Systems and methods for securing a tissue site to a sensor

Information

  • Patent Grant
  • 12048534
  • Patent Number
    12,048,534
  • Date Filed
    Thursday, March 4, 2021
    3 years ago
  • Date Issued
    Tuesday, July 30, 2024
    4 months ago
Abstract
Systems, methods, and apparatuses for enabling non-invasive, physiological sensors to obtain physiological measurements from a region of tissue of a patient are disclosed. Anchoring components can attach to patient tissue sites and sensor heads such that the tissue sites do not move during sensing. Interlocking mechanisms maintain tissue sites within a limited range of horizontal movement and vertical distance from the sensor head.
Description
FIELD

The present disclosure relates to physiological monitoring. More specifically, this disclosure relates to systems, methods, and apparatuses for reducing error in repeated non-invasive physiological measurements.


BACKGROUND

Non-invasive physiological monitoring may require placement of a non-invasive sensor on a tissue site. Changes in positioning of the sensor of the tissue site can introduce error to measurements due to variations in tissue composition.


SUMMARY

In some examples, a system for aligning a tissue site of a patient to a sensor is disclosed. The system can include: a first anchoring component configured to couple to the tissue site of a patient, wherein the first anchoring component can include: a first surface configured to couple to the tissue site; a first opening configured to allow at least one non-invasive sensor to perform a physiological measurement of the tissue site; and at least one securing component to secure the first anchoring component to a second anchoring component associated with the at least one non-invasive sensor such that the tissue site is maintained within a range of vertical distances from the non-invasive sensor and is secured to disallow horizontal movement within a range of horizontal distances.


The first surface can couple to the tissue site using an adhesive.


The adhesive can be configured to couple the first surface to the tissue site for a period comprising at least one day.


The first surface can have a curvature similar to that of the tissue site.


The at least one securing component can include one or more latches, slides, or snaps.


The at least one securing component can include at least one wall of the first opening having a first slope, and the second anchoring component can include at least one wall having the first slope.


The at least one securing component can be configured to mate with a mating component associated with the second anchoring component.


The second anchoring component can be configured to mate with a third anchoring component.


The third anchoring component can include a portion of the non-invasive sensor.


The first opening can include a keyhole shape.


In some examples, a method for aligning a tissue site to a sensor is disclosed. The method can include: attaching a first anchoring component to the tissue site; connecting the first anchoring component to a second anchoring component attached to a sensor head, such that the sensor head is aligned with an opening in the first anchoring component; and securing the first and second anchoring components such that the tissue site maintains generally a vertical distance away from the sensor head.


Connecting the first anchoring component to the second anchoring component can include moving at least one catch into at least one slide.


Connecting the first anchoring component to the second anchoring component can include moving the second anchoring component into a keyhole fitting.


Securing the first anchoring component to the second component can be completed by a user moving the tissue site in relation to the second anchoring component.


The first and second anchoring components can be secured such that the tissue site generally restricts horizontal movement of the tissue site.


For purposes of summarizing the disclosure, certain aspects, advantages and novel features are discussed herein. It is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the invention and an artisan would recognize from the disclosure herein a myriad of combinations of such aspects, advantages or features.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings and the associated descriptions are provided to illustrate embodiments of the present disclosure and do not limit the scope of the claims.



FIG. 1 shows a top view of an illustrative example of a tissue anchor, according to certain embodiments of the present disclosure.



FIG. 2 illustrates a tissue anchor attached to an interlocking mechanism and sensor receiver, according to certain embodiments of the present disclosure.



FIGS. 3A and 3B show a cross-section and top-down view respectively of an example interlocking mechanism in a locked position, according to some embodiments of the present disclosure.



FIGS. 3C and 3D show a cross-section and top-down view respectively of the interlocking mechanism of FIGS. 3A and 3B in an unlocked position.



FIG. 4A shows a cross-section view of another interlocking mechanism.



FIG. 4B shows a top-down view of the interlocking mechanism of FIG. 4A.



FIG. 5 shows another illustrative example of a tissue anchor, according to certain embodiments of the present disclosure.



FIG. 6 illustrates an exploded view of a tissue anchor and sensor assembly, according to certain embodiments of the present disclosure.



FIG. 7 shows a cross-section of an illustrative implementation of a tissue anchor and sensor assembly, according to certain embodiments of the present disclosure.



FIG. 8 shows a flow diagram illustrative of an example routine for using a tissue anchor, according to certain embodiments of the present disclosure.





DETAILED DESCRIPTION

Overview


Examples disclosed herein relate to systems and methods for anchoring a tissue site for a physiological measurement. These systems can be used, for example, on transmission-based spectroscopy technologies or reflectance-based spectroscopy technologies.


Many devices place an alligator-type or clothespin-type clip to align a finger with a sensor for measuring physiological parameters. For example, current pulse oximetry and co-oximetry noninvasive sensors can require a user to place his or her finger in a clothespin-type clip. This action can require both hands of the patient or a clinician to ensure accurate placement. Additionally, placement accuracy of the emitter and detector windows relative to the patient's measurement site can be difficult to achieve with an alligator clip type sensor. Placement of the windows is important in obtaining a value when measuring.


The anchoring system described herein may improve the placement of transmission and reflectance based spectroscopic sensors at a patient tissue site. For example, in the case of a finger, the anchoring system may allow for consistent and ergonomic finger placement with relation to the sensor and more consistent sensor measurements due to ease of use and increased precision of tissue site placement.


In some examples, an anchoring system can include one or more anchoring components. At least one anchoring component can be configured to both couple to the tissue site of a patient and a component associated with a physiological sensor. The anchoring system may be configured to hold the tissue site in place using the anchoring component(s) while a physiological measurement is performed. Additionally or alternatively, the anchoring system can be configured to couple to a sensor head such that the same tissue site can be measured after removal and replacement of a tissue site in relation to the sensor.


In some examples, an anchoring component can include a tissue anchor, such as described with reference to FIG. 1. The tissue anchor can be configured to couple to one or more tissue sites, such as one or more types of fingers, such as a thumb, index finger, or ring finger. Additionally or alternatively, the tissue anchor can be configured to anchor a tissue site with respect to a sensor using one or more anchoring mechanisms such that the tissue site remains steady during measurement by the sensor and tissue placement is repeatable. Examples of anchoring mechanisms are discussed, for example, with reference to FIGS. 2 and 3A-B.


Example Anchoring System



FIG. 1 illustrates an embodiment of a tissue anchor 100, according to the present disclosure. The tissue anchor 100 can include at least one anchoring surface 102, one or more interlock components 104, and one or more openings 106. The illustration in FIG. 1 depicts just one example of the tissue anchor 100 and should be understood to not limit the shape of the anchoring surface 102, the type of interlock component 104, and the shape of the opening 106 for the sensor head.


A sensor head, such as described herein, can include components or aspects of a noninvasive sensor, invasive sensor, or minimally invasive sensor configured to measure one or more physiological parameters from a tissue site of a patient. A physiological parameter can include, but is not limited to, a heart rate, respiration rate, analyte concentration, temperature, the like or a combination thereof. In some examples, a noninvasive sensor can include an optical sensor, such as a Raman sensor, OCT sensor, or other optical sensor. In some examples, an invasive or minimally invasive sensor can include a blood analyte monitor, such as a continuous glucose monitor or other disease management system, such as described with reference to U.S. application Ser. No. 17/161,528, filed Jan. 28, 2021, titled “REDUNDANT STAGGERED GLUCOSE SENSOR DISEASE MANAGEMENT SYSTEM,” the contents of which is hereby incorporated by reference in its entirety. It is of note that while in some examples reference may be made to a sensor, a sensor head, or other sensor components, systems and methods described herein can additionally or alternatively refer to other components or devices configured for close placement to a tissue site, such as a component configured to deliver medication to a user, such as an insulin pump, and the configurations disclosed herein may be used for attaching a medication delivery system to a user. Additionally or alternatively, systems and methods described herein may be applicable to any system that requires secure attachment of a device to a tissue site of a patient for a short or prolonged period of time.


An anchoring surface 102 may be configured to fit to a tissue site of a patient. A tissue site of a patient can include, but is not limited to, a nail bed, fingernail, toenail, abdomen, arm, or other tissue site suitable for measuring physiological parameters using a noninvasive, invasive, or minimally invasive physiological sensor. In some examples, the anchoring surface 102 may have a contour similar to a tissue site of a patient. For example, a tissue site may be a fingernail and the anchoring surface 102 may have a contour such that the anchoring surface 102 sits approximately flush against the fingernail. In some examples, the contour of the anchoring surface 102 can be fitted to a patient and/or a tissue site. For example, the anchoring surface 102 can be contoured to a particular fingernail of a patient, such as a patient's ring finger. In another example, the anchoring surface 102 can be contoured to fit more than one tissue site. For example, the anchoring surface 102 can be contoured generally to fit against more than one fingernail type, such as a thumb and ring finger or other combination of tissue sites. In some examples, the contour of the anchoring surface 102 may be molded to a particular tissue site. For example, the anchoring surface 102 may include one or more moldable materials. In another example, the anchoring surface 102 may be generically contoured to fit a generic tissue site type, such as a typical human thumb nail.


In some examples, one or more coupling materials can be applied to the anchoring surface 102 to improve the fit of the anchoring surface 102 to the tissue site. For example, the coupling material can include a gel, optical coupling material, or other moldable or semi-moldable material. In some examples, a coupling material may be configured to permanently or semi-permanently attach the anchoring surface 102 to the tissue site. Such a coupling material can include a glue, tape, or other attachment material.


The size of the anchoring surface 102 may be large enough to provide a coupling site to the tissue of the patient. For example, where the tissue site is a fingernail, the size anchoring surface 102 can be a sizable portion of the fingernail, such as 10%, 20%, 50%, or 80% of the nail bed or more or less of the nail bed. Additionally or alternatively, the size of the anchoring surface 102 may be large enough to couple with one or more sensor heads, such as described with reference to U.S. patent application Ser. No. 17/004,663, filed Aug. 27, 2020, titled “NON-INVASIVE MEDICAL MONITORING DEVICE FOR BLOOD ANALYTE MEASUREMENTS,” the contents of which is hereby incorporated by reference in its entirety. For example, the anchoring surface 102 can be at least the size of a sensor head configured to couple with the anchoring component.


An interlock component 104 can include a mechanism to aid in coupling a sensor to the tissue anchor 100. The interlock component 104 can have any number of interlock styles, including, but not limited to, keyhole interlocks, hinged interlocks, bolt interlocks, etc. As described with reference to FIGS. 2 and 3A-B, the interlock component 104 can couple with an interlocking mechanism 200 that attaches to a sensor, such that the tissue anchor 100 may be coupled with a sensor head. In some examples, the tissue anchor 100 can include more than one interlock component 104 for more than one attachment site to a sensor head. In another example, the tissue anchor 100 can include multiple interlock components 104 for coupling with more than one sensor head, such as more than one sensor or sensor head type.


The opening 106 can be an appropriate shape and size to couple with a sensor head such that the sensor head can sense the tissue site directly. For example, an opening 106 may allow for a clear optical path to the tissue site to perform a physiological measurement with one or more sensors. The opening 106 can be positioned at any location in the tissue anchor 100 so as to provide access to the tissue site. In some examples, there may be more than one opening 106 to provide multiple points of access to the tissue site. The size of the opening 106 can be of a suitable size for a required measurement of the tissue site. For example, a sensor may require a one square cm{circumflex over ( )}2 area to perform a measurement. The opening 106 may be at least the one square cm{circumflex over ( )}2 to allow for a proper measurement using the appropriate sensor. In another example, the opening 106 may be large enough for more than one sensor to perform a measurement. For example, a sensor head can include multiple sensor types. Each sensor type may require the same or a different area of the tissue site to perform measurements. The opening 106 may be of sufficient size to accommodate one or all of the coupled sensors. In another examples, the tissue anchor 100 may be configured to couple to more than one sensor head type requiring different area amounts of tissue site for measurement. The opening 106 may be large enough to accommodate one or more of the coupled sensor head types.


A shape of the opening 106 can be any number of shapes, such as a circle, square, triangle, or other geometry. The shape of the opening 106 can include a shape associated with the interlock mechanism 104. For example, the shape of the opening may mirror the shape of the interlock mechanism 104. In another example, the shape of the opening 106 may mirror the shape of one or more sensor heads configured to couple to the tissue anchor 100. For example, a sensor head may be circular and the opening 106 may also be circular.



FIG. 2 depicts an exemplary embodiment of a tissue anchor 208 coupled to an interlocking mechanism 200. An interlocking mechanism 200 can include one or more components, such as a tissue anchor attachment 206 and a sensor head attachment 204.


The tissue anchor attachment 206 can couple with the tissue anchor 208 via an interlocking mechanism, such as interlock component 104 illustrated in FIG. 1. For example, the tissue anchor attachment 206 can be if a size and shape to mate with the interlock component 104 of a tissue anchor 208. Any number of mating mechanisms may be used to mate the tissue anchor attachment 206 with the interlock component 104, such as described below with reference to FIGS. 3A-3D.


In some examples, the tissue anchor component 206 may be coupled to or be a part of a sensor head (not shown). In other examples, the interlocking mechanism 200 can include a sensor head attachment 204. The senor head attachment 204 can be part of or couple with a sensor head (not shown). For example, the sensor head attachment 204 can be permanently or removably attached to a sensor head so as to allow the sensor head to couple to the tissue anchor attachment 206 or tissue anchor 208. The sensor head attachment 204 can be configured to mate with the tissue anchor 208 and/or tissue anchor attachment 206. For example, the sensor head attachment 204 can be configured to removably lock onto the tissue anchor attachment 206 or otherwise secure the sensor head to the tissue anchor attachment 206 or tissue anchor 208.


In some examples, the sensor head attachment 200 may be of a size and shape to receive sensor head and/or lock a sensor head in place. For example, the interlocking mechanism 200 may have a sensor window 202 to receive a sensor head. The sensor window 202 can align with the tissue anchor opening 106 (such as shown, for example in FIG. 1) such that the sensor head can access the tissue site. Additionally or alternatively, the sensor window 202 and/or sensor head attachment 204 can be configured to fit around one or more sensor heads (not shown). In some examples, the sensor head attachment 204 and/or sensor window 202 may be interchangeable based on which sensor a user desires to couple to the tissue site or measure the tissue site. For example, the sensor head attachment 204 may be of a different size or shape according to the sensor head or sensor head type in use.


The tissue anchor attachment 206 and sensor head attachment 204 may contain markings 210 or other indicators to signify whether the components are in a locked or unlocked position. For example, the tissue anchor attachment 206 or other component of the interlocking mechanism 200 may be configured to lock onto another component. The locking mechanism may have an open and a close configuration. In an open configuration, a first marking 210 of a first mating component, such as, for example, a tissue anchor component 206, may align with another marking 212 of a second mating component, such as, for example a sensor head attachment 204. In a closed configuration, a second marking 210 of a first mating component, such as, for example, a tissue anchor component 206, may align with another marking 212 of a second mating component, such as, for example a sensor head attachment 204. However, other markings or indicators of alignment, attachment, or locking state are possible.


Though the illustration depicts an interlocking mechanism with more than one component, the interlocking mechanism can be one component or comprised of multiple components. It should also be understood that, in the case of various components, each component can be separated completely or merely have their positions adjusted relative to each other. The interlocking mechanism 200 may be operated automatically, semi-automatically, manually, or mechanically.


Example Coupling Components



FIGS. 3A-3D illustrate example views of example interlocking components that may be part of an anchoring system. FIGS. 3A and 3B illustrate interlocking components 300 in an open configuration and FIGS. 3C and 3D illustrate interlocking components 300 in a locked configuration.


An interlocking mechanism 300 can include one or more interlocking components 303. The interlocking components 303 can include mating components, such as at least one catch 302 and at least one slide 301 or other components for maintaining the position and orientation of two or more components of the anchoring system. In some embodiments, the number of catches 302 may match the number of slides 301. In other examples, there may be a different number of catches 302 than slides 301. For example, an interlocking component may include multiple slides 301 and a single catch 302. In another example, an interlocking component may include multiple catches 302 and a single slide 301. Additionally or alternatively, there may be more than one type of mating component for maintaining a position and orientation of two or more portions of the anchoring system. For example, the interlocking components 303 can include some combination of catches and slides, threaded components, clips, latches, teethed components, grooved components, locking rings, pins, tightening components, or other securing components. Additionally or alternatively, a coupling may be accomplished by matching a first geometric shape of a first component with a second geometric shape of a second component, as discussed with reference to FIGS. 4A and 4B, below.


In some examples, slide 301 can be an elongated piece that contacts the catch 302. The slide 301 and catch 302 can remain in contact as the components transition between a locked and unlocked position. The slide 301 may contain a groove on one end that is shaped to accept the catch 302. Though the illustration shows a round catch 302, it is to be understood that the catch 302 can be any shape.


In some examples, the mating components may be part of different interlocking components. For example, a tissue anchor 304 can include one or more slides 301 and/or one or more catches 302. Additionally or alternatively, a sensor attachment 306 can include one or more mating slides 301 and/or catches 302. However, other mating components are possible. For example, a first interlocking component, such as a sensor attachment 306, may have one or more female and/or male mating components. In another example, a second interlocking component, such as a tissue anchor 304 may have one or more female and/or mating components that may mate with the mating components of the first interlocking component. For example, where the mating components include a catch 302 and a slide 301, a catch 302 may fit into a slide 301.



FIGS. 3A and 3B show the interlocking mechanism 300 in a locked position. For example, where the interlocking mechanism 300 includes slide 301 and catch 302 components, the catch 302 may be in the groove on the slide 301. In the locked position, the interlocking mechanism 200 may attach to the tissue anchor 100 (such as illustrated in FIG. 1) such that the interlocking mechanism 200 and tissue anchor 100 cannot be easily separated. Further, in the locked position, the tissue anchor 100 may not move independently from the interlocking mechanism 200.



FIGS. 3C and 3D show the interlocking mechanism 300 in an unlocked position. When the interlocking mechanism 200 is in the unlocked position, the catch 302 may not be in the groove on the slide 301. In the unlocked position, the interlocking mechanism 200 can be separated from the tissue anchor 100 and each piece can move independently.


The interlocking mechanism 200 can transition between a lock and unlocked position either manually or mechanically. Although FIGS. 3A-3D depict an interlocking mechanism that can be locked and unlocked through a twisting motion, it is to be understood that different types of interlocking mechanisms can be locked or unlocked through any variety of methods.


Example Keyhole Coupling



FIGS. 4A and 4B illustrate an example configuration of an anchoring system 400 that may include a keyhole locking mechanism. For example, a tissue anchor 404 may mate to an interlock component 402 associated with a sensor head. The tissue anchor 404 may be attached to a tissue site 422 via one or more coupling materials 420 disposed on the tissue site 422 or tissue anchor 404. The tissue site 502 may be, for example, a portion of a fingernail.


The tissue anchor 404 can include a mating structure 408 and one or more open areas 406, 410. An open area 406 can be of a suitable size and shape through which a sensor, such as a Raman sensor, can measure physiological parameters. For example, the open area 406 can be large enough to include the spot size of an excitation source that may be part of the Raman sensor. Additionally or alternatively, the open area 406 can be large enough to allow for the excitation source of the sensor to scan the tissue site or to account for movement of the excitation source during use or manufacture. In some examples, the open area 406 can be part of the mating structure 408 such that the one or more portions of the open area 406 can be capable of accepting one or more portions of the interlocking component 402. In some examples, the open area may have a diameter d substantially similar to the diameter of an interlock component 402 such that the interlock component 402 fits snugly in the open area 406.


Additionally or alternatively, an open area 410 may connect with the open area 406. The open area 410 may be of a different size and shape than the open area 406 such that an interlock component 402 may be received without significantly restraining the interlock component 402. Advantageously, the open area 410 may thus allow the tissue anchor 404 to receive the interlock attachment 402 more easily so that a user can move the interlock attachment 402 into place in the open area 406, such as illustrated in FIG. 4B.


A mating structure 408 of the tissue anchor 404 can be a structure capable of mating with an interlock component 402 that may be associated with a sensor head. For example, the mating structure 408 may have a geometric shape, such as a truncated cone. An associated interlock component 402 may also have a truncated cone shape. The shapes and sizes of the interlock component 402 and mating structure 408 may mate such that the position or orientation of the interlock component 402 may be substantially secured in a vertical and/or horizontal direction with respect to the tissue site 422.


The tissue anchor 404 can be coupled to the tissue site of a patient or user by any suitable means. For example, the tissue anchor 404 can be attached to the tissue site of a patient using a coupling material 420, such as a permanent or temporary adhesive, by permanent or temporary implantation, via a wearable device, or other suitable means of temporarily, semi-permanently, or permanently securing a component to a tissue site. In some examples, the tissue anchor 404 may be secured to a tissue site of a patient via a semi-permanent adhesive capable of securing the attachment component for a day or more. For example, the tissue anchor 404 may be secured to a tissue site with a medical adhesive, glue, tape, or other means of adhering components to a tissue site.


Example Sensor Head Attachment



FIG. 5 illustrates an example placement of a tissue anchor 404 that may mate with one or more components of a sensor head on a tissue site. In the illustrated example, the tissue site can include a portion of a fingernail 502. The tissue anchor 404 may be secured onto the fingernail 502 using, for example, a coupling material 420, such as described above. As described above, the tissue anchor 404 can include a surface 504 having a contour substantially similar to the tissue site 502 so as to allow for the tissue anchor 404 to comfortably sit on the tissue site 502.


The tissue anchor 404 can include an attachment structure 508. The attachment structure 508 can include a form and structure capable of mating with an interlock component associated with a sensor head. For example, the attachment structure 508 can include a central raised portion capable of fitting into a mating cavity of similar size and shape to the central raised portion. Additionally or alternatively, the attachment structure 508 can include one or more walls capable of securing the tissue anchor 500 within a mating cavity that may be part of an interlocking component (such as the interlocking component 602 of FIG. 6). The tissue anchor 500 can receive a portion of an interlocking component such that the interlocking component does not significantly move in a horizontal or vertical direction.



FIG. 6 illustrates an example interlock component 602 that may mate with a tissue anchor 404 using a securing mechanism, such as the attachment structure 508 described with reference to FIG. 5.


An interlock component 602 can include a cavity 608 of a size and shape capable of accepting the tissue anchor 404 in whole or in part. Advantageously, the cavity 608 may serve as a primary or additional securing mechanism for the securing a sensor head 604 to a tissue anchor 404. However, other securing mechanisms are also possible and a sensor head 604 and tissue anchor 404 may be secured together with the aid of the interlock component 602 using any number of securing mechanisms, such as those described above.


The interlock component 602 may have one or more surfaces 610 of a similar curvature to the curvature of a surface of the tissue anchor 600. The curvature of the surfaces of the interlock component 602 and tissue anchor 404 can be of similar curvature to that of the area of the measured tissue site. For example, the tissue site may be a finger nail and the curvature of can follow the approximate curvature of the finger nail. In some examples, the curvature can be specific to the curvature of the tissue site of the user. For example, surfaces of the interlock component 602 and tissue anchor 404 can be molded, formed, or otherwise shaped according to the shape of the tissue site. In other examples, the curvature can be generic to the approximate curvature of the tissue site of the user. For example, surfaces of the interlock component 602 and tissue anchor 404 can be molded, formed, or otherwise shaped according to the approximate curvature of an adult human finger nail where the tissue site is a finger nail.


An interlock component 602 may be configured to couple to or be a part of a sensor head 604. Additionally or alternatively, the interlock component 602 may be a part of a system or device for receiving a tissue site at a sensor device. The interlock component 602 may be interchangeable such that more than one tissue anchor 404 may mate to a sensor head 604 or more than one sensor head 604 may mate to a tissue anchor 404. For example, a sensor head, such as a Raman sensor head, may have a unique footprint or geometry, differing from a different sensor head, such as an absorbance sensor head. Additionally, a tissue site may have a unique geometry. For example, a thumbnail may have a different curvature and area than a ring fingernail. An interlock component 602 may be configured to attach to a particular sensor head, such as a Raman sensor and a particular tissue site, such as an index finger. If a user desires to place the Raman sensor on their ring finger instead of their index finger, instead of reconfiguring the Raman sensor head, an interlock component 602 may be replaced that may be configured for placement on the ring finger. In another example, a user may desire to utilize a different sensor at the same tissue site, such as a Raman sensor instead of an absorbance sensor. The user may thus replace the interlock component 602 such that the Raman sensor may mate with the tissue anchor as opposed to the absorbance sensor.



FIG. 7 illustrates a cross-section example of an assembled tissue scanning setup for an example tissue anchor 404, interlocking component 602, and sensor head 604. In the illustrated example, a finger 702 having an attached tissue anchor 404 is inserted into a device housing the interlocking component 602 and/or the sensor head 604. An open area 704 of the tissue anchor 404 can allow for an optical path towards the tissue site 704 such that a sensor can probe the tissue site 702.


Example Method of Use



FIG. 8 is a flow diagram of an exemplary method 800 of using the tissue anchor disclosed herein. The flow diagram begins at block 802 where the tissue anchor is attached to a tissue site. As disclosed above, the tissue anchor may be attached by any variety of means and the tissue site may be a finger or fingernail. Next, the interlocking mechanism is coupled with the sensor head and tissue anchor in blocks 804 and 806, respectively. Though blocks 804 and 806 appear in a certain order in the figure, it is to be understood that the figure is merely illustrative and that steps can occur in a different order or even simultaneously. Depending on the type of interlocking mechanism used, there may be an additional step 808 to lock the interlocking mechanism so that the tissue anchor cannot move horizontally or vertically.


Terminology


The term “and/or” herein has its broadest least limiting meaning which is the disclosure includes A alone, B alone, both A and B together, or A or B alternatively, but does not require both A and B or require one of A or one of B. As used herein, the phrase “at least one of” A, B, “and” C should be construed to mean a logical A or B or C, using a non-exclusive logical or.


The following description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of protection. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. For example, the actual steps or order of steps taken in the disclosed processes may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. For instance, the various components illustrated in the figures may be implemented as software or firmware on a processor, controller, ASIC, FPGA, or dedicated hardware. Hardware components, such as processors, ASICs, FPGAs, and the like, can include logic circuitry. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.


User interface screens illustrated and described herein can include additional or alternative components. These components can include menus, lists, buttons, text boxes, labels, radio buttons, scroll bars, sliders, checkboxes, combo boxes, status bars, dialog boxes, windows, and the like. User interface screens can include additional or alternative information. Components can be arranged, grouped, displayed in any suitable order.


Although the present disclosure includes certain embodiments, examples and applications, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments or uses and obvious modifications and equivalents thereof, including embodiments which do not provide all of the features and advantages set forth herein. Accordingly, the scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments herein, and may be defined by claims as presented herein or as presented in the future.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, or steps. Thus, such conditional language is not generally intended to imply that features, elements, or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, or 0.1 degree.


The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.

Claims
  • 1. A system for aligning a tissue site of a patient to a non-invasive sensor, comprising: a first anchoring component configured to couple to the tissue site of a patient, wherein the first anchoring component comprises: a first surface configured to couple to the tissue site;a first opening configured to allow the non-invasive sensor to perform a physiological measurement of the tissue site; anda securing component comprising a keyhole opening; anda second anchoring component associated with the non-invasive sensor such that, when the second anchoring component is coupled to the securing component, the sensor is secured to disallow horizontal movement relative to the tissue site, the second anchoring component comprising a first anchoring portion having a first diameter and a second anchoring portion having a second diameter, wherein the first diameter is greater than the second diameter, and wherein the first anchoring portion is positioned closer to the tissue site than the second anchoring portion when the second anchoring component is coupled to the securing component,wherein the keyhole opening comprises a first keyhole portion and a second keyhole portion, the first keyhole portion having a width greater than the first diameter, the second keyhole portion having a width less than the first diameter.
  • 2. The system of claim 1, wherein the first surface is configured to couple to the tissue site using an adhesive.
  • 3. The system of claim 2, wherein the adhesive is configured to couple the first surface to the tissue site for a period comprising at least one day.
  • 4. The system of claim 1, wherein the first surface comprises a curvature similar to that of the tissue site.
  • 5. The system of claim 1, wherein the securing component comprises at least one wall of the keyhole opening having a first slope and wherein the second anchoring component comprises at least one wall having the first slope.
  • 6. The system of claim 1, wherein the second anchoring component is configured to mate with a third anchoring component.
  • 7. The system of claim 6, wherein the third anchoring component comprises a portion of the non-invasive sensor.
  • 8. The system of claim 1, wherein the second anchoring portion is configured to fit snugly within the second keyhole portion.
  • 9. The system of claim 1, wherein, when the second anchoring component and securing component are coupled, the non-invasive sensor is secured to disallow vertical movement relative to the tissue site.
  • 10. The system of claim 1, wherein an interior surface of the securing component partially defines a first conical shape, and wherein a surface of the second anchoring component at least partially defines a second conical shape, the first diameter comprising the widest portion of the second conical shape.
  • 11. The system of claim 10, wherein the interior surface of the securing component and the surface of the second anchoring component are configured to contact when the second anchoring component is secured to the securing component.
  • 12. The system of claim 1, wherein the first anchoring component is configured to couple to a fingernail of the patient.
  • 13. The system of claim 1, further comprising the non-invasive sensor, wherein the non-invasive sensor is a Raman sensor.
  • 14. A method for aligning a tissue site to a sensor, comprising: attaching a first anchoring component to the tissue site, the first anchoring component comprising: a first surface configured to couple to the tissue site;a first opening configured to allow the sensor to perform a physiological measurement of the tissue site; anda securing component comprising a keyhole opening comprising a first keyhole portion and a second keyhole portion;connecting, by inserting a second anchoring component through a first keyhole portion of the keyhole opening, the first anchoring component to the second anchoring component attached to a sensor head, wherein the second anchoring comprises a first anchoring portion having a first diameter and second anchoring portion having a second diameter, wherein the first diameter is greater than the second diameter, and wherein the second anchoring component is inserted through the keyhole opening such that the first anchoring portion is positioned closer to the tissue site than the second anchoring portion, and wherein the first keyhole portion has a width greater than the first diameter; andsecuring, by moving the second anchoring component to a second keyhole portion of the keyhole opening, the first and second anchoring components such that the sensor head is immobilized vertically relative to the tissue site and such that the sensor head is aligned with an opening in the first anchoring component, and wherein the second keyhole portion has a width less than the first diameter.
  • 15. The method of claim 14, wherein the tissue site is a fingernail.
  • 16. The method of claim 14, wherein moving the second anchoring component to the second keyhole portion the keyhole opening thereby mates a surface of the second anchoring portion to a surface of the first anchoring component.
  • 17. The method of claim 14, wherein, when the first anchoring component and second anchoring component are secured, the sensor head is secured to disallow horizontal movement relative to the tissue site.
  • 18. The method of claim 14, wherein the sensor of the sensor head is a Raman sensor.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Patent Application No. 62/985,164, filed on Mar. 4, 2020, the contents of which are incorporated by reference herein.

US Referenced Citations (594)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
5377676 Vari et al. Jan 1995 A
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5890929 Mills et al. Apr 1999 A
5919134 Diab Jul 1999 A
5987343 Kinast Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6040578 Malin et al. Mar 2000 A
6066204 Haven May 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6232609 Snyder et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6505059 Kollias et al. Jan 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6597932 Tian et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
RE38492 Diab et al. Apr 2004 E
6738652 Mattu et al. May 2004 B2
6760607 Al-Ali Jul 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6816241 Grubisic Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6934570 Kiani et al. Aug 2005 B2
6943348 Coffin IV Sep 2005 B1
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7027849 Al-Ali Apr 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7225006 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7377794 Al-Ali et al. May 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7500950 Al-Ali et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
RE41912 Parker Nov 2010 E
7880626 Al-Ali et al. Feb 2011 B2
7909772 Popov et al. Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7941199 Kiani May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7976472 Kiani Jul 2011 B2
7990382 Kiani Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8028701 Al-Ali et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8182443 Kiani May 2012 B1
8190223 Al-Ali et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8229532 Davis Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8255026 Al-Ali Aug 2012 B1
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Ai-Ali Oct 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8401602 Kiani Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457707 Kiani Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8630691 Lamego et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8666468 Ai-Ali Mar 2014 B1
8670811 O'Reilly Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8755535 Telfort et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8840549 Al-Ali et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8897847 Al-Ali Nov 2014 B2
8911377 Ai-Ali Dec 2014 B2
8989831 Al-Ali et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9131881 Diab et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9153112 Kiani et al. Oct 2015 B1
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211095 Ai-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9245668 Vo et al. Jan 2016 B1
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9392945 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9474474 Lamego et al. Oct 2016 B2
9480435 Olsen Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9622692 Lamego et al. Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9649054 Lamego et al. May 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9861298 Eckerbom et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9877650 Muhsin et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986952 Dalvi et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123729 Dyell et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10205291 Scruggs et al. Feb 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10279247 Kiani May 2019 B2
10292664 Al-Ali May 2019 B2
10299720 Brown et al. May 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
D957648 Al-Ali Jul 2022 S
11382567 O'Brien et al. Jul 2022 B2
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
11464410 Muhsin Oct 2022 B2
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
D974193 Forrest et al. Jan 2023 S
D979516 Al-Ali et al. Feb 2023 S
D980091 Forrest et al. Mar 2023 S
11596363 Lamego Mar 2023 B2
11627919 Kiani et al. Apr 2023 B2
11637437 Al-Ali et al. Apr 2023 B2
D985498 Al-Ali et al. May 2023 S
11653862 Dalvi et al. May 2023 B2
D989112 Muhsin et al. Jun 2023 S
D989327 Al-Ali et al. Jun 2023 S
11678829 Al-Ali et al. Jun 2023 B2
11679579 Al-Ali Jun 2023 B2
11684296 Vo et al. Jun 2023 B2
11692934 Normand et al. Jul 2023 B2
11701043 Al-Ali et al. Jul 2023 B2
D997365 Hwang Aug 2023 S
11721105 Ranasinghe et al. Aug 2023 B2
11730379 Ahmed et al. Aug 2023 B2
D998625 Indorf et al. Sep 2023 S
D998630 Indorf et al. Sep 2023 S
D998631 Indorf et al. Sep 2023 S
11766198 Pauley et al. Sep 2023 B2
D1000975 Al-Ali et al. Oct 2023 S
11803623 Kiani et al. Oct 2023 B2
11832940 Diab et al. Dec 2023 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030208169 Chaiken Nov 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20070027376 Todokoro et al. Feb 2007 A1
20070073116 Kiani et al. Mar 2007 A1
20070123763 Al-Ali May 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080103375 Kiani May 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110118561 Tari et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140166076 Kiani et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20170024748 Haider Jan 2017 A1
20170231566 Klimek Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20190320906 Olsen Oct 2019 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
20230028745 Al-Ali Jan 2023 A1
20230038389 Vo Feb 2023 A1
20230045647 Vo Feb 2023 A1
20230058052 Al-Ali Feb 2023 A1
20230058342 Kiani Feb 2023 A1
20230069789 Koo et al. Mar 2023 A1
20230087671 Telfort et al. Mar 2023 A1
20230110152 Forrest et al. Apr 2023 A1
20230111198 Yu et al. Apr 2023 A1
20230115397 Vo et al. Apr 2023 A1
20230116371 Mills et al. Apr 2023 A1
20230135297 Kiani et al. May 2023 A1
20230138098 Telfort et al. May 2023 A1
20230145155 Krishnamani et al. May 2023 A1
20230147750 Barker et al. May 2023 A1
20230210417 Al-Ali et al. Jul 2023 A1
20230222805 Muhsin et al. Jul 2023 A1
20230222887 Muhsin et al. Jul 2023 A1
20230226331 Kiani et al. Jul 2023 A1
20230284916 Telfort Sep 2023 A1
20230284943 Scruggs et al. Sep 2023 A1
20230301562 Scruggs et al. Sep 2023 A1
20230346993 Kiani et al. Nov 2023 A1
20230368221 Haider Nov 2023 A1
20230371893 Al-Ali et al. Nov 2023 A1
Foreign Referenced Citations (1)
Number Date Country
WO 2010082444 Jul 2010 WO
Non-Patent Literature Citations (1)
Entry
Gannon, Mary, “What are the benefits of spring-loaded contacts?”, ConnectorTips.com, Sep. 7, 2016, pp. 6.
Related Publications (1)
Number Date Country
20210275101 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
62985164 Mar 2020 US