with the processing arrangement). The computer-accessible medium can contain executable instructions thereon. In addition or alternatively, a storage arrangement can be provided separately from the computer-accessible medium, which can provide the instructions to the processing arrangement so as to configure the processing arrangement to execute certain exemplary procedures, processes, and methods, as described herein above, for example.
At step 410, server may be configured to signal one or more outcomes of eligibility criteria evaluation. For example, the server may be configured to receive the input from the application. The server may be configured to authenticate the input. After input authentication, the server may be configured to signal one or more outcomes of eligibility criteria evaluation associated with the card. The card may be configured to receive the one or more commands-application protocol data unit after determination of a security concern. For example, the server may be configured to determine one or more security concerns. Without limitation, the one or more security concerns may be associated with identity theft, unauthorized usage based on transaction history and/or transaction frequency evaluated over any determined time period, a notice of fraudulent charges, and/or any combination thereof. For example, the server may be configured to, responsive to determining any number of one or more security concerns associated with the card, transmit one or more messages to the application of the device that are indicative of transmitting the one or more commands-application protocol data unit. In this manner, the application of the device may be configured to receive the one or more messages from the server, the one or more messages indicative of transmitting the one or more commands-application protocol data unit after determination of one or more security concerns.
The card may be subject to eligibility criteria. For example, after determination of the one or more security concerns, the card may subject to a prioritized list associated with eligibility prior to receipt of the one or more commands-application protocol data unit. In some examples, the server may be configured to screen the first device based on at least one selected from the group of time elapsed since issuance of the card, card usage for transactions, transaction type, card type, one or more determinations of the security concerns associated with the card, and/or any combination thereof. In this manner, the server may be configured to evaluate and rank how many cards and which types of cards may be configured to receive the one or more commands-application protocol data unit based on the eligibility criteria before signaling to the application of the device to transmit the one or more commands-application protocol data unit.
At step 415, one or more processors of a card may be configured to transmit, via a communication interface, a cryptogram. For example, one or more processors of the card may be configured to create a cryptogram using one or more keys and the counter value. The cryptogram may include the counter value and the transmission data. The first device may include a memory containing one or more keys, a counter value, and the transmission data. The one or more processors may be configured to transmit the cryptogram via a communication interface. For example, the one or more processors may be configured to transmit the cryptogram to one or more applications. In some examples, the one or more processors may be configured to transmit the cryptogram to an application comprising instructions for execution on a second device. The one or more processors may be configured to update the counter value. For example, the one or more processors may be configured to update the counter value after transmission of the cryptogram.
The card may comprise a contactless card, a contact-based card, or other device described herein. As previously explained, the card may include one or more processors, and memory. The memory may include one or more applets and one or more counters. Each counter may include a counter value. The memory may include the counter value, transmission data, and one or more keys.
The card may include a communication interface. The communication interface may comprise communication capabilities with physical interfaces and contactless interfaces. For example, the communication interface may be configured to communicate with a physical interface, such as by swiping through a card swipe interface or inserting into a card chip reader found on the automated teller machine (ATM) or other device configured to communicate over a physical interface. In other examples, the communication interface may be configured to establish contactless communication with a card reading device via a short-range wireless communication method, such as NFC, Bluetooth, Wi-Fi, RFID, and other forms of contactless communication. The communication interface may be configured to communicate directly with the application of the device, the server, and/or database via network.
The card may be in data communication with any number of components of the system. For example, the card may transmit data via network to the application of the second device, and/or server. The card may transmit data via network to database. In some examples, the card may be configured to transmit data via network after entry into one or more communication fields of any device. Without limitation, each entry may be associated with a tap, a swipe, a wave, and/or any combination thereof.
At step 420, the application of the device may be configured to transmit one or more commands-application protocol data unit. For example, the application comprising instructions for execution on the device may be configured to encrypt one or more keys. The application may be configured to transmit the one or more encrypted keys. In some examples, the application may be configured to transmit one or more parameters. Without limitation, the one or more parameters may include at least one selected from the group of primary account number information, expiration date information, card verification code, and/or any combination thereof. In some examples, the one or more parameters may comprise dynamic information, such as changed personalization data including but not limited to card master keys, such as secret and public/private keys, and one or more spending limits. The application may be configured to transmit one or more commands-application protocol data unit including the one or more encrypted keys, the one or more parameters, one or more applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device or server, which may be used to encrypt one or more master keys. In some examples, the application may be configured to transmit the one or more commands-application protocol data unit to the card after one or more entries of the communication interface into a communication field of the device. Communication between the application and the card may occur via near field communication (NFC). Without limitation, the one or more commands-application protocol data unit may be transmitted via Bluetooth, Wi-Fi, RFID.
The card may be configured to receive the one or more encrypted keys and one or more parameters after input authentication. The card may be configured to receive the command-application protocol data unit including the one or more encrypted keys, the one or more parameters, one or more applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device or server, which may be used to encrypt one or more master keys. For example, one or more limited use session keys may be generated based on a cryptogram and a counter to encrypt data. The first device may be configured to receive the encrypted data and decrypt it for storage. The one or more instructions may each be associated with a code, and include decrypting and/or confirmation of the one or more decrypted keys, storing and/or confirmation of the one or more decrypted keys. In some examples, the card may be configured to receive the one or more commands-application protocol data unit after input authentication.
In one example, one or more sets of cards may be prioritized to receive the one or more commands-application protocol data unit after the server is configured to determine whether the first device is a credit card and is associated with a notice of fraudulent charges. In another example, one or more sets of cards may be prioritized to receive the one or more commands-application protocol data unit after the server is configured to determine whether the card is an identification card that has been abnormally used, for example exceeding a predetermined threshold, for one or more transactions. In yet another example, one or more sets of the card may be prioritized to receive the one or more commands-application protocol data unit after the server is configured to determine how much time has elapsed since issuance of the card. In these non-limiting examples, the server may be further configured to prioritize which of these determinations are to be made first, second, third, etc. In this manner, a designated number of cards may be reprovisioned on an individual basis and/or in a batch. The cards may also be reprovisioned on an as-needed basis, according to a predetermined schedule, and/or any combination thereof.
At step 425, the one or more processors of the card may be configured to decrypt one or more encrypted keys of the one or more commands-application protocol data unit. The card may be configured to receive the one or more commands-application protocol data unit. For example, the card may be configured to receive the one or more commands-application protocol data unit from the application of the device. The card may be configured to decrypt the one or more encrypted keys. One or more applets of the card may be configured to store one or more decrypted keys in a secure element. A first applet may be configured to transmit, via a communication channel, the one or more decrypted keys and the one or more parameters to a second applet.
At step 430, the one or more processors the card may be configured to switch from a first account to a second account. For example, after decryption of the one or more encrypted keys, the card may be configured to change an association from a first account to a second account. Moreover, the card may be restricted to a predetermined usage after decryption of the one or more encrypted keys. In one example, the card may be subject to one or more predetermined spending thresholds. In another example, the card may be subject to a predetermined number of uses. For example, the card may be used for only a designated set of transactions, such as for lunch only and/or for office furniture. In another example, the card may be subject to a predetermined number of usages for one or more types of transactions, including but not limited to a debit card transaction or a credit card transaction.
In another example, the card may be used for only transactions occurring during a certain time (e.g., business hours of 9:00 am to 5:00 pm), on certain days of the week (e.g., weekdays, weekends, only Mondays, only Thursdays and Fridays), of on a certain date (e.g., Wednesday, Jul. 1, 2020). In another example, the card may be used only for certain purposes, such as for expense account purposes (e.g., travel expenses including airfare, meals, and hotels), for a designated project (e.g., a certain type of equipment or hardware needed for a project), with designated or approved merchants, or with a specified list of merchants known to offer goods or services needed for a particular purposes.
It is understood that the foregoing listings are exemplary and that any of these examples can be used in combination with one another. Thus, a user may use the same card configured for a variety of purposes and with a variety of accounts.
At step 435, the one or more processors of the card may be configured to transmit one or more responses-application protocol data unit. For example, the card may be configured to transmit, responsive to the one or more commands-application protocol data unit, one or more responses-application protocol data unit. The one or more responses-application protocol data unit may include one or bytes indicative of a status of the command. For example, at least one of the one or more responses-application protocol data unit may be configured to indicate an execution status associated with the one or more instructions. The card may be configured to transmit the one or more responses-application protocol data unit to the application of the device. In some examples, the card may be configured to return a successful execution status associated with the one or more instructions. To the extent that the execution status of the one or more instructions is not successful, the card may be configured to return a warning or unsuccessful execution status. For example, the one or more responses-application protocol data unit may be configured to indicate if and when the one or more encrypted keys were decrypted and/or if and when the one or more decrypted keys were stored.
At block 505, the method 500 may include validating input authentication. In some examples, an application of a device, such as an ATM, a kiosk, a point of sale device, or other device, may be configured to validate input authentication. In other examples, the application of the device may be configured to transmit input to a server for authentication. For example, input for the authentication may include, without limitation, at least one or more selected from the group of a personal identification number, a username and/or password, a mobile device number, an account number, a card number, and a biometric (e.g., facial scan, a retina scan, a fingerprint, and a voice input for voice recognition).
The device may include one or more processors, and memory. The memory may include one or more applications, including but not limited to first application. The device may be in data communication with any number of components. For example, the device may transmit data via a network to a server. The device may transmit data via network to a database. Without limitation, the device may be a network-enabled computer. As referred to herein, a network-enabled computer may include, but is not limited to a computer device, or communications device including, e.g., a server, a network appliance, a personal computer, a workstation, a phone, a handheld PC, a personal digital assistant, a contactless card, a thin client, a fat client, an Internet browser, a kiosk, a tablet, a terminal, an ATM, or other device. The device also may be a mobile device; for example, a mobile device may include an iPhone, iPod, iPad from Apple® or any other mobile device running Apple's iOS® operating system, any device running Microsoft's Windows® Mobile operating system, any device running Google's Android® operating system, and/or any other smartphone, tablet, or like wearable mobile device.
The device may include processing circuitry and may contain additional components, including processors, memories, error and parity/CRC checkers, data encoders, anticollision algorithms, controllers, command decoders, security primitives and tamperproofing hardware, as necessary to perform the functions described herein. The device may further include a display and input devices. The display may be any type of device for presenting visual information such as a computer monitor, a flat panel display, and a mobile device screen, including liquid crystal displays, light-emitting diode displays, plasma panels, and cathode ray tube displays. The input devices may include any device for entering information into the user's device that is available and supported by the user's device, such as a touch-screen, keyboard, mouse, cursor-control device, touch-screen, microphone, digital camera, video recorder or camcorder. These devices may be used to enter information and interact with the software and other devices described herein.
The network may be one or more of a wireless network, a wired network or any combination of wireless network and wired network, and may be configured to connect to any one of components. In some examples, the network may include one or more of a fiber optics network, a passive optical network, a cable network, an Internet network, a satellite network, a wireless local area network (LAN), a Global System for Mobile Communication, a Personal Communication Service, a Personal Area Network, Wireless Application Protocol, Multimedia Messaging Service, Enhanced Messaging Service, Short Message Service, Time Division Multiplexing based systems, Code Division Multiple Access based systems, D-AMPS, Wi-Fi, Fixed Wireless Data, IEEE 802.11b, 802.15.1, 802.11n and 802.11g, Bluetooth, NFC, Radio Frequency Identification (RFID), Wi-Fi, and/or the like.
In addition, the network may include, without limitation, telephone lines, fiber optics, IEEE Ethernet 902.3, a wide area network, a wireless personal area network, a LAN, or a global network such as the Internet. In addition, the network may support an Internet network, a wireless communication network, a cellular network, or the like, or any combination thereof. The network may further include one network, or any number of the exemplary types of networks mentioned above, operating as a stand-alone network or in cooperation with each other. The network may utilize one or more protocols of one or more network elements to which they are communicatively coupled. The network may translate to or from other protocols to one or more protocols of network devices. Although the network is depicted as a single network, it should be appreciated that according to one or more examples, the network may comprise a plurality of interconnected networks, such as, for example, the Internet, a service provider's network, a cable television network, corporate networks, such as credit card association networks, and home networks.
The server may include one or more processors coupled to memory. The server may be configured as a central system, server or platform to control and call various data at different times to execute a plurality of workflow actions. The server may be in data communication with one or more applets of a card and/or application of the device. For example, a server may be in data communication with an applet via one or more networks. A card may be in communication with one or more servers via one or more networks, and may operate as a respective front-end to back-end pair with server. The card may transmit, for example from applet executing thereon, one or more requests to server. The one or more requests may be associated with retrieving data from server. The server may receive the one or more requests from the card. Based on the one or more requests from the applet, the server may be configured to retrieve the requested data. The server may be configured to transmit the received data to the applet, the received data being responsive to one or more requests.
In some examples, the server can be a dedicated server computer, such as bladed servers, or can be personal computers, laptop computers, notebook computers, palm top computers, network computers, mobile devices, wearable devices, or any processor-controlled device capable of supporting system components of
The server may include an application comprising instructions for execution thereon. For example, the application may comprise instructions for execution on the server. The application may be in communication with any components of the system. For example, the server may execute one or more applications that enable, for example, network and/or data communications with one or more components of the system and transmit and/or receive data. Without limitation, server may be a network-enabled computer. As referred to herein, a network-enabled computer may include, but is not limited to a computer device, or communications device including, e.g., a server, a network appliance, a personal computer, a workstation, a phone, a handheld PC, a personal digital assistant, a contactless card, a thin client, a fat client, an Internet browser, or other device. The server also may be a mobile device; for example, a mobile device may include an iPhone, iPod, iPad from Apple® or any other mobile device running Apple's iOS® operating system, any device running Microsoft's Windows® Mobile operating system, any device running Google's Android® operating system, and/or any other smartphone, tablet, or like wearable mobile device.
The server may include processing circuitry and may contain additional components, including processors, memories, error and parity/CRC checkers, data encoders, anticollision algorithms, controllers, command decoders, security primitives and tamperproofing hardware, as necessary to perform the functions described herein. The server may further include a display and input devices. The display may be any type of device for presenting visual information such as a computer monitor, a flat panel display, and a mobile device screen, including liquid crystal displays, light-emitting diode displays, plasma panels, and cathode ray tube displays. The input devices may include any device for entering information into the user's device that is available and supported by the user's device, such as a touch-screen, keyboard, mouse, cursor-control device, touch-screen, microphone, digital camera, video recorder or camcorder. These devices may be used to enter information and interact with the software and other devices described herein.
The database may comprise a relational database, a non-relational database, or other database implementations, and any combination thereof, including a plurality of relational databases and non-relational databases. In some examples, the database may comprise a desktop database, a mobile database, or an in-memory database. Further, the database may be hosted internally by any component of the system, such as the card, device, and/or the server, or the database may be hosted externally to any component of the system, such as the card, device, and/or the server, by a cloud-based platform, or in any storage device that is in data communication with the card, device, and/or the server. In some examples, the database may be in data communication with any number of components of the system. For example, the server may be configured to retrieve the requested data from the database that is transmitted by the applet. The server may be configured to transmit the received data from the database to one or more applets via network, the received data being responsive to the transmitted one or more requests. In other examples, the one or more applets may be configured to transmit one or more requests for the requested data from the database via network.
In some examples, exemplary procedures in accordance with the present disclosure described herein can be performed by a processing arrangement and/or a computing arrangement (e.g., computer hardware arrangement). Such processing/computing arrangement can be, for example entirely or a part of, or include, but not limited to, a computer/processor that can include, for example one or more microprocessors, and use instructions stored on a computer-accessible medium (e.g., RAM, ROM, hard drive, or other storage device). For example, a computer-accessible medium can be part of the memory of the card, device, server, and/or database, or other computer hardware arrangement.
In some examples, a computer-accessible medium (e.g., as described herein above, a storage device such as a hard disk, floppy disk, memory stick, CD-ROM, RAM, ROM, etc., or a collection thereof) can be provided (e.g., in communication with the processing arrangement). The computer-accessible medium can contain executable instructions thereon. In addition or alternatively, a storage arrangement can be provided separately from the computer-accessible medium, which can provide the instructions to the processing arrangement so as to configure the processing arrangement to execute certain exemplary procedures, processes, and methods, as described herein above, for example.
At block 510, the method 500 may include determining one or more security concerns. For example, the server may be configured to determine one or more security concerns. Without limitation, the one or more security concerns may be associated with identity theft, unauthorized usage based on transaction history and/or transaction frequency evaluated over any determined time period, a notice of fraudulent charges, and/or any combination thereof.
At block 515, the method 500 may include evaluating eligibility criteria, server may be configured to signal one or more outcomes of eligibility criteria evaluation. For example, the server may be configured to receive the input from the application. The server may be configured to authenticate the input. After input authentication, the server may be configured to signal one or more outcomes of eligibility criteria evaluation associated with the card. The card may be configured to receive the one or more commands-application protocol data unit after determination of a security concern. For example, the server may be configured to, responsive to determining any number of one or more security concerns associated with the card, transmit one or more messages to the application of the device that are indicative of transmitting the one or more commands-application protocol data unit. In this manner, the application of the device may be configured to receive the one or more messages from the server, the one or more messages indicative of transmitting the one or more commands-application protocol data unit after determination of one or more security concerns.
The card may be subject to eligibility criteria. For example, after determination of the one or more security concerns, the card may subject to a prioritized list associated with eligibility prior to receipt of the one or more commands-application protocol data unit. In some examples, the server may be configured to screen the first device based on at least one selected from the group of time elapsed since issuance of the card, card usage for transactions, transaction type, card type, one or more determinations of the security concerns associated with the card, and/or any combination thereof. In this manner, the server may be configured to evaluate and rank how many cards and which types of cards may be configured to receive the one or more commands-application protocol data unit based on the eligibility criteria before signaling to the application of the device to transmit the one or more commands-application protocol data unit.
At block 520, the method 500 may include transmitting, after receipt of a first cryptogram, one or more first commands. For example, one or more processors of a card may be configured to transmit, via a communication interface, a first cryptogram. For example, one or more processors of the card may be configured to create a first cryptogram using one or more keys and the counter value. The first cryptogram may include the counter value and the transmission data. The card may include a memory containing one or more keys, a counter value, and the transmission data. The one or more processors may be configured to transmit the first cryptogram via a communication interface. For example, the one or more processors may be configured to transmit the first cryptogram to one or more applications. In some examples, the one or more processors may be configured to transmit the first cryptogram to an application comprising instructions for execution on the device. The one or more processors may be configured to update the counter value. For example, the one or more processors may be configured to update the counter value after transmission of the first cryptogram.
The card may comprise a contactless card, a contact-based card, or other device described herein. As previously explained, the card may include one or more processors, and memory. The memory may include one or more applets and one or more counters. Each counter may include a counter value. The memory may include the counter value, transmission data, and one or more keys.
The card may include a communication interface. The communication interface may comprise communication capabilities with physical interfaces and contactless interfaces. For example, the communication interface may be configured to communicate with a physical interface, such as by swiping through a card swipe interface or inserting into a card chip reader found on the automated teller machine (ATM) or other device configured to communicate over a physical interface. In other examples, the communication interface may be configured to establish contactless communication with a card reading device via a short-range wireless communication method, such as NFC, Bluetooth, Wi-Fi, RFID, and other forms of contactless communication. The communication interface may be configured to communicate directly with the application of the device, the server, and/or database via network.
The card may be in data communication with any number of components of the system. For example, the card may transmit data via network to the application of the second device, and/or server. The card may transmit data via network to database. In some examples, the card may be configured to transmit data via network after entry into one or more communication fields of any device. Without limitation, each entry may be associated with a tap, a swipe, a wave, and/or any combination thereof.
The application of the device may be configured to transmit one or more first commands-application protocol data unit. For example, the application comprising instructions for execution on the device may be configured to encrypt one or more keys. The application may be configured to transmit the one or more first encrypted keys. In some examples, the application may be configured to transmit one or more first parameters. Without limitation, the one or more parameters may include at least one selected from the group of primary account number information, expiration date information, card verification code, and/or any combination thereof. In some examples, the one or more parameters may comprise dynamic information, such as changed personalization data including but not limited to card master keys, such as secret and public/private keys, and one or more spending limits. The application may be configured to transmit one or more first commands-application protocol data unit including the one or more first encrypted keys, the one or more first parameters, one or more first applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device or server, which may be used to encrypt one or more master keys. In some examples, the application may be configured to transmit the one or more first commands-application protocol data unit to the card after one or more entries of the communication interface into a communication field of the device. Communication between the application of the first device and the card may occur via near field communication (NFC). Without limitation, the one or more first commands-application protocol data unit may be transmitted via Bluetooth, Wi-Fi, RFID.
At block 525, the method 500 may include switching, after decryption of first encrypted key, from a first account to a second account. The card may be configured to receive the one or more first encrypted keys and one or more first parameters from the application. The card may be configured to receive the first command-application protocol data unit including the one or more first encrypted keys, the one or more first parameters, one or more first applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device or server, which may be used to encrypt one or more master keys. For example, one or more limited use session keys may be generated based on a cryptogram and a counter to encrypt data. The first device may be configured to receive the encrypted data and decrypt it for storage. The one or more instructions may each be associated with a code, and include decrypting and/or confirmation of the one or more first decrypted keys, storing and/or confirmation of the one or more first decrypted keys. In some examples, the card may be configured to receive the one or more first commands-application protocol data unit after input authentication.
In one example, one or more sets of cards may be prioritized to receive the one or more first commands-application protocol data unit after the server is configured to determine whether the first device is a credit card and is associated with a notice of fraudulent charges. In another example, one or more sets of cards may be prioritized to receive the one or more first commands-application protocol data unit after the server is configured to determine whether the card is an identification card that has been abnormally used, for example exceeding a predetermined threshold, for one or more transactions. In yet another example, one or more sets of the card may be prioritized to receive the one or more first commands-application protocol data unit after the server is configured to determine how much time has elapsed since issuance of the card. In these non-limiting examples, the server may be further configured to prioritize which of these determinations are to be made first, second, third, etc. In this manner, a designated number of cards may be reprovisioned on an individual basis and/or in a batch. The cards may also be reprovisioned on an as-needed basis, according to a predetermined schedule, and/or any combination thereof.
The one or more processors of the card may be configured to decrypt one or more first encrypted keys of the one or more first commands-application protocol data unit. The card may be configured to receive the one or more first commands-application protocol data unit. For example, the card may be configured to receive the one or more first commands-application protocol data unit from the application of the first device. The card may be configured to decrypt the one or more first encrypted keys. One or more applets of the card may be configured to store one or more first decrypted keys in a secure element. A first applet may be configured to transmit, via a communication channel, the one or more first decrypted keys and the one or more first parameters to a second applet.
The one or more processors the card may be configured to switch from a first account to a second account. For example, after decryption of the one or more first encrypted keys, the card may be configured to change an association from a first account to a second account. Moreover, the card may be restricted to a predetermined usage after decryption of the one or more first encrypted keys. In one example, the card may be subject to one or more predetermined spending thresholds. In another example, the card may be subject to a predetermined number of uses. For example, the card may be used for only a designated set of transactions, such as for lunch only and/or for office furniture. In another example, the card may be subject to a predetermined number of usages for one or more types of transactions, including but not limited to a debit card transaction or a credit card transaction.
In another example, the card may be used for only transactions occurring during a certain time (e.g., business hours of 9:00 am to 5:00 pm), on certain days of the week (e.g., weekdays, weekends, only Mondays, only Thursdays and Fridays), of on a certain date (e.g., Wednesday, Jul. 1, 2020). In another example, the card may be used only for certain purposes, such as for expense account purposes (e.g., travel expenses including airfare, meals, and hotels), for a designated project (e.g., a certain type of equipment or hardware needed for a project), with designated or approved merchants, or with a specified list of merchants known to offer goods or services needed for a particular purposes.
It is understood that the foregoing listings are exemplary and that any of these examples can be used in combination with one another. Thus, a user may use the same card configured for a variety of purposes and with a variety of accounts.
At block 530, the method 500 may include transmitting one or more first responses. For example, the one or more processors of the card may be configured to transmit one or more first responses-application protocol data unit. For example, the card may be configured to transmit, responsive to the one or more first commands-application protocol data unit, one or more first responses-application protocol data unit. The one or more first responses-application protocol data unit may include one or bytes indicative of a status of the command. For example, at least one of the one or more first responses-application protocol data unit may be configured to indicate an execution status associated with the one or more instructions. The card may be configured to transmit the one or more first responses-application protocol data unit to the application of the device. In some examples, the card may be configured to return a successful execution status associated with the one or more instructions. To the extent that the execution status of the one or more instructions is not successful, the card may be configured to return a warning or unsuccessful execution status. For example, the one or more first responses-application protocol data unit may be configured to indicate if and when the first encrypted key was decrypted and/or if and when the one or more first decrypted key was stored.
At block 535, the method 500 may include transmitting, after receipt of a second cryptogram, one or more second commands. For example, one or more processors of a card may be configured to transmit, via a communication interface, a second cryptogram. For example, one or more processors of the card may be configured to create a second cryptogram using one or more keys and the counter value. The second cryptogram may include the counter value and the transmission data. The card may include a memory containing one or more keys, a counter value, and the transmission data. The one or more processors may be configured to transmit the second cryptogram via a communication interface. For example, the one or more processors may be configured to transmit the second cryptogram to one or more applications. In some examples, the one or more processors may be configured to transmit the second cryptogram to an application comprising instructions for execution on the second device. The application comprising instructions for execution on the second device may be different from the application comprising instructions for execution on the first device. In some examples, application for the first device may comprise an application comprising instructions for execution on a first ATM at a first location, and an application for the second device may comprise an application comprising instructions for execution on a second ATM at a second location. The one or more processors may be configured to update the counter value. For example, the one or more processors may be configured to update the counter value after transmission of the second cryptogram.
The application of a second device may be configured to transmit one or more second commands-application protocol data unit. For example, the application comprising instructions for execution on the second device may be configured to encrypt one or more second keys. The application of the second device may be configured to transmit the one or more second encrypted keys. In some examples, the application may be configured to transmit one or more second parameters. Without limitation, the one or more second parameters may include at least one selected from the group of primary account number information, expiration date information, card verification code, and/or any combination thereof. In some examples, the one or more second parameters may comprise dynamic information, such as changed personalization data including but not limited to card master keys, such as secret and public/private keys, and one or more spending limits. The application may be configured to transmit one or more second commands-application protocol data unit including the one or more second encrypted keys, the one or more second parameters, one or more second applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device or server, which may be used to encrypt one or more master keys. In some examples, the application may be configured to transmit the one or more second commands-application protocol data unit to the card after one or more entries of the communication interface into a communication field of the device. Communication between the application of the second device and the card may occur via near field communication (NFC). Without limitation, the one or more second commands-application protocol data unit may be transmitted via Bluetooth, Wi-Fi, RFID.
At block 540, the method 500 may include switching, after decryption of the second encrypted key, from the second account to the first account. The card may be configured to receive the one or more second encrypted keys and one or more second parameters from the application. The card may be configured to receive the second command-application protocol data unit including the one or more second encrypted keys, the one or more second parameters, one or more second applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device or server, which may be used to encrypt one or more master keys. For example, one or more limited use session keys may be generated based on a cryptogram and a counter to encrypt data. The first device may be configured to receive the encrypted data and decrypt it for storage. The one or more instructions may each be associated with a code, and include decrypting and/or confirmation of the one or more second decrypted keys, storing and/or confirmation of the one or more second decrypted keys. In some examples, the card may be configured to receive the one or more second commands-application protocol data unit after input authentication.
In one example, one or more sets of cards may be prioritized to receive the one or more second commands-application protocol data unit after the server is configured to determine whether the card is a credit card and is associated with a notice of fraudulent charges. In another example, one or more sets of cards may be prioritized to receive the one or more second commands-application protocol data unit after the server is configured to determine whether the card is an identification card that has been abnormally used, for example exceeding a predetermined threshold, for one or more transactions. In yet another example, one or more sets of the card may be prioritized to receive the one or more second commands-application protocol data unit after the server is configured to determine how much time has elapsed since issuance of the card. In these non-limiting examples, the server may be further configured to prioritize which of these determinations are to be made first, second, third, etc. In this manner, a designated number of cards may be reprovisioned on an individual basis and/or in a batch. The cards may also be reprovisioned on an as-needed basis, according to a predetermined schedule, and/or any combination thereof.
The one or more processors of the card may be configured to decrypt one or more second encrypted keys of the one or more second commands-application protocol data unit. The card may be configured to receive the one or more second commands-application protocol data unit. For example, the card may be configured to receive the one or more second commands-application protocol data unit from the application of the second device. The card may be configured to decrypt the one or more second encrypted keys. One or more applets of the card may be configured to store one or more second decrypted keys in a secure element. A first applet may be configured to transmit, via a communication channel, the one or more second decrypted keys and the one or more second parameters to a second applet.
The one or more processors the card may be configured to switch from the second account to the first account. For example, after decryption of the one or more second encrypted keys, the card may be configured to change an association from the second account to a first account. Moreover, the card may be restricted to a predetermined usage after decryption of the one or more second encrypted keys. In one example, the card may be subject to one or more predetermined spending thresholds. In another example, the card may be subject to a predetermined number of uses. For example, the card may be used for only a designated set of transactions, such as for lunch only and/or for office furniture. In another example, the card may be subject to a predetermined number of usages for one or more types of transactions, including but not limited to a debit card transaction or a credit card transaction.
In another example, the card may be used for only transactions occurring during a certain time (e.g., business hours of 9:00 am to 5:00 pm), on certain days of the week (e.g., weekdays, weekends, only Mondays, only Thursdays and Fridays), of on a certain date (e.g., Wednesday, Jul. 1, 2020). In another example, the card may be used only for certain purposes, such as for expense account purposes (e.g., travel expenses including airfare, meals, and hotels), for a designated project (e.g., a certain type of equipment or hardware needed for a project), with designated or approved merchants, or with a specified list of merchants known to offer goods or services needed for a particular purposes.
It is understood that the foregoing listings are exemplary and that any of these examples can be used in combination with one another. Thus, a user may use the same card configured for a variety of purposes and with a variety of accounts.
At block 545, the method 500 may include transmitting one or more second responses. For example, the one or more processors of the card may be configured to transmit one or more second responses-application protocol data unit. For example, the card may be configured to transmit, responsive to the one or more second commands-application protocol data unit, one or more responses-application protocol data unit. The one or more second responses-application protocol data unit may include one or bytes indicative of a status of the command. For example, at least one of the one or more second responses-application protocol data unit may be configured to indicate an execution status associated with the one or more instructions. The card may be configured to transmit the one or more second responses-application protocol data unit to the application of the device. In some examples, the card may be configured to return a successful execution status associated with the one or more instructions. To the extent that the execution status of the one or more instructions is not successful, the card may be configured to return a warning or unsuccessful execution status. For example, the one or more second responses-application protocol data unit may be configured to indicate if and when the second encrypted key was decrypted and/or if and when the one or more second decrypted key was stored.
At block 605, the method 600 may include identifying one or more security concerns. In some examples, a first device may be configured to receive one or more commands-application protocol data unit after determination of a security concern. For example, a server may be configured to determine one or more security concerns. Without limitation, the one or more security concerns may be associated with identity theft, unauthorized usage based on transaction history and/or transaction frequency evaluated over any determined time period, a notice of fraudulent charges, and/or any combination thereof.
At block 610, the method 600 may include notifying an application of a device to request input. Based on one or more determinations by the server, one or more notifications may be transmitted to an application comprising instructions for execution on a second device. For example, the application may be configured to request input for authentication. For example, input for the authentication may include, without limitation, at least one or more selected from the group of a personal identification number, a username and/or password, a mobile device number, an account number, a card number, and a biometric (e.g., facial scan, a retina scan, a fingerprint, and a voice input for voice recognition). The application may be configured to authenticate the input. In other examples, the server may be configured to authenticate the input based on one or more requests transmitted from the application to the server.
At block 615, the method 600 may include prioritizing card reprovisioning sequence. For example, the server may be configured to prioritize card reprovisioning. The first device may be subject to eligibility criteria. For example, after determination of the one or more security concerns, the first device may subject to a prioritized list associated with eligibility prior to receipt of the one or more commands-application protocol data unit. In some examples, the server may be configured to screen the first device based on at least one selected from the group of time elapsed since issuance of the card, card usage for transactions, transaction type, card type, one or more determinations of the security concerns associated with the first device, and/or any combination thereof. In this manner, the server may be configured to evaluate and rank how many first devices and which types of first devices may be configured to receive the one or more commands-application protocol data unit based on the eligibility criteria before signaling to the application of the second device to transmit the one or more commands-application protocol data unit. In one example, one or more sets of first devices may be prioritized to receive the one or more commands-application protocol data unit after the server is configured to determine whether the first device is a credit card and is associated with a notice of fraudulent charges. In another example, one or more sets of first devices may be prioritized to receive the one or more commands-application protocol data unit after the server is configured to determine whether the first device is an identification card that has been abnormally used, for example exceeding a predetermined threshold, for one or more transactions. In yet another example, one or more sets of first device may be prioritized to receive the one or more commands-application protocol data unit after the server is configured to determine how much time has elapsed since issuance of the first device. In these non-limiting examples, the server may be further configured to prioritize which of these determinations are to be made first, second, third, etc. In this manner, a designated number of first devices may be reprovisioned on an individual basis and/or in a batch. The first devices may also be reprovisioned on an as-needed basis, according to a predetermined schedule, and/or any combination thereof.
At block 620, the method 600 may include transmitting, via a communication interface, a command-application protocol data unit. In some examples, the application comprising instructions for execution on the second device may be configured to encrypt one or more keys. Without limitation, the second device may comprise an ATM, a kiosk, a point of sale device, or other device. The application may be configured to transmit the one or more encrypted keys. In some examples, the application may be configured to transmit one or more parameters. Without limitation, the one or more parameters may include at least one selected from the group of primary account number information, expiration date information, card verification code, and/or any combination thereof. In some examples, the one or more parameters may comprise dynamic information, such as changed personalization data including but not limited to card master keys, such as secret and public/private keys, and one or more spending limits. The application may be configured to transmit one or more commands-application protocol data unit including the one or more encrypted keys, the one or more parameters, one or more applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device or server, which may be used to encrypt one or more master keys. In some examples, the application may be configured to transmit the one or more commands-application protocol data unit to the first device after one or more entries of the communication interface into a communication field of the second device. Communication between the application and first device via near field communication (NFC). Without limitation, the one or more commands-application protocol data unit may be transmitted via Bluetooth, Wi-Fi, RFID.
At block 625, the method 600 may include decrypting one or more keys. The first device may be configured to receive the command-application protocol data unit including the one or more encrypted keys, the one or more parameters, one or more applet identifiers, and one or more instructions associated with a class of a header. In some examples, one or more session keys may be generated at the second device or server, which may be used to encrypt one or more master keys. For example, one or more limited use session keys may be generated based on a cryptogram and a counter to encrypt data. The first device may be configured to receive the encrypted data and decrypt it for storage. The one or more instructions may each be associated with a code, and include decrypting and/or confirmation of the one or more decrypted keys, storing and/or confirmation of the one or more decrypted keys.
The first device may be configured to receive the one or more commands-application protocol data unit. For example, the first device may be configured to receive the one or more commands-application protocol data unit from the application of the second device. The first device may be configured to decrypt the one or more encrypted keys. One or more applets of the first device may be configured to store one or more decrypted keys in a secure element. A first applet may be configured to transmit, via a communication channel, the one or more decrypted keys and the one or more parameters to a second applet.
At block 630, the method 600 may include changing an association from a first account to a second account. After decryption of the one or more encrypted keys, the first device may be configured to change an association from a first account to a second account. Moreover, the first device may be restricted to a predetermined usage after decryption of the one or more encrypted keys. In one example, the first device may be subject to one or more predetermined spending thresholds. In another example, the first device may be subject to a predetermined number of uses. For example, the first device may be used for only a designated set of transactions, such as for lunch only and/or for office furniture. In another example, the first device may be subject to a predetermined number of usages for one or more types of transactions, including but not limited to a debit card transaction or a credit card transaction.
In another example, the first device may be used for only transactions occurring during a certain time (e.g., business hours of 9:00 am to 5:00 pm), on certain days of the week (e.g., weekdays, weekends, only Mondays, only Thursdays and Fridays), of on a certain date (e.g., Wednesday, Jul. 1, 2020). In another example, the first device may be used only for certain purposes, such as for expense account purposes (e.g., travel expenses including airfare, meals, and hotels), for a designated project (e.g., a certain type of equipment or hardware needed for a project), with designated or approved merchants, or with a specified list of merchants known to offer goods or services needed for a particular purposes.
It is understood that the foregoing listings are exemplary and that any of these examples can be used in combination with one another. Thus, a user may use the same card configured for a variety of purposes and with a variety of accounts.
At block 635, the method 600 may include transmitting, via the communication interface, a response-application protocol data unit. The first device may be configured to transmit, responsive to the one or more commands-application protocol data unit, one or more responses-application protocol data unit. The one or more responses-application protocol data unit may include one or bytes indicative of a status of the command. For example, at least one of the one or more responses-application protocol data unit may be configured to indicate an execution status associated with the one or more instructions. The first device may be configured to transmit the one or more responses-application protocol data unit to the application of the second device. In some examples, the first device may be configured to return a successful execution status associated with the one or more instructions. To the extent that the execution status of the one or more instructions is not successful, the first device may be configured to return a warning or unsuccessful execution status. For example, the one or more responses-application protocol data unit may be configured to indicate if and when the one or more encrypted keys were decrypted and/or if and when the one or more decrypted keys were stored.
It is further noted that the systems and methods described herein may be tangibly embodied in one of more physical media, such as, but not limited to, a compact disc (CD), a digital versatile disc (DVD), a floppy disk, a hard drive, read only memory (ROM), random access memory (RAM), as well as other physical media capable of data storage. For example, data storage may include random access memory (RAM) and read only memory (ROM), which may be configured to access and store data and information and computer program instructions. Data storage may also include storage media or other suitable type of memory (e.g., such as, for example, RAM, ROM, programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, flash drives, any type of tangible and non-transitory storage medium), where the files that comprise an operating system, application programs including, for example, web browser application, email application and/or other applications, and data files may be stored. The data storage of the network-enabled computer systems may include electronic information, files, and documents stored in various ways, including, for example, a flat file, indexed file, hierarchical database, relational database, such as a database created and maintained with software from, for example, Oracle® Corporation, Microsoft® Excel file, Microsoft® Access file, a solid state storage device, which may include a flash array, a hybrid array, or a server-side product, enterprise storage, which may include online or cloud storage, or any other storage mechanism. Moreover, the figures illustrate various components (e.g., servers, computers, processors, etc.) separately. The functions described as being performed at various components may be performed at other components, and the various components may be combined or separated. Other modifications also may be made.
In the preceding specification, various embodiments have been described with references to the accompanying drawings. It will, however, be evident that various modifications and changes may be made thereto, and additional embodiments may be implemented, without departing from the broader scope of the invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded as an illustrative rather than restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
4683553 | Mollier | Jul 1987 | A |
4827113 | Rikuna | May 1989 | A |
4910773 | Hazard et al. | Mar 1990 | A |
5036461 | Elliott et al. | Jul 1991 | A |
5363448 | Koopman, Jr. et al. | Nov 1994 | A |
5377270 | Koopman, Jr. et al. | Dec 1994 | A |
5533126 | Hazard | Jul 1996 | A |
5537314 | Kanter | Jul 1996 | A |
5592553 | Guski et al. | Jan 1997 | A |
5616901 | Crandall | Apr 1997 | A |
5666415 | Kaufman | Sep 1997 | A |
5764789 | Pare, Jr. et al. | Jun 1998 | A |
5768373 | Lohstroh et al. | Jun 1998 | A |
5778072 | Samar | Jul 1998 | A |
5796827 | Coppersmith et al. | Aug 1998 | A |
5832090 | Raspotnik | Nov 1998 | A |
5883810 | Franklin et al. | Mar 1999 | A |
5901874 | Deters | May 1999 | A |
5929413 | Gardner | Jul 1999 | A |
5960411 | Hartman et al. | Sep 1999 | A |
6021203 | Doucem et al. | Feb 2000 | A |
6049328 | Vanderheiden | Apr 2000 | A |
6058373 | Blinn et al. | May 2000 | A |
6061666 | Do et al. | May 2000 | A |
6105013 | Curry et al. | Aug 2000 | A |
6199114 | White et al. | Mar 2001 | B1 |
6199762 | Hohle | Mar 2001 | B1 |
6216227 | Goldstein et al. | Apr 2001 | B1 |
6227447 | Campisano | May 2001 | B1 |
6282522 | Davis et al. | Aug 2001 | B1 |
6324271 | Sawyer et al. | Nov 2001 | B1 |
6342844 | Rozin | Jan 2002 | B1 |
6367011 | Lee et al. | Apr 2002 | B1 |
6402028 | Graham, Jr. et al. | Jun 2002 | B1 |
6438550 | Doyle et al. | Aug 2002 | B1 |
6501847 | Helot et al. | Dec 2002 | B2 |
6631197 | Taenzer | Oct 2003 | B1 |
6641050 | Kelley et al. | Nov 2003 | B2 |
6655585 | Shinn | Dec 2003 | B2 |
6662020 | Aaro et al. | Dec 2003 | B1 |
6721706 | Strubbe et al. | Apr 2004 | B1 |
6731778 | Oda et al. | May 2004 | B1 |
6779115 | Naim | Aug 2004 | B1 |
6792533 | Jablon | Sep 2004 | B2 |
6829711 | Kwok et al. | Dec 2004 | B1 |
6834271 | Hodgson et al. | Dec 2004 | B1 |
6834795 | Rasmussen et al. | Dec 2004 | B1 |
6852031 | Rowe | Feb 2005 | B1 |
6865547 | Brake, Jr. et al. | Mar 2005 | B1 |
6873260 | Lancos et al. | Mar 2005 | B2 |
6877656 | Jaros et al. | Apr 2005 | B1 |
6889198 | Kawan | May 2005 | B2 |
6905411 | Nguyen et al. | Jun 2005 | B2 |
6910627 | Simpson-Young et al. | Jun 2005 | B1 |
6971031 | Haala | Nov 2005 | B2 |
6990588 | Yasukura | Jan 2006 | B1 |
7006986 | Sines et al. | Feb 2006 | B1 |
7085931 | Smith et al. | Aug 2006 | B1 |
7127605 | Montgomery et al. | Oct 2006 | B1 |
7128274 | Kelley et al. | Oct 2006 | B2 |
7140550 | Ramachandran | Nov 2006 | B2 |
7152045 | Hoffman | Dec 2006 | B2 |
7165727 | de Jong | Jan 2007 | B2 |
7175076 | Block et al. | Feb 2007 | B1 |
7202773 | Oba et al. | Apr 2007 | B1 |
7206806 | Pineau | Apr 2007 | B2 |
7232073 | de Jong | Jun 2007 | B1 |
7246752 | Brown | Jul 2007 | B2 |
7254569 | Goodman et al. | Aug 2007 | B2 |
7263507 | Brake, Jr. et al. | Aug 2007 | B1 |
7270276 | Vayssiere | Sep 2007 | B2 |
7278025 | Saito et al. | Oct 2007 | B2 |
7287692 | Patel et al. | Oct 2007 | B1 |
7290709 | Tsai et al. | Nov 2007 | B2 |
7306143 | Bonneau, Jr. et al. | Dec 2007 | B2 |
7319986 | Praisner et al. | Jan 2008 | B2 |
7325132 | Takayama et al. | Jan 2008 | B2 |
7373515 | Owen et al. | May 2008 | B2 |
7374099 | de Jong | May 2008 | B2 |
7375616 | Rowse et al. | May 2008 | B2 |
7380710 | Brown | Jun 2008 | B2 |
7424977 | Smets et al. | Sep 2008 | B2 |
7453439 | Kushler et al. | Nov 2008 | B1 |
7472829 | Brown | Jan 2009 | B2 |
7487357 | Smith et al. | Feb 2009 | B2 |
7568631 | Gibbs et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7597250 | Finn | Oct 2009 | B2 |
7628322 | Hohmanns et al. | Dec 2009 | B2 |
7652578 | Braun et al. | Jan 2010 | B2 |
7689832 | Talmor et al. | Mar 2010 | B2 |
7703142 | Wilson et al. | Apr 2010 | B1 |
7748609 | Sachdeva et al. | Jul 2010 | B2 |
7748617 | Gray | Jul 2010 | B2 |
7748636 | Finn | Jul 2010 | B2 |
7762457 | Bonalle et al. | Jul 2010 | B2 |
7789302 | Tame | Sep 2010 | B2 |
7793851 | Mullen | Sep 2010 | B2 |
7796013 | Murakami et al. | Sep 2010 | B2 |
7801799 | Brake, Jr. et al. | Sep 2010 | B1 |
7801829 | Gray et al. | Sep 2010 | B2 |
7805755 | Brown et al. | Sep 2010 | B2 |
7809643 | Phillips et al. | Oct 2010 | B2 |
7827115 | Weller et al. | Nov 2010 | B2 |
7828214 | Narendra et al. | Nov 2010 | B2 |
7848746 | Juels | Dec 2010 | B2 |
7882553 | Tuliani | Feb 2011 | B2 |
7900048 | Andersson | Mar 2011 | B2 |
7908216 | Davis et al. | Mar 2011 | B1 |
7922082 | Muscato | Apr 2011 | B2 |
7933589 | Mamdani et al. | Apr 2011 | B1 |
7949559 | Freiberg | May 2011 | B2 |
7954716 | Narendra et al. | Jun 2011 | B2 |
7954723 | Charrat | Jun 2011 | B2 |
7962369 | Rosenberg | Jun 2011 | B2 |
7993197 | Mamdani et al. | Aug 2011 | B2 |
8005426 | Huomo et al. | Aug 2011 | B2 |
8010405 | Bortolin et al. | Aug 2011 | B1 |
RE42762 | Shin | Sep 2011 | E |
8041954 | Plesman | Oct 2011 | B2 |
8060012 | Sklovsky et al. | Nov 2011 | B2 |
8074877 | Mullen et al. | Dec 2011 | B2 |
8082450 | Frey et al. | Dec 2011 | B2 |
8095113 | Kean et al. | Jan 2012 | B2 |
8099332 | Lemay et al. | Jan 2012 | B2 |
8103249 | Markison | Jan 2012 | B2 |
8108687 | Ellis et al. | Jan 2012 | B2 |
8127143 | Abdallah et al. | Feb 2012 | B2 |
8135648 | Oram et al. | Mar 2012 | B2 |
8140010 | Symons et al. | Mar 2012 | B2 |
8141136 | Lee et al. | Mar 2012 | B2 |
8150321 | Winter et al. | Apr 2012 | B2 |
8150767 | Wankmueller | Apr 2012 | B2 |
8186602 | Itay et al. | May 2012 | B2 |
8196131 | von Behren et al. | Jun 2012 | B1 |
8215563 | Levy et al. | Jul 2012 | B2 |
8224753 | Atef et al. | Jul 2012 | B2 |
8232879 | Davis | Jul 2012 | B2 |
8233841 | Griffin et al. | Jul 2012 | B2 |
8245292 | Buer | Aug 2012 | B2 |
8249654 | Zhu | Aug 2012 | B1 |
8266451 | Leydier et al. | Sep 2012 | B2 |
8285329 | Zhu | Oct 2012 | B1 |
8302872 | Mullen | Nov 2012 | B2 |
8312519 | Bailey et al. | Nov 2012 | B1 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8332272 | Fisher | Dec 2012 | B2 |
8365988 | Medina, III et al. | Feb 2013 | B1 |
8369960 | Tran et al. | Feb 2013 | B2 |
8371501 | Hopkins | Feb 2013 | B1 |
8381307 | Cimino | Feb 2013 | B2 |
8391719 | Alameh et al. | Mar 2013 | B2 |
8417231 | Sanding et al. | Apr 2013 | B2 |
8439271 | Smets et al. | May 2013 | B2 |
8475367 | Yuen et al. | Jul 2013 | B1 |
8489112 | Roeding et al. | Jul 2013 | B2 |
8511542 | Pan | Aug 2013 | B2 |
8559872 | Butler | Oct 2013 | B2 |
8566916 | Vernon et al. | Oct 2013 | B1 |
8567670 | Stanfield et al. | Oct 2013 | B2 |
8572386 | Takekawa et al. | Oct 2013 | B2 |
8577810 | Dalit et al. | Nov 2013 | B1 |
8583454 | Beraja et al. | Nov 2013 | B2 |
8589335 | Smith et al. | Nov 2013 | B2 |
8594730 | Bona et al. | Nov 2013 | B2 |
8615468 | Varadarajan | Dec 2013 | B2 |
8620218 | Awad | Dec 2013 | B2 |
8667285 | Coulier et al. | Mar 2014 | B2 |
8723941 | Shirbabadi et al. | May 2014 | B1 |
8726405 | Bailey et al. | May 2014 | B1 |
8740073 | Vijay shankar et al. | Jun 2014 | B2 |
8750514 | Gallo et al. | Jun 2014 | B2 |
8752189 | De Jong | Jun 2014 | B2 |
8794509 | Bishop et al. | Aug 2014 | B2 |
8799668 | Cheng | Aug 2014 | B2 |
8806592 | Ganesan | Aug 2014 | B2 |
8807440 | Von Behren et al. | Aug 2014 | B1 |
8811892 | Khan et al. | Aug 2014 | B2 |
8814039 | Bishop et al. | Aug 2014 | B2 |
8814052 | Bona et al. | Aug 2014 | B2 |
8818867 | Baldwin et al. | Aug 2014 | B2 |
8850538 | Vernon et al. | Sep 2014 | B1 |
8861733 | Benteo et al. | Oct 2014 | B2 |
8880027 | Darringer | Nov 2014 | B1 |
8888002 | Chesney et al. | Nov 2014 | B2 |
8898088 | Springer et al. | Nov 2014 | B2 |
8934837 | Zhu et al. | Jan 2015 | B2 |
8977569 | Rao | Mar 2015 | B2 |
8994498 | Agrafioti et al. | Mar 2015 | B2 |
9004365 | Bona et al. | Apr 2015 | B2 |
9038894 | Khalid | May 2015 | B2 |
9042814 | Royston et al. | May 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9069976 | Toole et al. | Jun 2015 | B2 |
9081948 | Magne | Jul 2015 | B2 |
9104853 | Venkataramani et al. | Aug 2015 | B2 |
9118663 | Bailey et al. | Aug 2015 | B1 |
9122964 | Krawczewicz | Sep 2015 | B2 |
9129280 | Bona et al. | Sep 2015 | B2 |
9152832 | Royston et al. | Oct 2015 | B2 |
9203800 | Izu et al. | Dec 2015 | B2 |
9209867 | Royston | Dec 2015 | B2 |
9251330 | Boivie et al. | Feb 2016 | B2 |
9251518 | Levin et al. | Feb 2016 | B2 |
9258715 | Borghei | Feb 2016 | B2 |
9270337 | Zhu et al. | Feb 2016 | B2 |
9306626 | Hall et al. | Apr 2016 | B2 |
9306942 | Bailey et al. | Apr 2016 | B1 |
9324066 | Archer et al. | Apr 2016 | B2 |
9324067 | Van Os et al. | Apr 2016 | B2 |
9332587 | Salahshoor | May 2016 | B2 |
9338622 | Bjontegard | May 2016 | B2 |
9373141 | Shakkarwar | Jun 2016 | B1 |
9379841 | Fine et al. | Jun 2016 | B2 |
9413430 | Royston et al. | Aug 2016 | B2 |
9413768 | Gregg et al. | Aug 2016 | B1 |
9420496 | Indurkar | Aug 2016 | B1 |
9426132 | Alikhani | Aug 2016 | B1 |
9432339 | Bowness | Aug 2016 | B1 |
9455968 | Machani et al. | Sep 2016 | B1 |
9473509 | Arsanjani et al. | Oct 2016 | B2 |
9491626 | Sharma et al. | Nov 2016 | B2 |
9553637 | Yang et al. | Jan 2017 | B2 |
9619952 | Zhao et al. | Apr 2017 | B1 |
9635000 | Muftic | Apr 2017 | B1 |
9665858 | Kumar | May 2017 | B1 |
9674705 | Rose et al. | Jun 2017 | B2 |
9679286 | Colnot et al. | Jun 2017 | B2 |
9680942 | Dimmick | Jun 2017 | B2 |
9710804 | Zhou et al. | Jul 2017 | B2 |
9740342 | Paulsen et al. | Aug 2017 | B2 |
9740988 | Levin et al. | Aug 2017 | B1 |
9763097 | Robinson et al. | Sep 2017 | B2 |
9767329 | Forster | Sep 2017 | B2 |
9769662 | Queru | Sep 2017 | B1 |
9773151 | Mil'shtein et al. | Sep 2017 | B2 |
9780953 | Gaddam et al. | Oct 2017 | B2 |
9891823 | Feng et al. | Feb 2018 | B2 |
9940571 | Herrington | Apr 2018 | B1 |
9953323 | Candelore et al. | Apr 2018 | B2 |
9961194 | Wiechman et al. | May 2018 | B1 |
9965756 | Davis et al. | May 2018 | B2 |
9965911 | Wishne | May 2018 | B2 |
9978058 | Wurmfeld et al. | May 2018 | B2 |
10043164 | Dogin et al. | Aug 2018 | B2 |
10075437 | Costigan et al. | Sep 2018 | B1 |
10129648 | Hernandez et al. | Nov 2018 | B1 |
10133979 | Eidam et al. | Nov 2018 | B1 |
10135614 | Roberts | Nov 2018 | B2 |
10217105 | Sangi et al. | Feb 2019 | B1 |
10542036 | Duane | Jan 2020 | B1 |
20010010723 | Pinkas | Aug 2001 | A1 |
20010029485 | Brody et al. | Oct 2001 | A1 |
20010034702 | Mockett et al. | Oct 2001 | A1 |
20010054003 | Chien et al. | Dec 2001 | A1 |
20020078345 | Sandhu et al. | Jun 2002 | A1 |
20020093530 | Krothapalli et al. | Jul 2002 | A1 |
20020100808 | Norwood et al. | Aug 2002 | A1 |
20020120583 | Keresman, III et al. | Aug 2002 | A1 |
20020152116 | Yan et al. | Oct 2002 | A1 |
20020153424 | Li | Oct 2002 | A1 |
20020165827 | Gien et al. | Nov 2002 | A1 |
20030023554 | Yap et al. | Jan 2003 | A1 |
20030034873 | Chase et al. | Feb 2003 | A1 |
20030055727 | Walker et al. | Mar 2003 | A1 |
20030078882 | Sukeda et al. | Apr 2003 | A1 |
20030167350 | Davis et al. | Sep 2003 | A1 |
20030208449 | Diao | Nov 2003 | A1 |
20040015958 | Veil et al. | Jan 2004 | A1 |
20040039919 | Takayama et al. | Feb 2004 | A1 |
20040127256 | Goldthwaite et al. | Jul 2004 | A1 |
20040215674 | Odinak et al. | Oct 2004 | A1 |
20040230799 | Davis | Nov 2004 | A1 |
20050044367 | Gasparini et al. | Feb 2005 | A1 |
20050075985 | Cartmell | Apr 2005 | A1 |
20050081038 | Arditti Modiano et al. | Apr 2005 | A1 |
20050138387 | Lam et al. | Jun 2005 | A1 |
20050156026 | Ghosh et al. | Jul 2005 | A1 |
20050160049 | Lundholm | Jul 2005 | A1 |
20050195975 | Kawakita | Sep 2005 | A1 |
20050247797 | Ramachandran | Nov 2005 | A1 |
20060006230 | Bear et al. | Jan 2006 | A1 |
20060040726 | Szrek et al. | Feb 2006 | A1 |
20060041402 | Baker | Feb 2006 | A1 |
20060044153 | Dawidowsky | Mar 2006 | A1 |
20060047954 | Sachdeva et al. | Mar 2006 | A1 |
20060085848 | Aissi et al. | Apr 2006 | A1 |
20060136334 | Atkinson et al. | Jun 2006 | A1 |
20060173985 | Moore | Aug 2006 | A1 |
20060174331 | Schuetz | Aug 2006 | A1 |
20060242698 | Inskeep et al. | Oct 2006 | A1 |
20060280338 | Rabb | Dec 2006 | A1 |
20070033642 | Ganesan et al. | Feb 2007 | A1 |
20070055630 | Gauthier et al. | Mar 2007 | A1 |
20070061266 | Moore et al. | Mar 2007 | A1 |
20070061487 | Moore et al. | Mar 2007 | A1 |
20070116292 | Kurita et al. | May 2007 | A1 |
20070118745 | Buer | May 2007 | A1 |
20070197261 | Humbel | Aug 2007 | A1 |
20070224969 | Rao | Sep 2007 | A1 |
20070241182 | Buer | Oct 2007 | A1 |
20070256134 | Lehtonen et al. | Nov 2007 | A1 |
20070258594 | Sandhu et al. | Nov 2007 | A1 |
20070278291 | Rans et al. | Dec 2007 | A1 |
20080008315 | Fontana et al. | Jan 2008 | A1 |
20080011831 | Bonalle et al. | Jan 2008 | A1 |
20080014867 | Finn | Jan 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080071681 | Khalid | Mar 2008 | A1 |
20080072303 | Syed | Mar 2008 | A1 |
20080086767 | Kulkarni et al. | Apr 2008 | A1 |
20080103968 | Bies et al. | May 2008 | A1 |
20080109309 | Landau et al. | May 2008 | A1 |
20080110983 | Ashfield | May 2008 | A1 |
20080120711 | Dispensa | May 2008 | A1 |
20080156873 | Wilhelm et al. | Jul 2008 | A1 |
20080162312 | Sklovsky et al. | Jul 2008 | A1 |
20080164308 | Aaron et al. | Jul 2008 | A1 |
20080207307 | Cunningham, II et al. | Aug 2008 | A1 |
20080209543 | Aaron | Aug 2008 | A1 |
20080223918 | Williams et al. | Sep 2008 | A1 |
20080285746 | Landrock et al. | Nov 2008 | A1 |
20080308641 | Finn | Dec 2008 | A1 |
20090037275 | Pollio | Feb 2009 | A1 |
20090048026 | French | Feb 2009 | A1 |
20090132417 | Scipioni et al. | May 2009 | A1 |
20090143104 | Loh et al. | Jun 2009 | A1 |
20090171682 | Dixon et al. | Jul 2009 | A1 |
20090210308 | Toomer et al. | Aug 2009 | A1 |
20090235339 | Mennes et al. | Sep 2009 | A1 |
20090249077 | Gargaro et al. | Oct 2009 | A1 |
20090282264 | Amiel et al. | Nov 2009 | A1 |
20100023449 | Skowronek et al. | Jan 2010 | A1 |
20100023455 | Dispensa et al. | Jan 2010 | A1 |
20100029202 | Jolivet et al. | Feb 2010 | A1 |
20100033310 | Narendra et al. | Feb 2010 | A1 |
20100036769 | Winters et al. | Feb 2010 | A1 |
20100078471 | Lin et al. | Apr 2010 | A1 |
20100082491 | Rosenblatt et al. | Apr 2010 | A1 |
20100094754 | Bertran et al. | Apr 2010 | A1 |
20100095130 | Bertran et al. | Apr 2010 | A1 |
20100100480 | Altman et al. | Apr 2010 | A1 |
20100114731 | Kingston et al. | May 2010 | A1 |
20100192230 | Steeves et al. | Jul 2010 | A1 |
20100207742 | Buhot et al. | Aug 2010 | A1 |
20100211797 | Westerveld et al. | Aug 2010 | A1 |
20100240413 | He et al. | Sep 2010 | A1 |
20100257357 | McClain | Oct 2010 | A1 |
20100312634 | Cervenka | Dec 2010 | A1 |
20100312635 | Cervenka | Dec 2010 | A1 |
20110028160 | Roeding et al. | Feb 2011 | A1 |
20110035604 | Habraken | Feb 2011 | A1 |
20110060631 | Grossman et al. | Mar 2011 | A1 |
20110068170 | Lehman | Mar 2011 | A1 |
20110084132 | Tofighbakhsh | Apr 2011 | A1 |
20110101093 | Ehrensvard | May 2011 | A1 |
20110113245 | Varadrajan | May 2011 | A1 |
20110125638 | Davis et al. | May 2011 | A1 |
20110131415 | Schneider | Jun 2011 | A1 |
20110153437 | Archer et al. | Jun 2011 | A1 |
20110153496 | Royyuru | Jun 2011 | A1 |
20110208658 | Makhotin | Aug 2011 | A1 |
20110208965 | Machani | Aug 2011 | A1 |
20110211219 | Bradley | Sep 2011 | A1 |
20110218911 | Spodak | Sep 2011 | A1 |
20110238564 | Lim et al. | Sep 2011 | A1 |
20110246780 | Yeap et al. | Oct 2011 | A1 |
20110258452 | Coulier et al. | Oct 2011 | A1 |
20110280406 | Ma et al. | Nov 2011 | A1 |
20110282785 | Chin | Nov 2011 | A1 |
20110294418 | Chen | Dec 2011 | A1 |
20110312271 | Ma et al. | Dec 2011 | A1 |
20120024947 | Naelon | Feb 2012 | A1 |
20120030047 | Fuentes et al. | Feb 2012 | A1 |
20120030121 | Grellier | Feb 2012 | A1 |
20120047071 | Mullen et al. | Feb 2012 | A1 |
20120079281 | Lowenstein et al. | Mar 2012 | A1 |
20120109735 | Krawczewicz et al. | May 2012 | A1 |
20120109764 | Martin et al. | May 2012 | A1 |
20120143754 | Patel | Jun 2012 | A1 |
20120150737 | Rottink | Jun 2012 | A1 |
20120178366 | Levy et al. | Jul 2012 | A1 |
20120196583 | Kindo | Aug 2012 | A1 |
20120207305 | Gallo et al. | Aug 2012 | A1 |
20120209773 | Ranganathan | Aug 2012 | A1 |
20120238206 | Singh et al. | Sep 2012 | A1 |
20120239560 | Pourfallah et al. | Sep 2012 | A1 |
20120252350 | Steinmetz et al. | Oct 2012 | A1 |
20120254394 | Barras | Oct 2012 | A1 |
20120284194 | Liu et al. | Nov 2012 | A1 |
20120290472 | Mullen et al. | Nov 2012 | A1 |
20120296818 | Nuzzi et al. | Nov 2012 | A1 |
20120316992 | Obome | Dec 2012 | A1 |
20120317035 | Royyuru et al. | Dec 2012 | A1 |
20120317628 | Yeager | Dec 2012 | A1 |
20130005245 | Royston | Jan 2013 | A1 |
20130008956 | Ashfield | Jan 2013 | A1 |
20130026229 | Jarman et al. | Jan 2013 | A1 |
20130048713 | Pan | Feb 2013 | A1 |
20130054474 | Yeager | Feb 2013 | A1 |
20130065564 | Conner et al. | Mar 2013 | A1 |
20130080228 | Fisher | Mar 2013 | A1 |
20130080229 | Fisher | Mar 2013 | A1 |
20130099587 | Lou | Apr 2013 | A1 |
20130104251 | Moore et al. | Apr 2013 | A1 |
20130106576 | Hinman et al. | May 2013 | A1 |
20130119130 | Braams | May 2013 | A1 |
20130130614 | Busch-Sorensen | May 2013 | A1 |
20130144793 | Royston | Jun 2013 | A1 |
20130171929 | Adams et al. | Jul 2013 | A1 |
20130179351 | Wallner | Jul 2013 | A1 |
20130185772 | Jaudon et al. | Jul 2013 | A1 |
20130191279 | Calman et al. | Jul 2013 | A1 |
20130200999 | Spodak et al. | Aug 2013 | A1 |
20130216108 | Hwang et al. | Aug 2013 | A1 |
20130226791 | Springer et al. | Aug 2013 | A1 |
20130226796 | Jiang et al. | Aug 2013 | A1 |
20130232082 | Krawczewicz et al. | Sep 2013 | A1 |
20130238894 | Ferg et al. | Sep 2013 | A1 |
20130282360 | Shimota et al. | Oct 2013 | A1 |
20130303085 | Boucher et al. | Nov 2013 | A1 |
20130304651 | Smith | Nov 2013 | A1 |
20130312082 | Izu et al. | Nov 2013 | A1 |
20130314593 | Reznik et al. | Nov 2013 | A1 |
20130344857 | Berionne et al. | Dec 2013 | A1 |
20140002238 | Taveau et al. | Jan 2014 | A1 |
20140019352 | Shrivastava | Jan 2014 | A1 |
20140027506 | Heo et al. | Jan 2014 | A1 |
20140032409 | Rosano | Jan 2014 | A1 |
20140032410 | Georgiev et al. | Jan 2014 | A1 |
20140040120 | Cho et al. | Feb 2014 | A1 |
20140040139 | Brudnicki et al. | Feb 2014 | A1 |
20140040147 | Varadarakan et al. | Feb 2014 | A1 |
20140047235 | Lessiak et al. | Feb 2014 | A1 |
20140067690 | Pitroda et al. | Mar 2014 | A1 |
20140074637 | Hammad | Mar 2014 | A1 |
20140074655 | Lim et al. | Mar 2014 | A1 |
20140081720 | Wu | Mar 2014 | A1 |
20140138435 | Khalid | May 2014 | A1 |
20140171034 | Aleksin et al. | Jun 2014 | A1 |
20140171039 | Bjontegard | Jun 2014 | A1 |
20140172700 | Teuwen et al. | Jun 2014 | A1 |
20140180851 | Fisher | Jun 2014 | A1 |
20140208112 | McDonald et al. | Jul 2014 | A1 |
20140214674 | Narula | Jul 2014 | A1 |
20140229375 | Zaytzsev et al. | Aug 2014 | A1 |
20140245391 | Adenuga | Aug 2014 | A1 |
20140256251 | Caceres et al. | Sep 2014 | A1 |
20140258099 | Rosano | Sep 2014 | A1 |
20140258113 | Gauthier et al. | Sep 2014 | A1 |
20140258125 | Gerber et al. | Sep 2014 | A1 |
20140274179 | Zhu et al. | Sep 2014 | A1 |
20140279479 | Maniar et al. | Sep 2014 | A1 |
20140337235 | Van Heerden et al. | Nov 2014 | A1 |
20140339315 | Ko | Nov 2014 | A1 |
20140346860 | Aubry et al. | Nov 2014 | A1 |
20140365780 | Movassaghi | Dec 2014 | A1 |
20140379361 | Mahadkar et al. | Dec 2014 | A1 |
20150012444 | Brown et al. | Jan 2015 | A1 |
20150032635 | Guise | Jan 2015 | A1 |
20150071486 | Rhoads et al. | Mar 2015 | A1 |
20150088757 | Zhou et al. | Mar 2015 | A1 |
20150089586 | Ballesteros | Mar 2015 | A1 |
20150134452 | Williams | May 2015 | A1 |
20150140960 | Powell et al. | May 2015 | A1 |
20150154595 | Collinge et al. | Jun 2015 | A1 |
20150170138 | Rao | Jun 2015 | A1 |
20150178724 | Ngo et al. | Jun 2015 | A1 |
20150186871 | Laracey | Jul 2015 | A1 |
20150205379 | Mag et al. | Jul 2015 | A1 |
20150302409 | Malek | Oct 2015 | A1 |
20150317626 | Ran et al. | Nov 2015 | A1 |
20150332266 | Friedlander et al. | Nov 2015 | A1 |
20150339474 | Paz et al. | Nov 2015 | A1 |
20150371234 | Huang et al. | Dec 2015 | A1 |
20160012465 | Sharp | Jan 2016 | A1 |
20160026997 | Tsui et al. | Jan 2016 | A1 |
20160048913 | Rausaria et al. | Feb 2016 | A1 |
20160055480 | Shah | Feb 2016 | A1 |
20160057619 | Lopez | Feb 2016 | A1 |
20160065370 | Le Saint et al. | Mar 2016 | A1 |
20160087957 | Shah et al. | Mar 2016 | A1 |
20160092696 | Guglani et al. | Mar 2016 | A1 |
20160148193 | Kelley et al. | May 2016 | A1 |
20160232523 | Venot et al. | Aug 2016 | A1 |
20160239672 | Khan et al. | Aug 2016 | A1 |
20160253651 | Park et al. | Sep 2016 | A1 |
20160255072 | Liu | Sep 2016 | A1 |
20160267486 | Mitra et al. | Sep 2016 | A1 |
20160277383 | Guyomarc'h et al. | Sep 2016 | A1 |
20160277388 | Lowe et al. | Sep 2016 | A1 |
20160307187 | Guo et al. | Oct 2016 | A1 |
20160307189 | Zarakas et al. | Oct 2016 | A1 |
20160314472 | Ashfield | Oct 2016 | A1 |
20160330027 | Ebrahimi | Nov 2016 | A1 |
20160335531 | Mullen et al. | Nov 2016 | A1 |
20160359850 | Weiss | Dec 2016 | A1 |
20160379217 | Hammad | Dec 2016 | A1 |
20170004502 | Quentin et al. | Jan 2017 | A1 |
20170011395 | Pillai et al. | Jan 2017 | A1 |
20170011406 | Tunnell et al. | Jan 2017 | A1 |
20170017957 | Radu | Jan 2017 | A1 |
20170017964 | Janefalkar et al. | Jan 2017 | A1 |
20170024716 | Jiam et al. | Jan 2017 | A1 |
20170039566 | Schipperheijn | Feb 2017 | A1 |
20170041759 | Gantert et al. | Feb 2017 | A1 |
20170068950 | Kwon | Mar 2017 | A1 |
20170103388 | Pillai et al. | Apr 2017 | A1 |
20170104739 | Lansler et al. | Apr 2017 | A1 |
20170109509 | Baghdasaryan | Apr 2017 | A1 |
20170109730 | Locke et al. | Apr 2017 | A1 |
20170116447 | Cimino et al. | Apr 2017 | A1 |
20170124568 | Moghadam | May 2017 | A1 |
20170140379 | Deck | May 2017 | A1 |
20170154328 | Zarakas et al. | Jun 2017 | A1 |
20170154333 | Gleeson et al. | Jun 2017 | A1 |
20170180134 | King | Jun 2017 | A1 |
20170230189 | Toll et al. | Aug 2017 | A1 |
20170237301 | Elad et al. | Aug 2017 | A1 |
20170289127 | Hendrick | Oct 2017 | A1 |
20170295013 | Claes | Oct 2017 | A1 |
20170316696 | Bartel | Nov 2017 | A1 |
20170317834 | Smith et al. | Nov 2017 | A1 |
20170330173 | Woo et al. | Nov 2017 | A1 |
20170374070 | Shah et al. | Dec 2017 | A1 |
20180034507 | Wobak et al. | Feb 2018 | A1 |
20180039986 | Essebag et al. | Feb 2018 | A1 |
20180068316 | Essebag et al. | Mar 2018 | A1 |
20180129945 | Saxena et al. | May 2018 | A1 |
20180160255 | Park | Jun 2018 | A1 |
20180191501 | Lindemann | Jul 2018 | A1 |
20180205712 | Versteeg et al. | Jul 2018 | A1 |
20180240106 | Garrett et al. | Aug 2018 | A1 |
20180254909 | Hancock | Sep 2018 | A1 |
20180268132 | Buer et al. | Sep 2018 | A1 |
20180270214 | Caterino et al. | Sep 2018 | A1 |
20180294959 | Traynor et al. | Oct 2018 | A1 |
20180300716 | Carlson | Oct 2018 | A1 |
20180302396 | Camenisch et al. | Oct 2018 | A1 |
20180315050 | Hammad | Nov 2018 | A1 |
20180316666 | Koved et al. | Nov 2018 | A1 |
20180322486 | Deliwala et al. | Nov 2018 | A1 |
20180359100 | Gaddam et al. | Dec 2018 | A1 |
20190014107 | George | Jan 2019 | A1 |
20190019375 | Foley | Jan 2019 | A1 |
20190036678 | Ahmed | Jan 2019 | A1 |
20190238517 | D'Agostino et al. | Aug 2019 | A1 |
20200057664 | Durham | Feb 2020 | A1 |
20200104830 | Hart et al. | Apr 2020 | A1 |
20200184462 | Rule et al. | Jun 2020 | A1 |
20200366490 | Osborn et al. | Nov 2020 | A1 |
20210176230 | Cho | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
3010336 | Jul 2017 | CA |
101192295 | Jun 2008 | CN |
103023643 | Apr 2013 | CN |
103417202 | Dec 2013 | CN |
1 085 424 | Mar 2001 | EP |
1 223 565 | Jul 2002 | EP |
1 265 186 | Dec 2002 | EP |
1 783 919 | May 2007 | EP |
2 852 070 | Jan 2009 | EP |
2 139 196 | Dec 2009 | EP |
1 469 419 | Feb 2012 | EP |
2 457 221 | Aug 2009 | GB |
2 516 861 | Feb 2015 | GB |
2 551 907 | Jan 2018 | GB |
20130082845 | Jul 2013 | KR |
101508320 | Apr 2015 | KR |
WO 0049586 | Aug 2000 | WO |
WO 2006070189 | Jul 2006 | WO |
WO 2008055170 | May 2008 | WO |
WO 2009025605 | Feb 2009 | WO |
WO 2010049252 | May 2010 | WO |
WO 2011112158 | Sep 2011 | WO |
WO 2012001624 | Jan 2012 | WO |
WO 2013039395 | Mar 2013 | WO |
WO 2013155562 | Oct 2013 | WO |
WO 2013192358 | Dec 2013 | WO |
WO 2014043278 | Mar 2014 | WO |
WO 2014170741 | Oct 2014 | WO |
WO 2015179649 | Nov 2015 | WO |
WO 2015183818 | Dec 2015 | WO |
WO 2016097718 | Jun 2016 | WO |
WO 2016160816 | Oct 2016 | WO |
WO 2016168394 | Oct 2016 | WO |
WO 2017042375 | Mar 2017 | WO |
WO 2017042400 | Mar 2017 | WO |
WO 2017157859 | Sep 2017 | WO |
WO 2017208063 | Dec 2017 | WO |
WO 2018063809 | Apr 2018 | WO |
WO 2018137888 | Aug 2018 | WO |
WO-2020197221 | Oct 2020 | WO |
2021011354 | Jan 2021 | WO |
Entry |
---|
International Search Report and the Written Opinion of the International Searching Authority issued in related PCT Application No. PCT/US2022/013899 dated Apr. 25, 2022. |
Batina, Lejla and Poll, Erik, “SmartCards and RFID,” PowerPoint Presentation for IPA Security Course, Digital Secmity at University of Nijmegen, Netherlands (date unknown), 75 pages. |
Haykin M. and Wamar, R., “Smart Card Technology: New Methods for Computer Access Control,” Computer Science and Technology NIST Special Publication 500-157:1-60 (1988). |
Lehpamer, Harvey, “Component of the RFID System,” RFID Design Principles, 2nd edition pp. 133-201 (2012). |
Pourghomi, Pardis et al., “A Proposed NFC Payment Application,” International Journal of Advanced Computer Science and Applications, vol. 4, No. 8 (2013). |
Author Unknown, “CardrefresherSM from American Express®,” [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://merchant-channel.americanexpress.com/merchant/en_US/cardrefresher, 2 pages. |
Author Unknown, “Add Account Updater to your recurring payment tool,” [online] 2018-19 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.authorize.net/our-features/account-updater/, 5 pages. |
Author Unknown, “Visa® Account Updater for Merchants,” [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://usa.visa.com/dam/VCOM/download/merchants/visa-account-updater-product-information-fact-sheet-for-merchants.pdf, 2 pages. |
Author Unknown, “Manage the cards that you use with Apple Pay,” Apple Support [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/en-us/HT205583, 5 pages. |
Author Unknown, “Contactless Specifications for Payment Systems,” EMV Book B—Entry Point Specification [online] 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/BookB_Entry_Point_Specification_v2_6_20160809023257319.pdf, 52 pages. |
Author Unknown, “EMV Integrated Circuit Card Specifications for Payment Systems, Book 2, Security and Key Management,” Version 3.4, [online] 2011 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf, 174 pages. |
Author unknown, “NFC Guide: All You Need to Know About Near Field Communication” Square Guide [online] 2018[retrieved on Nov. 13, 2018]. Retrieved from Internet URL: https://squareup.com/guides/nfc, 8 pages. |
Profis, S., “Everything you need to know about NFC and mobile payments” CNET Directory [online], 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/how-nfc-works-and-mobile-payments/, 6 pages. |
Cozma, N., “Copy data from other devices in Android 5.0 Lollipop setup” CNET Directory [online] 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/copy-data-from-other-devices-in-android-5-0-lollipop-setup/, 5 pages. |
Kevin, Android Enthusiast, “How to copy text string from nfc tag” StackExchange [online] 2013 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://android.stackexchange.com/questions/55689/how-to-copy-text-string-from-nfc-tag, 11 pages. |
Author unknown, “Tap & Go Device Setup” Samsung [online] date unknown [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.samsung.com/us/switch-me/switch-to-the-galaxy-s-5/app/partial/setup-device/tap-go.html, 1 page. |
Author Unknown, “Multiple encryption”, Wikipedia [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Multiple_encryption, 4 pages. |
Krawczyk, et al., “HMAC: Keyed-Hashing for Message Authentication”, Network Working Group RFC:2104 memo [online] 1997 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc2104, 12 pages. |
Song, et al., “The AES-CMAC Algorithm”, Network Working Group RFC: 4493 memo [online] 2006 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc4493, 21 pages. |
Katz, J., and Lindell, Y., “Aggregate Message Authentication Codes”, Topics in Cryptology [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.umd.edu/˜jkatz/papers/aggregateMAC.pdf, 11 pages. |
Adams, D., and Maier, A-K, “Goldbug BIG SEVEN open source crypto-messengers to be compared - : or Comprehensive Confidentiality Review & Audit of GoldBug Encrypting E-Mail-Client & Secme Instant Messenger”, Big Seven Study 2016 [online] [retrieved on Mar. 25, 2018]. Retrieved from Internet URL: https://sf.net/projects/goldbug/files/bigseven-crypto-audit.pdf, 309 pages. |
Author Unknown, “Triple DES”, Wikipedia [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://simple.wikipedia.org/wiki/Triple_DES, 2 pages. |
Song, F., and Yun, A.l, “Quantum Security of NMAC and Related Constructions—PRF domain extension against quantum attacks”, IACR Cryptology ePrint Archive [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://eprint.iacr.org/2017/509.pdf, 41 pages. |
Saxena, N., “Lecture 10: NMAC, HMAC and Number Theory”, CS 6903 Modem Cryptography [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: http://isis.poly.edu/courses/cs6903/Lectures/lecture10.pdf, 8 pages. |
Berg, Guy, “Fundamentals of EMV” Smart Card Alliance [online] date unknown [retrieved on Mar. 27, 2019]. Retrieved from Internet URL: https://www.securetechalliance.org/resources/media/scap13_preconference/02.pdf, 37 pages. |
Pierce, Kevin, “Is the amazon echo NFC compatible,?” Amazon.com Customer Q&A [online] 2016 [retrieved on Mar. 26, 2019]. Retrieved from Internet URL: https://www.amazon.com/ask/questions/TxlRJXYSPE6XLJD?_encodi . . . , 2 pages. |
Author Unknown, “Multi-Factor Authentication”, idaptive [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.centrify.com/products/application-services/adaptive-multi-factor-authentication/risk-based-mfa/, 10 pages. |
Author Unknown, “Adaptive Authentication”, SecureAuth [online] 2019 [retrieved on Mar. 25, 2019}. Retrieved from Internet URL: https://www.secureauth.com/products/access-management/adaptive-authentication, 7 pages. |
Van den Breekel, J., et al., “EMV inanutshell”, Technical Report, 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.es.ru.nl/E.Poll/papers/EMVtechreport.pdf, 37 pages. |
Author Unknown, “Autofill”, Computer Hope [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.computerhope.com/jargon/a/autofill.htm, 2 pages. |
Author Unknown, “Fill out forms automatically”, Google Chrome Help [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.google.com/chrome/answer/142893?co-GENIE.Platform%3DDesktop&hl=en, 3 pages. |
Author unknown, “Autofill credit cards, contacts, and passwords in Safari on Mac”, Apple Safari User Guide [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/guide/safari/use-autofill-ibrw1103/mac, 3 pages. |
Menghin, M.J., “Power Optimization Techniques for Near Field Communication Systems” 2014 Dissertation at Technical University of Graz [online]. Retrieved from Internet URL: https://diglib.tugraz.at/download.php?id-576a7b910d2d6&location=browse, 135 pages. |
Mareli, M., et al., “Experimental evaluation of NFC reliability between an RFID tag and a smartphone” Conference paper (2013) IEEE AFRICON at Mamitius [online] [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://core.ac.uk/download/pdf/54204839.pdf, 5 pages. |
Davison, A., et al., “MonoSLAM: Real-Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052-1067 (2007). |
Barba, R., “Sharing your location with your bank sounds creepy, but it's also useful”, Bankrate, LLC [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.bankrate.com/banking/banking-app-location-sharing/, 6 pages. |
Author unknown: “onetappayment™”, [online] Jan. 24, 2019, [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.payubiz.in/onetap, 4 pages. |
Vu et al., (2012). “Distinguishing users with capacitive touch communication” Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM. 10.1145/2348543.2348569. |
EMVCo, EMV Card Personalization Specification, version 1.0 (Jun. 2003), 81 pages. |
Ullmann et al., (2012). “On-Card” User Authentication for Contactless Smart Cards based on Gesture Recognition, LNI, 223-234, 12 pages. |
Faraj et al. (2008). “Investigation of Java Smart Card Technology for Multi-Task Applications” J. of Al-Anbar University for Pure Science, vol. 2: No. 1: 2008, 11 pages. |
Dhamdhere (2017) “Key Benefits of a Unified Platform for Loyalty, Referral Marketing, and UGC” Annex Cloud [retrieved on Jul. 3, 2019]. Retrieved from Internet URL: https://www.annexcloude.com/blog/benefits-unified-platform/, 13 pages. |
Notification Concerning Transmittal of International Preliminary Report on Patentability from related PCT Application No. PCT/US2022/013899, dated Aug. 10, 2023, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20220239479 A1 | Jul 2022 | US |