The present teachings relate to systems and methods for selecting circuit element values for a hybrid active power filter operating over a variable frequency, and more particularly, to platforms and techniques for identifying necessary values of circuit components to permit a hybrid active power filter to operate over a desired variable frequency range.
In the field of power systems, it has been known to connect a rectifier to an alternating current (AC) power source to derive a direct current (DC) for motors or other loads. A rectifier connected to a 3-phase AC voltage source, however, generates undesired current harmonics, namely the 5th, 7th, 11th, 13th, 17th, 19th, 23rd, and 25th harmonics, which can introduce noise and other artifacts in the power circuit.
To address that undesirable harmonic content, it has been known to use a shunt active power filter, as shown in
A hybrid active power filter can also be used eliminate the undesirable harmonics, with the added benefit of using a lower dc link voltage (0.15*Vs, peak<Vdc<0.35Vs, peak). In a HAPF circuit, the lower voltage is made possible because the filter capacitor (Cf) acts to block the fundamental voltage component. Use of an HAPF has been demonstrated and documented for fixed frequencies (50 and 60Hz) in known designs.
Nevertheless, the application of an HAPF system to a variable frequency system has not been demonstrated. In an HAPF system designed to operate on source voltages which are variable, such as between 360-800 Hz, the selection of the values for constituent capacitors and filter inductors becomes important to ensure reliable and effective operation.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present teachings and together with the description, serve to explain the principles of the present teachings. In the figures:
Embodiments of the present teachings relate to systems and methods for selecting circuit element values for a hybrid active power filter operating over a variable frequency. More particularly, embodiments relate to platforms and techniques for identifying or selecting capacitor and inductor values which permit the suppression of undesired harmonics, even while operating over a significant range of variable input frequency.
Reference will now be made in detail to exemplary embodiments of the present teachings, which are illustrated in the accompanying drawings. Where possible the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The HAPF circuit 200 can likewise include an inductor 204 through which a source current flows, which is delivered to remaining elements of the HAPF circuit 200. In one branch of the circuit topology, a portion of the source current (iL) can be delivered to an inductor 206 and a network 214. The inductor 206 can function to provide an inductive load on the portion of the incoming AC source current which is delivered to the network 214. In implementations as shown, the network 214 can contain a diode element as well as a parallel capacitor-resistor network.
In aspects, a portion of the source current (if) can also be delivered to a set of other circuit elements including capacitor 208, inductor 210, and network 216. In implementations as shown, the network 216 can include a transistor or other switching element, along with a capacitor across which the DC voltage output of the HAPF circuit 200 is delivered. According to aspects, the present teachings provide an analytical method for calculating the values of capacitor 208 (labeled Cf) and inductor 210 (labeled Lf) in the HAPF 200, to permit satisfactory operation over a source frequency range of at least 360 Hz-800 Hz, or others. One objective of that analysis is to choose the values of the inductor 206 (labeled Lac) inductor 210, and capacitor 208 to inject harmonics while using 200V MOSFET transistor elements (Vs can be 400VLL). In instances where the exact type or design of inductor 206 is available, then that information can be used to set the harmonic amplitudes. In instances where that information is not known, for a given inductor 206, the harmonic values can be located through analytical expressions or simulation.
More particularly, the analysis can start with a value for the inductor 206. That value determines the amplitude of undesired harmonics. In particular, a higher value of inductance for the inductor 206 results in a lower value for harmonic current values, as for instance shown in
With those parameters established, according to aspects, the choice of capacitance value for capacitor 208 and inductance value for inductor 210 must result in the following properties:
With those conditions in view, the following quantities can be determined. Equations 1-3 are used to calculate the value of the capacitance value of capacitor 208 and the inductance value of inductor 210. Equations 4 and 5 are a result of equations 1-3, and Equations 4 and 5 can be re-arranged to produce Equations 6 and 7. Equations 6 and 7 can be used to explicitly solve for the values of the capacitor 208 and inductor 210. It may be noted that Equations 6 and 7 assume a resonant frequency between 5*360 and 5*800 Hz, reflecting the fifth harmonic of the source current caused by the network 214. The resulting values allow the HAPF to satisfactory reduce all harmonics of interest, including the 5th, 7th, 11th, 13th, 17th, 19th23rd, 25th harmonics, over the entire illustrative target range of 360-800 Hz.
The foregoing description is illustrative, and variations in configuration and implementation may occur to persons skilled in the art. For example, while embodiments have been described in which a single network 214 and single network 216 are provided in the HAPF circuit 200, in implementations, multiple networks providing similar circuit functionality can be provided. Other resources described as singular or integrated can in embodiments be plural or distributed, and resources described as multiple or distributed can in embodiments be combined. Other circuit elements or topologies can be used in the HAPF circuit 200 to provide filtered power while adhering to the same approach to selection of capacitive and inductive values described above. The scope of the present teachings is accordingly intended to be limited only by the following claims.