1. Technical Field
Embodiments of the present disclosure relate generally to handheld electronic devices and, more particularly, to wireless electronic devices configured to conduct financial transactions with transaction terminals.
2. Description of the Related Art
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Portable electronic devices such as cellular phones, media players and the like have become so fully integrated into popular culture that it is rare that people do not own and carry at least one with them. The portable electronic devices may be configured to perform functions beyond the conventional functions of media playback and cellular communications. For example, the portable electronic devices may be used to wirelessly transfer and receive documents and/or sensitive or personal information, such as the information to conduct a financial transaction. In such communications, as with any wireless transmission, the data being communicated is at risk of being intercepted. As such, the communication protocols used for wireless transmissions have built-in security features. However, when the data being communicated contains personal, financial, and/or generally sensitive data, additional security may be desirable.
Certain aspects of embodiments disclosed herein by way of example are summarized below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms an invention disclosed and/or claimed herein might take and that these aspects are not intended to limit the scope of any invention disclosed and/or claimed herein. Indeed, any invention disclosed and/or claimed herein may encompass a variety of aspects that may not be set forth below.
The present disclosure generally relates to techniques for providing additional security for wireless communications using portable electronic devices. In accordance with some embodiments, a portable electronic device may be configured to utilize a short-range wireless communication device, such as a near field communication (NFC) interface, and at least one other module of the portable electronic device to help ensure the security of a transaction. The other module of the portable electronic device may include one or more of the following: a camera, a scanner, a global positioning system, an accelerometer, a touch screen, cellular communication system, or Wi-Fi system, among others.
The electronic device may include one or more communication interfaces for communicating with another device configured to communicate sensitive information, including financial information for a financial transaction, for example. Specifically, the electronic device may include interfaces for communicating over a wireless network, a personal area network, a near field communication channel, a Bluetooth channel, a cellular telephonic communication system, or the like, each of which may be useful in conducting such transactions.
Various refinements of the features noted above may exist in relation to various aspects of the present disclosure. Further features may also be incorporated in these various aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to one or more of the illustrated embodiments may be incorporated into any of the above-described aspects alone or in any combination. Again, the brief summary presented above is intended only to familiarize the reader with certain aspects and contexts of embodiments of the present disclosure without limitation to the claimed subject matter.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
a-5b illustrate a transaction terminal for conducting transactions with the device of
a-9d illustrate device authentication systems for conducting a transaction with terminal in accordance with embodiments;
e is a flow chart depicting a method for authentication of the device of
a-18d illustrate a user setting gestural signatures for user authentication in accordance with embodiments;
One or more specific embodiments of the present invention will be described below. These described embodiments are only exemplary of the present invention. Additionally, in an effort to provide a concise description of these exemplary embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
The present disclosure is directed to techniques for providing security for wireless communications, including conducting a financial transaction, using a portable electronic device. The electronic device integrates several functionalities for such communications, including but not limited to, initiating communications, authenticating the portable electronic device and/or the user for a transaction, and completing the transaction. One or more input devices, such as a scanner, camera, keypad, near field communication (NFC) device, network device, or positioning device may be used to acquire information that may be used to authenticate the transaction. For example, a scanner or camera may be used to obtain information that may be fed back through an NFC communication channel to authenticate that the device is located at a particular location. Alternatively, a network device or positioning device may be used to authenticate the location of the device relative to a particular transaction terminal. These embodiments and others will be described in greater detail below.
Turning to the drawings and referring initially to
In the depicted embodiment, the device 10 includes an enclosure 12 that protects the interior components from physical damage and shields them from electromagnetic interference. The enclosure 12 may be formed from any suitable material such as plastic, metal, or a composite material and may allow certain frequencies of electromagnetic radiation to pass through to wireless communication circuitry within the device 10 to facilitate wireless communication.
The enclosure 12 allows access to user input structures 14, 16, 18, 20, and 22 through which a user may interface with the device. Each user input structure 14, 16, 18, 20, and 22 may be configured to control a device function when actuated. For example, the input structure 14 may include a button that when pressed causes a “home” screen or menu to be displayed on the device. The input structure 16 may include a button for toggling the device 10 between a sleep mode and a wake mode. The input structure 18 may include a two-position slider that silences a ringer for the cell phone application. The input structures 20 and 22 may include buttons for increasing and decreasing the volume output of the device 10. In general, the electronic device 10 may include any number of user input structures existing in various forms including buttons, switches, control pads, keys, knobs, scroll wheels, or other suitable forms.
The device 10 also includes a display 24 that may display various images generated by the device. For example, the display 24 may show photos of merchandise, advertisements, movies, and/or data, such as text documents, work schedules, financial spreadsheets, text messages, and email, among other things. The display 24 also may display system indicators 26 that provide feedback to a user, such as power status, signal strength, call status, external device connection, and the like. The display 24 may be any type of display such as a liquid crystal display (LCD), a light emitting diode (LED) display, an organic light emitting diode (OLED) display, or other suitable display. Additionally, the display 24 may include a touch-sensitive element, such as a touch screen.
The display 24 may be used to display a graphical user interface (GUI) 28 that allows a user to interact with the device. The GUI 28 may include various layers, windows, screens, templates, elements, or other components that may be displayed in all, or a portion, of the display 24. Generally, the GUI 28 may include graphical elements that represent applications and functions of the device 10. The graphical elements may include icons and other images representing buttons, sliders, menu bars, and the like. In certain embodiments, the user input structure 14 may be used to display a home screen 29 of the GUI 28. For example, in response to actuation of the input structure 14, the device may display graphical elements, shown here as icons 30, of the GUI 28. The icons 30 may correspond to various applications of the device 10 that may open upon selection of an icon 30. The icons 30 may be selected via a touch screen included in the display 24, or may be selected by user input structures, such as a wheel or button.
The icons 30 may represent various layers, windows, screens, templates, elements, or other components that may be displayed in some or all of the areas of the display 24 upon selection by the user. Furthermore, selection of an icon 30 may lead to a hierarchical navigation process, such that selection of an icon 30 leads to a screen that includes one or more additional icons or other GUI elements. Textual indicators 31 may be displayed on or near the icons 30 to facilitate user interpretation of each icon 30. It should be appreciated that the GUI 30 may include various components arranged in hierarchical and/or non-hierarchical structures.
When an icon 30 is selected, the device 10 may be configured to open an application associated with that icon and display a corresponding screen. For example, when the Transactions icon 32 is selected, the device 10 may be configured to open an application for conducting a financial transaction. The application may facilitate purchases or other financial transactions, such as those related to using an automatic teller machine (ATM). For each application, screens including additional icons or other GUI elements may be displayed on the display 24.
The electronic device 10 also may include various input and output (I/O) ports 34, 36, and 38 that allow connection of the device 10 to external devices. The I/O port 34 may be a connection port for transmitting and receiving data files, such as media files or customer order files. For example, the I/O port 34 may be a proprietary port from Apple Inc. In certain embodiments, the I/O port 34 may be used to connect an external scanning device, such as a barcode reader. The I/O port 36 may be a connection slot for receiving a subscriber identify module (SIM) card. The I/O port 38 may be a headphone jack for connecting audio headphones. In other embodiments, the device 10 may include any number of I/O ports configured to connect to a variety of external devices, including but not limited to a power source, a printer, a computer, and an intermediate device, such as a dock, for communicating with an external server. In certain embodiments, multiple ports may be included on the device 10. The ports may be any interface type, such as a universal serial bus (USB) port, serial connection port, Firewire port, IEEE-1394 port, or AC/DC power connection port.
The electronic device 10 may also include various audio input and output structures 40 and 42. For example, the audio input structures 40 may include one or more microphones for receiving voice data from a user. The audio output structures 42 may include one or more speakers for outputting audio data, such as data received by the device 10 over a cellular network. Together, the audio input and output structures 40 and 42 may operate to provide telephone functionality. Further, in some embodiments, the audio input structures 40 may include one or more integrated speakers serving as audio output structures for audio data stored on the device 10. For example, the integrated speakers may be used to play music stored in the device 10.
The device 10 may further include a near field communication (NFC) device 44. The NFC device 44 may be located within the enclosure 12, and a mark or symbol on the exterior of the enclosure 12 may identify its location within the enclosure 12. The NFC device 44 may allow for close range communication at relatively low data rates (424 kb/s), and may comply with standards such as ISO 18092 or ISO 21481, or it may allow for close range communication at relatively high data rates (560 Mbps), and may comply with the TransferJet® protocol. In certain embodiments, the communication may occur within a range of approximately 2 to 4 cm. The close range communication with the NFC device 44 may take place via magnetic field induction, allowing the NFC device 44 to communicate with other NFC devices or to retrieve information from tags having radio frequency identification (RFID) circuitry. As discussed below, the NFC device 44 may provide a manner of acquiring merchandise information, acquiring payment information, and communicating with an external server.
Information also may be acquired through a biometric sensor 45. The biometric sensor 45 may be located within the enclosure 12 and may be used to verify or identify a user. For example, the biometric sensor 45 may be used in conjunction with a smartcard to verify the identity of a consumer. In another example, the biometric sensor 45 may be used to identify a customer and obtain payment information for that customer by accessing a database of stored customer information. The database may be maintained by the merchant or by a third party service provider. The biometric sensor 45 may include a fingerprint reader or other feature recognition device and may operate in conjunction with a feature processing program stored on the electronic device 10.
The camera 46 may be used to capture images or video and may be used to obtain merchandise information or payment information. For example, the camera 46 may be used to capture an image of a credit card to obtain payment information. In another example, the camera 46 may be used to take a picture of an item for purchase to identify the item. The camera 46 may be a 2.0 megapixel camera or other suitable camera and may operate in conjunction with image processing software stored within the electronic device 10.
The scanner 48 may be located within the enclosure 12 and may be used to obtain merchandise information and/or payment information. For example, the scanner 48 may be used to read a stock-keeping unit (SKU) number of an article for purchase. In another example, the scanner 48 may be used to read bank account information from a check. The scanner 48 may be a laser scanner, LED scanner, or other suitable scanning device and may operate in conjunction with a decoder stored within the electronic device 10.
Additional details of the illustrative device 10 may be better understood by reference to
The processor(s) 52 may be coupled to a data bus 54 and configured to transmit PIO instructions to the various devices coupled to the data bus 54 or to initiate DMA transfers. As such, the data bus 54 may facilitate both DMA transfers and direct read and write instructions from the processor(s) 52. In embodiments, the data bus 54 may be an Advanced Microcontroller Bus Architecture (AMBA) compliant data bus.
The electronic device 10 may also include a random access memory (RAM) 56 electrically coupled to data bus 54. The RAM 56 may include any type of RAM, such as dynamic RAM and/or synchronous double data rate RAM, for example, and may also include non-volatile memory devices, such as ROM, EPROM and EEPROM or some combination of volatile and non-volatile memory. Additionally, the RAM 56 may also include a memory controller that controls the flow of data to and from the RAM 56.
Information used by the processor(s) 52 may be located within storage memory 58. The storage memory 58 of electronic device 10 may be used for storing data required for the operation of the processor(s) 52 as well as other data required by the device 10. For example, the storage memory 58 may store the firmware for the electronic device 10 usable by the processor(s) 52, such as an operating system, other programs that enable various functions of the electronic device 10, GUI functions, and/or processor functions. The storage memory 58 also may store components for the GUI 28, such as graphical elements 30, screens, and templates. Additionally, the storage memory 58 may store data files such as media (e.g., music and video files), image data, software, preference information (e.g., media playback preferences or payment option preferences, as discussed below), wireless connection information (e.g., information that may enable the device 10 to establish a wireless connection, such as a telephone connection), subscription information (e.g., information that maintains a record of podcasts, television shows or other media to which a user subscribes), telephone information (e.g., telephone numbers), and any other suitable data. The storage memory 58 may be non-volatile memory such as read only memory, flash memory, a hard drive, or any other suitable optical, magnetic, or solid-state computer readable media, as well as a combination thereof.
A user may navigate through the GUI 28 (
As noted above, a user may also control the device 10 by touching the graphical elements within the GUI 28. As such, a touch screen 62 may be positioned in front of or behind the display 24 and may be used to select graphical elements 30 shown on the display 24. The touch screen 62 is configured to receive input from a user's or object's touch and to send the information to the processor(s) 52, which interprets the touch event and performs a corresponding action. The touch screen 62 may employ any suitable type of touch screen technology such as resistive, capacitive, infrared, surface acoustic wave, electromagnetic, or near field imaging, and may be used in conjunction with or independently of the user input device 60 to select inputs for the device 10.
The device 10 may also include one or more network devices 64 for receiving and transmitting information over one or more broadband communications channels. As such, the network device 64 may include one or more network interface cards (NIC) or a network controller. In some embodiments, the network device 64 may include a local area network (LAN) interface for connecting to a wired Ethernet-based network and/or a wireless LAN, such as an IEEE 802.11x wireless network. In certain embodiments, the NFC interface 44 may be used to receive information, such as the service set identifier (SSID), channel, and encryption key, used to connect to the LAN.
The network device 64 also may include a wide area network (WAN) interface that permits connection to the Internet via a cellular communications network, such as an Enhanced Data rates for GMS Evolution (EDGE) network, or a Universal Mobile Telecommunications System (UMTS) network. Further, the network device 64 may include a personal area network (PAN) interface for connecting to a PAN such as a Bluetooth® network, an IEE 802.15.4 (ZigBee) network, or an ultra wideband (UWB) network. The network device 64 may interact with an antenna to transmit and receive radio frequency signals of the network. The network device 64 may include any number and combination of network interfaces. Among other things, the network device 64 may allow the device 10 to send and receive a broad range of shopping related information, as will be described below.
The device 10 may also include video processing circuitry 66 coupled to the data bus 54. The video processing circuitry 66 may be configured to process video data, such as images received from camera 48, and send the processed video data to other parts of the system. For example, the video processing circuitry 66 may be configured to compress video data obtained from camera 48 into a JPEG or MPEG format and send the compressed video data to RAM 56 or storage memory 58. For another example, the video processing circuitry 66 may be configured to send uncompressed or decompressed video data to the RAM 56 or the display 24. For yet another example, the video processing circuitry may be used to extract textual or encoded information from an image, such as numbers, letters, and/or bar code information.
The device 10 may also include a positioning device 70 used to determine a user's geographical position. The positioning device 70 may provide information such as longitude and latitude of the device as well as the devices position relative to landmarks including streets and buildings. As such, the positioning device may indicate positioning on a map, such as a street map or building map, for example. The positioning device 70 may utilize the global positioning system (GPS) implemented using satellite communications or a regional or site-wide positioning system that uses cell tower positioning technology or Wi-Fi technology, for example.
Accelerometers 74 may also be provided with the device 10. The accelerometers 74 may include multi-axis accelerometers such as three-axis accelerometers, for example, so that the movement of the device 10 in any direction can be determined. As will be discussed in detail below, the detection of the movement of the device may be used for authenticating a user in accordance with some embodiments.
The portability of the device 10 makes it particularly well suited to performing transactions such as automatic teller machine (ATM) transactions, and purchase transactions. In conducting such transactions, the device 10 may be used to transfer sensitive data including credit/debit card information, bank account information, personal identification numbers (PINs), passwords and other personal information. Additionally, the device 10 may be useful for transferring other sensitive information and documents. As such, providing for the security of the transmissions channel is of paramount importance.
Standard security features of the device 10 may include one or more cryptographic protocols, such as a secure sockets layer (SSL) protocol or a transport layer security (TLS) protocol, for establishing secure communications between the device 10 and another device. The security features may be particularly useful when transmitting payment information, such as credit card information or bank account information. The security features also may include a secure storage area that may have restricted access. For example, a PIN or other verification data may need to be provided to access the secure storage area. In certain embodiments, preferences may be stored within the secure storage area. Further, security information, such as an authentication key, for communicating with a retail server may be stored within the secure storage area. In certain embodiments, the secure storage area may include a microcontroller embedded within the electronic device 10.
Embodiments disclosed herein may provide additional robustness to the security features listed above. In particular, the embodiments disclosed herein are directed toward increasing the security provided by standard communication modes by providing duplicative and/or redundant security using one or more additional devices, as will be discussed in detail below. To facilitate an understanding of the operation of the device 10 in this context and the systems that are used to provide security, the following discussion refers to figures depicting a GUI that may be displayed on the screen 24.
As discussed above, the various icons of the GUI displayed on screen 24 in
The conduct transaction screen 110 may indicate that the device 10 is attempting to initiate communications for transactions. During this time, the device 10 may be attempting to communicate via wireless communications with another transaction terminal, another portable electronic device or wireless enabled device. For example, the device may be attempting to initiate near field communications, Wi-Fi communications, or broadband communications with a terminal.
The device 10 may be configured to communicate with the transaction terminal 120 using a short range wireless communication protocol, when positioned over the box 124. As such, the terminal 120 may include a wireless communication device 126. The wireless communication device 126 may be approximately located near the box 124 and/or the screen 122. As such, the transaction terminal 120 may be enabled to communicate via a wireless communication means with the device 10. In some embodiments, the wireless communication device 126 may be a near field communication (NFC) device and the device 10 may be configured to initiate NFC communications with the terminal 120.
To conduct a transaction between the device 10 and the terminal 120, a user may use buttons (not shown) located on the transaction terminal 120. In some embodiments, the screen 122 may be a touch screen such that the user may communicate with the transaction terminal using the screen 122. In other embodiments the device 10 may be used exclusively as a user input device for transactions between a terminal 120 and the device 10.
As shown in
Referring now to
Specifically, in some embodiments, the transaction terminal 132 may be configured to display a code on the screen 134 within the box 132. For example, as illustrated in
In some embodiments, information decoded from the code 150 may be fed back to the terminal only once to authenticate. In some other embodiments, the decoded information be continuously fed back tot eh terminal to maintain authentication. For example, the code 150 may be a continuously changing code or may be dynamic code. Specifically, the terminal 130 may be configured to generate and provide new codes periodically or at randomly spaced intervals for continuous authentication of the device 10. The device 10 may be configured to continuously read a code 150 and feed it back to the wireless device 136 during the transaction to authenticate that the device 10 is actually located at the transaction terminal 130. The box 132, as discussed above, prevents eaves droppers, or others who are trying to obtain sensitive data from reading the screen inside the box 132. Thus, only the device 10 can read the code 150 and provide the decoded information back to the transaction terminal 130 to authenticate the device 10 as conducting a transaction with the transaction terminal 130.
In some embodiments, the code 150 may include an encryption code or key. For example, the code 150 may include a public key of a public/private encryption key scheme. The public key may be used to encrypt communications from the device 10 to the transaction terminal 130. In yet other embodiments, the code 150 may include both an encryption key and an encoded information portion. Furthermore, the encoded information portion may be dynamic. Thus, the device 10 may be configured to decode the code 150 and use the encryption key of the code 150 to encode information, including the dynamic decoded information, to be sent to the terminal 130.
Alternative authentication schemes may also be employed. Specifically, for example, as illustrated in
As illustrated in
In other embodiments, the ATM 160 may authenticate the device 10 based on location determined by communications with a cell tower or cellular network 168 as shown in
In yet other embodiments, the location of the device 10 may be determined based on the communications with a wireless hot spot, such as a Bluetooth or Wi-Fi hot spot. For example, a hot spot 169 may be located near the ATM 160, as illustrated in
After the device 10 has been authenticated, the device 10 may list a number of accounts stored on the device 10 that may be used for the transaction. Specifically, as illustrated in
Referring again to
In some embodiments, the order of the numbering may be altered for the number pad 196. Specifically, as illustrated in
In addition to changing the order after each number is entered or changing the order of the numbering in general, the tones associated with the numbers may be altered so that the number being pressed cannot be discerned based upon the tones associated with pressing the numbers. Additionally, in some embodiments, the tones may be associated with a particular location on the screen, such that, when the numbers are scrambled, a tone associated with a location is not associated with a number for which is traditionally associated but may give the impression that a particular digit conventionally associated with the location is being pressed.
Referring back to
Upon selection of the make a withdrawal option, a user may be brought to a withdrawal screen 220 which may display various amounts of cash for withdrawal. Additionally, a user may select an “other” button 222 and enter an amount other than those listed. If a user selects a cancel button 224 the user is returned to the welcome screen 206 to make a different selection as to the type of transaction to be conducted. Alternatively, if the user selects an amount and presses the continue button 226 the user may be brought to a transaction complete screen 228 that may indicate that the transaction has been completed and an e-receipt is being mailed to an email account associated with the account. Additionally, the terminal 130 may provide the user with the request amount of cash. The user may then select to conduct a new transaction by pressing the new transaction button 230 or, alternatively, finish and close out the transaction by pressing the done button 232.
Referring now to
If the user selects the yes button 244 the user may be brought to an authentication screen 246 wherein the device 10 is authenticated in accordance with at least one of the above described authentication techniques. If the device 10 is authenticated, a transaction completed screen 247 may be displayed. Alternatively, however, if the authentication fails, the device 10 may display a transaction incomplete screen 248 indicating that the authentication failed.
Specifically, for example, once the user selects the done button 254 the device 10 may compare the provided signature with a signature that has been previously stored for authentication purposes. If the signature coincides with the stored signature, the user may be brought to a receipt screen 256 which indicates that the transaction has been completed and a receipt has been sent to an email account associated with the account used in the transaction. Alternatively, if the signature does not coincide with the stored signature, the user may be brought to a denied screen 258 which indicates that the authentication failed. The user may then select to try again using the try again button 260 or, alternatively, cancel the transaction using the cancel button 262.
Upon selection of the try again button 260, the user may be returned to the authentication screen for re-entry of the signature. If the user inadvertently messes up the signature a clear button 264 is provided which clears the entered signature and allows the user to start over. After entry of the signature and selection of the done button 254, the device may again perform an analysis to authenticate the user. The device may be configured to only allow a several attempts to authenticate before the device locks and denies all attempts to complete the transaction for a set period of time.
Turning to
A user may set an authentication that satisfies the authentication request of the authentication screen 270 by selecting the settings button 102 of the transactions home page 100. As illustrated in
With respect to authentication, the user may select the authentication button 284 upon which the user is brought to an authentication screen 290. The authentication screen 290 may allow the user to set authentication preferences to satisfy the authentication screen 270 of
Upon selection of the set screen signature button 292, a user may be prompted to enter a signature by the signature screen 310. The user may enter a signature directly on the screen on the line provided. If the user messes up, a user may clear the screen using the clear button 312. Alternatively, the user may save the signature by selecting the done button 314. As discussed above, this signature may be used for comparison when authenticating a transaction. Specifically, a statistical analysis may be performed by the device 10 to determine whether or not sufficient features of the stored signature are in common with the signature provided for authentication a transaction.
Alternatively, a user may select a set gestural signature button 294 to be brought to a gestural signature screen 320, as shown in
Referring to
Alternatively, in some embodiments, the device 10 may be configured to authenticate a user based on sensing the amount of quiver provided by a user when the user is providing a signature. As illustrated in
In yet another alternative embodiment, the device 10 may be configured to authenticate a user based solely on the amount of shaking detected when a user is providing a signature. Thus, the device 10 may authenticate a user independently from any baseline provided by a user while setting a gestural signature. Underlying this form of authentication is an assumption that one who has previously set a signature motion or who is familiar with the motion for the signature would provide a smooth motion relative to a motion provided by an individual who has not provided the signature before. That is, it is assumed that an individual that has previously signed a name may be more confident and have smoother muscle motion rather than one has not signed a name or performed a particular gestural signature.
After the user has set a gestural signature the device 10 may display a screen 328 indicating the signature has been saved. The user may then select to re-do the signature by pressing re-do button 330 or, alternatively, select the done button 332. Upon selection of the done button 332, the user has set the gestural signature and the gestural signature is stored for future authentication.
Referring now the
Once the user has provided a voice sample, a screen 343 may indicate that the voice signature has been saved for future authentication purposes. The user may choose to re-do the voice signature by pressing the re-do button 346 or may complete the setting of the voice signature by selecting the done button 348. Other biometric signatures, such as fingerprints, retinal scans, etc., may be set in a similar manner except they may require that the device 10 include a device for detecting a finger print or a device for performing a retinal scan.
Returning again to
As discussed above, the various functions of the device 10 may be used to authenticate a user and/or the device 10 for transactions. In this regard, it will be understood that the functions of the device 10 and the various authentication techniques may also be used for advanced fraud detection by financial institutions. Specifically, for example, the techniques may be used to for advanced fraud pattern recognition on the server-side of the financial institutions. Currently, financial institutions, such as credit card companies, for example, may look for fraud based on transaction patterns by looking for incongruities in transaction histories for users. For example, if a particular account has been used in a single location (for example, Houston, Tex.) for the past 10 months and in one week was used for purchases in that location on Monday and Wednesday, but was also used for a transaction in a different location (such as New York City, for example) on Tuesday, the purchasing pattern may be used to flag the transaction on Tuesday for potential fraud. Similarly, if a user makes an online transaction with a credit card, but with a phone area code that does not match a billing zipcode region, and provides yet another shipping address, the transaction may be flagged for potential fraud. In these examples, the device 10 may be used to provide some of the information that may be useful to detect the fraudulent transactions.
In some embodiments, for example, a financial institution may log (i.e., store at a database, such as the database 164 in
Moreover, in some embodiments, the authentication patterns may be used for fraud detection. For example, if a particular user historically only used a particular authentication method but for one or several transactions used a different authentication technique, the one or several transactions may be flagged as potentially fraudulent transactions. In some embodiments, the authentication patterns may be used in combination with other patterns for fraud detection. For example, if a user typically used signature to authenticate, but one day a transaction occurs in a location where the user has never conducted a transaction previously and the transaction was completed using a PIN which has never previously been used to authenticate a transaction, the financial institution may use such a pattern incongruity to flag the transaction as potentially being fraudulent.
In addition to using the features of the device 10 in the above mentioned techniques, the security features discussed herein may be used for transactions and/or communications between the device 10 and other similarly configured devices. For example, a user of the device 10 may want to share a document with a colleague.
The colleague 456 may then capture the code 458 using a camera, a scanner or other device, as discussed above. The user 452 then waits for short range wireless communications using the encryption key 460. A short range wireless communication channel may then be opened by the colleague sending a request for the file encrypted by the encryption key via a short range wireless communication protocol 462, such as NFC, for example. Because of bandwidth and range limitations of the NFC protocol, the file being transferred or shared should be less than 1 MB and the two devices should be within two to four centimeters from each other. If the file is less than 1 MB the file is sent 464 from the user 452 using the short range wireless communication protocol and the colleague 456 may accept the file 466
As illustrated, however, if the file is larger than 1 MB an ad-hoc Wi-Fi connection 468 may be created to transfer the file. Specifically, the request for the file may be transmitted via NFC communications, but the file may be transferred via Wi-Fi. To set up the Wi-Fi connection, the colleague 456 may join the user's network 470. Once the colleague 456 and the user 452 are on the same network, the user 452 may send the file to the colleague 472.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.