Systems and methods for selective data replication

Information

  • Patent Grant
  • 8868494
  • Patent Number
    8,868,494
  • Date Filed
    Friday, August 2, 2013
    11 years ago
  • Date Issued
    Tuesday, October 21, 2014
    10 years ago
Abstract
Systems and methods for performing data replication are disclosed. Determining whether to update replicated data typically involves comparison of readily obtainable attributes of a given source file and its corresponding replicated file. Such attributes can be obtained from, for example, metadata. In certain situations, an additional assessment of the source and replicated files can be beneficial. For example, if integrity of an existing replicated file's content is maintained, one may not want to re-replicate the corresponding source file. For large source files, such a decision can provide substantial reductions in expenditures of available computing and network resources. In certain embodiments, a threshold for identifying such large files can be based on one or more operating parameters such as network type and available bandwidth. In certain embodiments, replication file's integrity can be checked by calculating and comparing checksums for the replication file and its corresponding source file.
Description
BACKGROUND

1. Field


The present disclosure relates to copy and/or data management operations in a computer network and, in particular, to systems and methods for performing data replication in a storage management system.


2. Description of the Related Art


Computers have become an integral part of business operations such that many banks, insurance companies, brokerage firms, financial service providers, and a variety of other businesses rely on computer networks to store, manipulate, and display information that is constantly subject to change. Oftentimes, the success or failure of an important transaction may turn on the availability of information that is both accurate and current. Accordingly, businesses worldwide recognize the commercial value of their data and seek reliable, cost-effective ways to protect the information stored on their computer networks.


Many approaches to protecting data involve creating a copy of the data, such as backing up and/or replicating data on one or more storage devices. Data shadowing and mirroring, or duplexing, provide for copying but can require substantial amounts of time, processing power and/or storage space, especially for large databases. Moreover, such storage management systems can have a significant adverse impact on the performance of the source or primary system.


To address these drawbacks, certain systems perform replication operations that copy less than an entire volume of data to a desired location. For example, differential replication operations are used to copy all files that have changed since a last full replication of the data. Moreover, incremental replication operations can be used to copy all files that have changed since the most recent full, differential or incremental replication. These techniques, however, can require a significant amount of processing power or network bandwidth, especially when dealing with changes to relatively large files or databases.


SUMMARY

In certain embodiments, the present disclosure relates to a method for performing data replication. The method includes performing an assessment on first data stored on a first storage device and second data stored on a second storage device, where at least a portion of the second data was previously replicated from the first data. The assessment includes comparing one or more attributes of files in the first data with those of corresponding files in the second data, and identifying a file having at least one of the one or more attributes different in the first and second data. The method further includes comparing the size of the identified file with a selected threshold value. If the size of the identified file is less than or equal to the selected threshold value, the identified file is replicated from the first storage device to the second storage device. If the size of the identified file is greater than the selected threshold value: checksums is obtained for the identified file in the first data and its corresponding file in the second data; the checksums are compared; if the checksums are different, the identified file is replicated from the first storage device to the second storage device; and if the checksums are the same, the one or more different attributes of the identified file in the first data and the corresponding file in the second data are synchronized, and the identified file is not replicated.


In certain embodiments, the one or more attributes comprise one or more attributes obtainable from metadata. In certain embodiments, the one or more attributes obtainable from metadata comprise at least one attribute selected among file size, file creation time, file modification time, or file access time.


In certain embodiments, the selected threshold value is obtained based on one or more storage policies. In certain embodiments, the one or more storage policies comprise assignment of the selected threshold value based on one or more of type of communication network between the first and second systems, available network resource, or assigned priority.


In certain embodiments, the size of the identified file is selected based on a size of a data block, one or more of the data blocks constituting the identified file.


In certain embodiments, the obtaining of checksums comprises calculating checksums for each of one or more data blocks associated with the identified file and the corresponding file. In certain embodiments, the replicating the identified file comprises replicating only one or more data blocks of the identified file whose checksums are different from those of the corresponding file.


In certain embodiments, the present disclosure relates to a data replication system having a data storage system configured to store replication of at least a portion of data from a client system. The client system is capable of communicating with the data storage system to facilitate transfer of data therebetween. The system further includes a replication agent in communication with the client system and the data storage system and configured to obtain information about an identified file on the client system. The identified file has at least one metadata attribute that is different from that of an existing replicated copy of the identified file on the data storage system. The replication agent is further configured to: obtain a size of the identified file; compare the size of the identified file with a threshold value; if the size is less than or equal to the threshold value, replicate the identified file so as to replace or update the existing replicated copy of the identified file; and if the size is greater than the threshold value, (1) obtain and compare checksums of the identified file and the replicated file, and (2) replicate the identified file so as to replace or update the existing replicated copy of the identified file if the checksums are different.


In certain embodiments, the replication agent is further configured to reconcile the metadata difference between the identified and replicated files but not replicate the identified file if the checksums of the identified file and the replicated file are the same.


In certain embodiments, the threshold value is obtained based on one or more storage policies, a type of communication network between the client system and the data storage system, one or more network resources associated with the communication network, or a priority assigned to the replication agent.


In certain embodiments, the threshold value comprises 256 kilobytes, 2 megabytes, or another operating-system dependent value.


In certain embodiments, the system further includes a user interface configured to receive user input indicative of the threshold value.


In certain embodiments, the replication agent comprises a software application executable on the client system.


In certain embodiments, the present disclosure relates to a replication system having means for identifying a first file in a first system based on a comparison of one or more attributes of the first file and a second file on a second system, with the second file representing an existing replicated copy of the first file. The system further includes means for comparing the size of the identified file with a threshold value. The system further includes means for determining whether to replicate one or more blocks of the first file to the second file again based at least in part on the size comparison.


In certain embodiments, the means for determining includes means for obtaining and comparing an assessment of contents of the first and second files, and means for selectively replicating data blocks of the first file to the second file based on the assessment of the contents. In certain embodiments, the assessment of contents of the first and second files comprises a calculation of checksums of the first and second file.


For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a block diagram of a data replication system, according to certain embodiments of the invention.



FIG. 2 illustrates an example of the data replication system where a plurality of source systems are in communication with a destination system.



FIG. 3 illustrates a process that can be implemented in the data replication system to perform a second assessment on files identified for replication.



FIG. 4 illustrates a process that can be implemented as a more specific example of the process of FIG. 3.



FIG. 5 illustrates a listing of non-limiting example file attributes that can be used to identify files for possible replication in a first assessment.



FIG. 6 illustrates a listing of a non-limiting example file parameter that can be used to check the integrity of an existing replicated file.



FIG. 7 illustrates a process that can be implemented as a more specific example of the process of FIG. 4.



FIG. 8 illustrates a process that can be implemented to assign a file size threshold value to facilitate the second assessment.



FIG. 9 illustrates an example user interface that can be utilized to facilitate the threshold value assignment process.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As disclosed herein, certain systems and methods are provided for data replication. In particular, embodiments of the invention are capable of performing replication of data from a source system to a destination system.


In the description herein, various features and examples are described in the context of data replication. It will be understood that such features and concepts can be applied to various forms of data storage and recovery systems. Accordingly, it will be understood that “replication” can include any processes or configurations where some data representative of a file in a source system is stored or copied to in a destination system, such that the source file can be restored from on the representative data in the destination system. Such representative data can include, for example, a mirror-image data file, a backup format file, etc.


The features of the systems and methods will now be described with reference to the drawings summarized above. Throughout the drawings, reference numbers may be re-used to indicate correspondence between referenced elements. The drawings, associated descriptions, and specific implementation are provided to illustrate embodiments of the invention and not to limit the scope of the disclosure.


In addition, methods and functions described herein are not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state.



FIG. 1 schematically depicts a replication system 100 having a source system 104 capable of communicating with a destination system 106 so as to allow transfer of data therebetween. The replication system 100 further includes a replication agent 102 that can be configured to provide one or more functionalities as described herein. The replication agent 102 is depicted as being capable of communicating with the source system 104 and the destination system 106.


In certain embodiments, the replication agent 102 can be any computing device and/or software module that coordinates the transfer of data between the source 104 and destination 106 systems. In certain embodiments, the replication agent can 102 be a software application residing and/or executing on the source system 104, and configured to communicate with an application residing and/or executing on the destination system 106. The application on the destination system 106 can be configured to process data replicated from the source system 104 and provide information about such data to the replication agent 102.


In certain embodiments, the replication agent 102 does not necessarily need to reside and/or execute on the source system 104. Given appropriate information about data on the source system 104 and the destination system 106, the replication agent 102 can provide similar functionalities even when residing and/or executing elsewhere, such as on the destination system 106.


In certain embodiments, the source and destination systems 104 and 106 can be parts of different devices. In certain embodiments, the source system 104 and the destination system 106 can be part of the same computing device, where it may be desirable to replicate data from one system to another.


In certain embodiments, the source system 104 of FIG. 1 can be associated with a variety of computing devices, including but not limited to, a server computer, a workstation, a personal computer including a laptop computer, a cell phone, a portable computing device, a handheld computing device, a personal digital assistant (PDA), combinations of the same or the like.



FIG. 2 shows non-limiting examples of the computing devices that can be source systems. For the purpose of description of FIG. 2, it will be assumed that the replication agent resides and/or executes on the source system.


In certain embodiments, the source systems can include a stand-alone computing system such as a laptop computer 110. The example stand-alone computing system 110 can include a processor 114 configured to execute a number of software applications, including a replication agent 112. In the example system 110, data to be replicated can reside in one or more storage devices (not shown) inside of the computer's housing and/or connected to the laptop in known manner.


In certain embodiments, the source systems can include a workstation system 120 having a processor 124 configured to execute a number of software applications, including a replication agent 122. In the example system 120, data to be replicated can reside in one or more storage devices 126 associated with the system 120.



FIG. 2 also shows an example of a destination system 140 having a processor 142 configured to coordinate storage of replicated data. In certain embodiments, the destination system 140 can be part of a data storage service servicing a plurality of clients. Thus, each of the example source systems 110 and 120 can be considered to be a client of the destination system 140.


In certain embodiments, replicated data can be structured and organized so as to facilitate easy retrieval if needed. For example, each client's stored data can be organized in a file structure 160 representative of the client system's file structure. Such data organization and coordination by the processor 142 can be achieved in known manners.



FIG. 2 also shows that transfer of data between a given source system and the destination system 140 can be facilitated by a communication link such as a network 130. In certain embodiments, the network 130 can include any means for communicating data between two or more systems or components. In certain embodiments, the network 130 can include a computer network. For example, the network 130 can include a public network such as the Internet, virtual private network (VPN), a token ring or TCP/IP based network, wide area network (WAN), local area network (LAN), an intranet network, point-to-point link, a wireless network, cellular network, wireless data transmission system, two-way cable system, interactive kiosk network, satellite network, broadband network, baseband network, combinations of the same or the like. In embodiments where the source system and destination system are part of the same computing device, the network 130 may represent a communications socket or other suitable internal data transfer path or mechanism.


As is generally known, replication of a given client's data can begin by a full replication process. Subsequently, the stored data can be updated by replicating selected portions of the data, such as one or more data blocks. In certain embodiments, such selected replication can be based on some change in the data. For example, identification and replication of files can be based on readily obtainable attributes such as creation time, modification time, and access time. In many file systems, such attributes can be part of metadata associated with files. Such selected replication can reduce expenditure of computing and/or network resources by not replicating files that have not changed.


In certain circumstances, a replication process can be made more efficient and reliable overall by performing an additional assessment of a given file that has undergone a first assessment (e.g., the foregoing assessment based on readily obtainable file attribute(s)). Examples of such circumstances are described herein in greater detail.



FIG. 3 shows that in certain embodiments, a second assessment can be performed (e.g., by the replication agent 102 of FIG. 1) on the file identified in the foregoing manner. A process 170 can include a block 172 where a file to be replicated from a source system to a destination system is identified via a first assessment. In certain embodiments, the first assessment can include comparison of attributes (of the source file and its corresponding replicated file) that can be obtained readily—for example, attributes associated with metadata. Such attributes can include file size, creation time, modification time, access time, combinations of the same or the like.


In block 174, a second assessment can be performed on the file identified in block 172. In certain embodiments, the second assessment can include determination of whether to obtain further information about the file. In situations where obtaining such information utilizes significant computing resources, the second assessment can reduce unnecessary expenditure of resources. For example, if the second assessment determines that the resource-consuming information is not needed or desired, expenditure of significant resources can be avoided.


Based on the second assessment of block 174, the process 170 can, in a decision block 176, determine whether the file should be replicated. If the answer is “Yes,” the process 170 can replicate the file in block 178. If the answer is “No,” the process 170 can determine that the file should not be replicated in block 179.



FIG. 4 shows a process 180 that can be implemented as a more specific example of the process 170 of FIG. 3. In block 182, a first set of attributes for a file in the source system and its replicated file in the destination system can be obtained and compared. FIG. 5 shows a table 200 of non-limiting examples of file attributes that can be obtained and compared in block 182. File size, file creation time, file modification time, and file access time are non-limiting examples of attributes that can be obtained and compared in known manners.


In a decision block 184, the process 180 can determine whether the attributes compared in block 182 are same. If “Yes,” the process 180 can determine that the source file should not be replicated in block 196. If “No,” the process 180 in a decision block 186 can determine whether the file size (e.g., for the source file) is less than that of a selected threshold value. In certain embodiments, the threshold value can be selected based on balancing of computing and/or bandwidth resource expenditures associated with determination of a second set of one or more attributes (for the source file and the replicated file) and possible replication thereafter, versus direct replication regardless of the second set of attribute(s). For example, if a given file is relatively small, it may be more efficient overall to simply send the file than to subject the file to further assessment. In another example, if a given file is relatively large, it may be worthwhile to further determine whether to send the file before committing significant bandwidth resources. In certain embodiments, the threshold value can be based on a data block size such as 256 KB or 2 MB. In certain embodiments, a data block size that can be used as a threshold value can depend on the operating system in which the process 180 is being performed.


Thus, if the answer to the decision block 186 is “Yes,” the process 180 can bypass further assessment and replicate the source file in block 194. If the answer is “No,” the process 180 can obtain a second set of one or more attributes for the source and replicated files in block 188. In block 190, the second sets of attribute(s) for the source and replicated files can be compared. FIG. 6 shows a table 210 of a non-limiting example of file attributes that can be obtained and compared in blocks 188 and 190. For example, checksums can be obtained for the source file and the replicated file and compared in known manners.


For the purpose of description, it will be understood that “checksum” (sometimes referred to as “hash sum”) can include any datum or data computed from a block of digital data to facilitate detection of errors that may be introduced during replication and/or storage. In the context of replication systems, integrity of data associated with a given block (e.g., a 256 KB block) of a replicated file can be checked by computing the checksum and comparing it with the checksum of the same data block of the source file. In the context of files, a given file can include one or more data blocks. Thus, checksums of the source and replicated files can be compared on a block-by-block basis. Non-limiting examples of checksums can include known algorithms such as rolling checksum (also sometimes referred to as rolling hash function) for block sizes between about 256 KB and 200 MB, and MD5 cryptographic hash function algorithm for larger block sizes.


If the checksums do not match, there is a high likelihood that the data was altered. On the other hand, if the checksums match, it is highly likely that integrity of the data is maintained (e.g., by being substantially error-free). In certain replication situations, comparison of checksums in the foregoing manner can be sufficiently reliable so as to override differences in one or more of the first set of attributes. An example of such overriding feature is described herein in greater detail.


Based on the comparison in block 190, the process 180 can, in a decision block 192, determine whether the second sets of attribute(s) for the source and replicated files are same. If “No,” the difference provides further confirmation of change and/or error in the file, and the source file can be replicated in block 194. If “Yes,” the process 180 can either decide to not replicate the source file (e.g., based on high reliability of checksum comparison), or replicate the source file (e.g., based on the change in one or more of the first set of attribute(s)). Whether to replicate or not replicate under such circumstances can be based on one or more factors, including, for example, balancing of likelihood of data integrity (confirmed by checksum comparison), versus replication based on the difference(s) of the first sets of attributes. In the example shown in FIG. 4, the process 180 can decide not to replicate the source file in block 196 based on, for example, high reliability of the checksum comparison.


In certain embodiments, replication of the source file in block 194 can include sending of the entire source file from the source system to the destination system if the checksum comparison yields differences in one or more blocks of the source and replicated files. In other embodiments, replication of the source file in block 194 can include sending of only the block(s) having different checksum(s) between the source and replicated files.



FIG. 7 shows a process 220 that can be implemented as a more specific example of the process 180 of FIG. 4. In block 222, creation time, modification time, and/or access time for a source file can be obtained. In block 224, the same attribute(s) for a replicated file can be obtained. In certain embodiments, such attributes can be obtained on the source system (e.g., by the processor (114, 124) and/or the replication agent (112, 122) of FIG. 2) and on the destination system (e.g., by the processor 142 of FIG. 2).


In certain embodiments, such attributes can be obtained for files on the destination system in a survey performed periodically or as needed. Information representative of such attributes can be sent to the source system, and the replication agent can perform comparisons with similar information obtained on the source system so as to allow identification of files to be further assessed for replication purpose.


In a decision block 226, the process 220 can determine whether the attributes obtained in blocks 222 and 224 are the same for a given file. If “Yes,” the process 220 can determine that the file should not be replicated, and the source file is not sent (block 260). If “No,” the process 220 can obtain the size of the file (e.g., size of the source file) in block 230. In block 232, the file size can be compared with a threshold value obtained based on a selected policy. In certain embodiments, such policy can include a setting of threshold file size based on, for example, network type, available network bandwidth, loads placed on the source and/or destination systems, priorities assigned to replication processes, combinations of the same or the like. As described herein, a threshold value can be selected based on balancing of expenditure of various resources associated with checksum calculations for the source and replicated files versus direct replication without the checksum calculations.


In a decision block 234, the process 220 can determine whether the file size is greater than the threshold value. If the answer is “No,” the file can be sent (block 250) without further processing. If the answer is “Yes,” checksums for the source and replicated files can be obtained in block 240. In certain embodiments, information about the replicated file's checksum can be sent to the source system so as to allow comparison with the source file's checksum.


In block 242, checksums for the source and replicated files can be compared. In a decision block 244, the process 220 can determine whether the two checksums are same. If the answer is “No,” the source file can be sent in block 250. In certain embodiments, if the answer is “Yes,” the process 220 can determine that the source file should not be sent despite difference(s) in the attributes obtained and compared in blocks 222, 224, and 226. In certain embodiments, such determination can be based on consideration of the likelihood of data integrity as provided by the checksum comparison. In block 270, the process 220 can synchronize the creation time, modification time, and access time attributes of the source and replicated files. For example, such attributes for the replicated file can be updated to match those of the source file. The source file is not sent (block 260).


As described in reference to FIG. 7, a threshold value for determining whether to perform further assessment of a given file (blocks 232, 234) can be assigned based on a selected policy. In certain embodiments, such a policy can be implemented as part of the replication agent (FIGS. 1 and 2), and/or be based on one or more parameters associated with the replication process.



FIG. 8 shows that in certain embodiments, a process 300 can be implemented as part of such a policy. In block 302, one or more parameters representative of resources associated with a replication process can be determined. In block 304, a file size threshold value can be assigned based on such one or more parameters.



FIG. 9 shows non-limiting examples of parameters that can be considered when determining the file size threshold value. In certain embodiments, such parameters can be presented to, for example, a system manager as part of a user interface 320 through which the replication policy can be implemented.


By way of example, the interface 320 can include one or more parameters 330 representative of a current status of the source system, network, and/or destination system. For example, network type, available bandwidth, assigned priority for the replication process, average CPU usage for the replication process, and average I/O usage for the replication process can be presented to the user. Additionally, the current value of the threshold can also be presented to the user.


In certain embodiments, the user interface 320 can include one or more recommendations 340 that can be effectuated by the user. For example, priority setting can be allowed to be changed by the user selecting the “Change” button 342.


In certain embodiments, the user interface 320 can include an option 350 that allows the user to keep 352 or change 354 the threshold value. For example, the change 354 can be to a new threshold value based on one or more parameters 330 as described herein.


In certain embodiments, determination and implementation of the threshold value can be configured to be substantially automatic, based on one or more storage policies, the replication agent's monitoring of the source system, network, and/or destination system. Thus, the example user interface 320 can include an option 360 that allows determination of threshold values based on various operating and resource parameters.


Systems and modules described herein may comprise software, firmware, hardware, or any combination(s) of software, firmware, or hardware suitable for the purposes described herein. Software and other modules may reside on servers, workstations, personal computers, computerized tablets, PDAs, and other devices suitable for the purposes described herein. Software and other modules may be accessible via local memory, via a network, via a browser, or via other means suitable for the purposes described herein. Data structures described herein may comprise computer files, variables, programming arrays, programming structures, or any electronic information storage schemes or methods, or any combinations thereof, suitable for the purposes described herein. User interface elements described herein may comprise elements from graphical user interfaces, command line interfaces, and other interfaces suitable for the purposes described herein.


Embodiments of the invention are also described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, may be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the acts specified in the flowchart and/or block diagram block or blocks.


These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the acts specified in the flowchart and/or block diagram block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operations to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the acts specified in the flowchart and/or block diagram block or blocks.


While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.

Claims
  • 1. A computer-implemented method for performing data replication, the computer-implemented method comprising: performing a first assessment with computer hardware on a first set of files stored on a first storage device that is associated with a source system and on a second set of files stored on a second storage device that is associated with a destination system in networked communication with the source system, the second set of files corresponding to the first set of files and having been previously replicated from the first set of files, the first assessment comprising, comparing one or more attributes of the first set of files with one or more corresponding attributes of the second set of files, anddetermining whether a first attribute from the one or more attributes of a file from the first set of files differs from a corresponding attribute of the one or more corresponding attributes of a corresponding file from the second set of files;in response to determining that the first attribute differs from the corresponding attribute, determining with the computer hardware whether a size of the file satisfies a size threshold value;in response to determining that the size of the file satisfies the size threshold value, performing with the computer hardware a second assessment on the file based at least in part on a checksum for the file; andbased on the results of the second assessment, determining whether to replicate the file from the first storage device to the second storage device.
  • 2. The computer-implemented method of claim 1, wherein performing the second assessment comprises: accessing the checksum for the file;accessing a checksum for the corresponding file; andcomparing the checksum for the file with the checksum for the corresponding file to determine whether the checksum for the file differs from the checksum for the corresponding file.
  • 3. The computer-implemented method of claim 2, wherein, in response to determining that the checksum for the file differs from the checksum for the corresponding file, the method further comprises replicating the file from the first storage device to the second storage device.
  • 4. The computer-implemented method of claim 3, wherein replicating the file comprises replicating data blocks of the file with different checksum values than checksum values of corresponding data blocks of the corresponding file.
  • 5. The computer-implemented method of claim 2, wherein, in response to determining that the checksum for the file matches the checksum for the corresponding file, the method further comprises synchronizing the attribute of the file with the corresponding attribute of the corresponding file without replicating the file from the first storage device to the second storage device.
  • 6. The computer-implemented method of claim 2, wherein accessing the checksum for the file comprises accessing a checksum for each data block of the file and wherein accessing the checksum for the corresponding file comprises accessing a checksum for each data block of the corresponding file.
  • 7. The computer-implemented method of claim 1, wherein the size threshold value is determined based at least in part on balancing processing resource expenditures for performing the second assessment versus bandwidth resources for replicating the file.
  • 8. The computer-implemented method of claim 1, wherein if the size of the file does not satisfy the size threshold value, the file is replicated from the first storage device to the second storage device without performing the second assessment.
  • 9. A data replication system comprising: a replication agent comprising computer hardware, the replication agent in communication with a source storage system and a destination storage system, the replication agent configured to: perform a first assessment of a file stored on the source storage system to determine whether the file has a metadata attribute that differs from a corresponding metadata attribute of a corresponding file on the destination storage system;in response to a determination that the metadata attribute differs from the corresponding metadata attribute, the replication agent is further configured to: obtain a size of the file; andcompare the size of the file to a size threshold value;in response to a determination that the size of the file does not satisfy the size threshold value, the replication agent is further configured to replicate the file from the source storage device to the destination storage device regardless of whether a checksum for the file matches a checksum for the corresponding file; andin response to a determination that the size of the file satisfies the size threshold value, the replication agent is further configured perform a second assessment of the file based at least in part on the checksum for the file.
  • 10. The data replication system of claim 9, wherein the replication agent is further configured to perform the second assessment by: accessing the checksum for the file;accessing the checksum for the corresponding file; andcomparing the checksum for the file with the checksum for the corresponding file to determine whether the checksum for the file differs from the checksum for the corresponding file.
  • 11. The data replication system of claim 10, wherein, in response to determining that the checksum for the file differs from the checksum for the corresponding file, the replication agent is further configured to replicate the file from the source storage device to the destination storage device.
  • 12. The data replication system of claim 11, wherein the replication agent is further configured to replicate the file by replicating data blocks of the file with different checksum values than data blocks of the corresponding file.
  • 13. The data replication system of claim 10, wherein, in response to determining that the checksum for the file matches the checksum for the corresponding file, the replication agent is further configured to synchronize the metadata attribute of the file with the corresponding metadata attribute of the corresponding file without replicating the file from the source storage device to the destination storage device.
  • 14. The data replication system of claim 10, wherein accessing the checksum for the file comprises accessing a checksum for each data block of the file and wherein accessing the checksum for the corresponding file comprises accessing a checksum for each data block of the corresponding file.
  • 15. The data replication system of claim 9, wherein the replication agent is further configured to determine the size threshold value based at least in part on balancing processing resource expenditures for performing the second assessment versus bandwidth resources for replicating the file.
  • 16. The data replication system of claim 9, wherein the replication agent is further configured to: access one or more storage policies; anddetermine the size threshold value based at least in part on the one or more storage policies.
  • 17. The data replication system of claim 9, further comprising a data storage system, the data storage system comprising the source storage system and the destination storage system.
  • 18. The data replication system of claim 9, further comprising a user interface configured to receive user input, and wherein the replication agent is further configured to determine the size threshold value based at least in part on the user input.
  • 19. Non-transitory computer storage comprising instructions which, when executed, cause the computing system to perform steps comprising: performing a first assessment on a first file stored on a first storage device that is associated with a source system and on a second file stored on a second storage device that is associated with a destination system, the second file corresponding to the first file and having been previously replicated from the first file, the first assessment comprising, comparing an attribute of the first file with a corresponding attribute of the second file, anddetermining whether the attribute from the first file differs from the corresponding attribute of the second file;in response to determining that the attribute differs from the corresponding attribute, determining whether a size of the first file satisfies a threshold value;in response to determining that the size of the first file satisfies the threshold value, performing a second assessment on the first file based at least in part on the checksum for the first file; andbased on the results of the second assessment, determining whether to replicate the file from the first storage device to the second storage device.
  • 20. The non-transitory computer storage of claim 19, wherein performing the second assessment comprises: accessing the checksum for the first file;accessing a checksum for the second file;comparing the checksum for the first file with the checksum for the second file to determine whether the checksum for the first file differs from the checksum for the second file;in response to determining that the checksum for the first file differs from the checksum for the second file, replicating the first file from the first storage device to the second storage device; andin response to determining that the checksum for the first file matches the checksum for the second file, synchronizing the attribute of the first file with the corresponding attribute of the second file without replicating the first file.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 12/749,280, filed Mar. 29, 2010, which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (595)
Number Name Date Kind
4296465 Lemak Oct 1981 A
4686620 Ng Aug 1987 A
4995035 Cole et al. Feb 1991 A
5005122 Griffin et al. Apr 1991 A
5093912 Dong et al. Mar 1992 A
5133065 Cheffetz et al. Jul 1992 A
5193154 Kitajima et al. Mar 1993 A
5212772 Masters May 1993 A
5226157 Nakano et al. Jul 1993 A
5231668 Kravitz Jul 1993 A
5239647 Anglin et al. Aug 1993 A
5241668 Eastridge et al. Aug 1993 A
5241670 Eastridge et al. Aug 1993 A
5263154 Eastridge et al. Nov 1993 A
5265159 Kung Nov 1993 A
5276860 Fortier et al. Jan 1994 A
5276867 Kenley et al. Jan 1994 A
5287500 Stoppani, Jr. Feb 1994 A
5301351 Jippo Apr 1994 A
5311509 Heddes et al. May 1994 A
5317731 Dias et al. May 1994 A
5321816 Rogan et al. Jun 1994 A
5333315 Saether et al. Jul 1994 A
5347653 Flynn et al. Sep 1994 A
5369757 Spiro et al. Nov 1994 A
5403639 Belsan et al. Apr 1995 A
5410700 Fecteau et al. Apr 1995 A
5448724 Hayashi et al. Sep 1995 A
5455926 Keele et al. Oct 1995 A
5487072 Kant Jan 1996 A
5491810 Allen Feb 1996 A
5495607 Pisello et al. Feb 1996 A
5504873 Martin et al. Apr 1996 A
5544345 Carpenter et al. Aug 1996 A
5544347 Yanai et al. Aug 1996 A
5546536 Davis et al. Aug 1996 A
5555404 Torbjornsen et al. Sep 1996 A
5559957 Balk Sep 1996 A
5559991 Kanfi Sep 1996 A
5598546 Blomgren Jan 1997 A
5604862 Midgely et al. Feb 1997 A
5615392 Harrison et al. Mar 1997 A
5619644 Crockett et al. Apr 1997 A
5638509 Dunphy et al. Jun 1997 A
5642496 Kanfi Jun 1997 A
5673381 Huai et al. Sep 1997 A
5675511 Prasad et al. Oct 1997 A
5677900 Nishida et al. Oct 1997 A
5682513 Candelaria et al. Oct 1997 A
5687343 Fecteau et al. Nov 1997 A
5689706 Rao et al. Nov 1997 A
5699361 Ding et al. Dec 1997 A
5719786 Nelson et al. Feb 1998 A
5720026 Uemura et al. Feb 1998 A
5729743 Squibb Mar 1998 A
5737747 Vishlitsky et al. Apr 1998 A
5742792 Yanai et al. Apr 1998 A
5751997 Kullick et al. May 1998 A
5758359 Saxon May 1998 A
5761677 Senator et al. Jun 1998 A
5761734 Pfeffer et al. Jun 1998 A
5764972 Crouse et al. Jun 1998 A
5765173 Cane et al. Jun 1998 A
5778395 Whiting et al. Jul 1998 A
5790114 Geaghan et al. Aug 1998 A
5790828 Jost Aug 1998 A
5805920 Sprenkle et al. Sep 1998 A
5812398 Nielsen Sep 1998 A
5813009 Johnson et al. Sep 1998 A
5813017 Morris Sep 1998 A
5829046 Tzelnic et al. Oct 1998 A
5860104 Witt et al. Jan 1999 A
5875478 Blumenau Feb 1999 A
5875481 Ashton et al. Feb 1999 A
5878408 Van Huben et al. Mar 1999 A
5887134 Ebrahim Mar 1999 A
5901327 Ofek May 1999 A
5907621 Bachman et al. May 1999 A
5907672 Matze et al. May 1999 A
5924102 Perks Jul 1999 A
5926836 Blumenau Jul 1999 A
5933104 Kimura Aug 1999 A
5933601 Fanshier et al. Aug 1999 A
5950205 Aviani, Jr. Sep 1999 A
5956519 Wise et al. Sep 1999 A
5958005 Thorne et al. Sep 1999 A
5970233 Liu et al. Oct 1999 A
5970255 Tran et al. Oct 1999 A
5974563 Beeler, Jr. Oct 1999 A
5987478 See et al. Nov 1999 A
5991779 Bejar Nov 1999 A
5995091 Near et al. Nov 1999 A
6003089 Shaffer et al. Dec 1999 A
6009274 Fletcher et al. Dec 1999 A
6012090 Chung et al. Jan 2000 A
6021415 Cannon et al. Feb 2000 A
6021475 Nguyen et al. Feb 2000 A
6023710 Steiner et al. Feb 2000 A
6026414 Anglin Feb 2000 A
6049889 Steely, Jr. et al. Apr 2000 A
6052735 Ulrich et al. Apr 2000 A
6058066 Norris et al. May 2000 A
6061692 Thomas et al. May 2000 A
6072490 Bates et al. Jun 2000 A
6076148 Kedem et al. Jun 2000 A
6088697 Crockett et al. Jul 2000 A
6094416 Ying Jul 2000 A
6105129 Meier et al. Aug 2000 A
6112239 Kenner et al. Aug 2000 A
6122668 Teng et al. Sep 2000 A
6131095 Low et al. Oct 2000 A
6131148 West et al. Oct 2000 A
6131190 Sidwell Oct 2000 A
6137864 Yaker Oct 2000 A
6148377 Carter et al. Nov 2000 A
6148412 Cannon et al. Nov 2000 A
6154787 Urevig et al. Nov 2000 A
6154852 Amundson et al. Nov 2000 A
6158044 Tibbetts Dec 2000 A
6161111 Mutalik et al. Dec 2000 A
6163856 Dion et al. Dec 2000 A
6167402 Yeager Dec 2000 A
6175829 Li et al. Jan 2001 B1
6195695 Cheston et al. Feb 2001 B1
6205450 Kanome Mar 2001 B1
6212512 Barney et al. Apr 2001 B1
6212521 Minami et al. Apr 2001 B1
6230164 Rekieta et al. May 2001 B1
6260068 Zalewski et al. Jul 2001 B1
6260069 Anglin Jul 2001 B1
6269431 Dunham Jul 2001 B1
6275953 Vahalia et al. Aug 2001 B1
6279078 Sicola et al. Aug 2001 B1
6292783 Rohler Sep 2001 B1
6301592 Aoyama et al. Oct 2001 B1
6304880 Kishi Oct 2001 B1
6311193 Sekido et al. Oct 2001 B1
6324581 Xu et al. Nov 2001 B1
6328766 Long Dec 2001 B1
6330570 Crighton Dec 2001 B1
6330642 Carteau Dec 2001 B1
6343324 Hubis et al. Jan 2002 B1
6350199 Williams et al. Feb 2002 B1
RE37601 Eastridge et al. Mar 2002 E
6353878 Dunham Mar 2002 B1
6356801 Goodman et al. Mar 2002 B1
6363464 Mangione Mar 2002 B1
6366986 St. Pierre et al. Apr 2002 B1
6366988 Skiba et al. Apr 2002 B1
6374336 Peters et al. Apr 2002 B1
6374363 Wu et al. Apr 2002 B1
6389432 Pothapragada et al. May 2002 B1
6397308 Ofek et al. May 2002 B1
6418478 Ignatius et al. Jul 2002 B1
6421711 Blumenau et al. Jul 2002 B1
6434681 Armangau Aug 2002 B1
6438595 Blumenau et al. Aug 2002 B1
6466950 Ono Oct 2002 B1
6473775 Kusters et al. Oct 2002 B1
6487561 Ofek et al. Nov 2002 B1
6487644 Huebsch et al. Nov 2002 B1
6487645 Clark et al. Nov 2002 B1
6502205 Yanai et al. Dec 2002 B1
6516314 Birkler et al. Feb 2003 B1
6516327 Zondervan et al. Feb 2003 B1
6516348 MacFarlane et al. Feb 2003 B1
6519679 Devireddy et al. Feb 2003 B2
6538669 Lagueux, Jr. et al. Mar 2003 B1
6539462 Mikkelsen et al. Mar 2003 B1
6542468 Hatakeyama Apr 2003 B1
6542909 Tamer et al. Apr 2003 B1
6542972 Ignatius et al. Apr 2003 B2
6564228 O'Connor May 2003 B1
6564229 Baweja et al. May 2003 B1
6564271 Micalizzi, Jr. et al. May 2003 B2
6581143 Gagne et al. Jun 2003 B2
6604118 Kleinman et al. Aug 2003 B2
6604149 Deo et al. Aug 2003 B1
6611849 Raff et al. Aug 2003 B1
6615223 Shih et al. Sep 2003 B1
6629189 Sandstrom Sep 2003 B1
6631477 LeCrone et al. Oct 2003 B1
6631493 Ottesen et al. Oct 2003 B2
6647396 Parnell et al. Nov 2003 B2
6647473 Golds et al. Nov 2003 B1
6651075 Kusters et al. Nov 2003 B1
6654825 Clapp et al. Nov 2003 B2
6658436 Oshinsky et al. Dec 2003 B2
6658526 Nguyen et al. Dec 2003 B2
6662198 Satyanarayanan et al. Dec 2003 B2
6665815 Goldstein et al. Dec 2003 B1
6681230 Blott et al. Jan 2004 B1
6691209 O'Connell Feb 2004 B1
6721767 De Meno et al. Apr 2004 B2
6728733 Tokui Apr 2004 B2
6732124 Koseki et al. May 2004 B1
6732125 Autrey et al. May 2004 B1
6742092 Huebsch et al. May 2004 B1
6748504 Sawdon et al. Jun 2004 B2
6751635 Chen et al. Jun 2004 B1
6757794 Cabrera et al. Jun 2004 B2
6760723 Oshinsky et al. Jul 2004 B2
6763351 Subramaniam et al. Jul 2004 B1
6789161 Blendermann et al. Sep 2004 B1
6792472 Otterness et al. Sep 2004 B1
6792518 Armangau et al. Sep 2004 B2
6799258 Linde Sep 2004 B1
6820035 Zahavi Nov 2004 B1
6836779 Poulin Dec 2004 B2
6839724 Manchanda et al. Jan 2005 B2
6871163 Hiller et al. Mar 2005 B2
6871271 Ohran et al. Mar 2005 B2
6880051 Timpanaro-Perrotta Apr 2005 B2
6886020 Zahavi et al. Apr 2005 B1
6892211 Hitz et al. May 2005 B2
6912482 Kaiser Jun 2005 B2
6925476 Multer et al. Aug 2005 B1
6925512 Louzoun et al. Aug 2005 B2
6938135 Kekre et al. Aug 2005 B1
6938180 Dysert et al. Aug 2005 B1
6941393 Secatch Sep 2005 B2
6944796 Joshi et al. Sep 2005 B2
6952705 Knoblock et al. Oct 2005 B2
6952758 Chron et al. Oct 2005 B2
6954834 Slater et al. Oct 2005 B2
6968351 Butterworth Nov 2005 B2
6973553 Archibald, Jr. et al. Dec 2005 B1
6978265 Schumacher Dec 2005 B2
6981177 Beattie Dec 2005 B2
6983351 Gibble et al. Jan 2006 B2
6993539 Federwisch et al. Jan 2006 B2
7003519 Biettron et al. Feb 2006 B1
7003641 Prahlad et al. Feb 2006 B2
7007046 Manley et al. Feb 2006 B2
7032131 Lubbers et al. Apr 2006 B2
7035880 Crescenti et al. Apr 2006 B1
7039661 Ranade May 2006 B1
7051050 Chen et al. May 2006 B2
7062761 Slavin et al. Jun 2006 B2
7065538 Aronoff et al. Jun 2006 B2
7068597 Fijolek et al. Jun 2006 B1
7082441 Zahavi et al. Jul 2006 B1
7085787 Beier et al. Aug 2006 B2
7085904 Mizuno et al. Aug 2006 B2
7093012 Olstad et al. Aug 2006 B2
7096315 Takeda et al. Aug 2006 B2
7103731 Gibble et al. Sep 2006 B2
7103740 Colgrove et al. Sep 2006 B1
7106691 Decaluwe et al. Sep 2006 B1
7107298 Prahlad et al. Sep 2006 B2
7107395 Ofek et al. Sep 2006 B1
7111021 Lewis et al. Sep 2006 B1
7120757 Tsuge Oct 2006 B2
7130860 Pachet Oct 2006 B2
7130970 Devassy et al. Oct 2006 B2
7139932 Watanabe Nov 2006 B2
7155465 Lee et al. Dec 2006 B2
7155633 Tuma et al. Dec 2006 B2
7158985 Liskov Jan 2007 B1
7177866 Holenstein et al. Feb 2007 B2
7181477 Saika et al. Feb 2007 B2
7188292 Cordina et al. Mar 2007 B2
7191198 Asano et al. Mar 2007 B2
7194454 Hansen et al. Mar 2007 B2
7194487 Kekre et al. Mar 2007 B1
7203807 Urabe et al. Apr 2007 B2
7209972 Ignatius et al. Apr 2007 B1
7225204 Manley et al. May 2007 B2
7225208 Midgley et al. May 2007 B2
7225210 Guthrie, II. May 2007 B2
7228456 Lecrone et al. Jun 2007 B2
7231391 Aronoff et al. Jun 2007 B2
7231544 Tan et al. Jun 2007 B2
7234115 Sprauve et al. Jun 2007 B1
7246140 Therrien et al. Jul 2007 B2
7246207 Kottomtharayil Jul 2007 B2
7257689 Baird Aug 2007 B1
7269612 Devarakonda et al. Sep 2007 B2
7269641 Powers et al. Sep 2007 B2
7272606 Borthakur et al. Sep 2007 B2
7275138 Saika Sep 2007 B2
7275177 Armangau et al. Sep 2007 B2
7278142 Bandhole et al. Oct 2007 B2
7284153 Okbay et al. Oct 2007 B2
7287047 Kavuri Oct 2007 B2
7293133 Colgrove et al. Nov 2007 B1
7296125 Ohran Nov 2007 B2
7315923 Retnamma et al. Jan 2008 B2
7318134 Oliveira et al. Jan 2008 B1
7340652 Jarvis et al. Mar 2008 B2
7343356 Prahlad et al. Mar 2008 B2
7343365 Farnham et al. Mar 2008 B2
7343453 Prahlad et al. Mar 2008 B2
7343459 Prahlad et al. Mar 2008 B2
7346623 Prahlad et al. Mar 2008 B2
7346751 Prahlad et al. Mar 2008 B2
7356657 Mikami Apr 2008 B2
7359917 Winter et al. Apr 2008 B2
7363444 Ji Apr 2008 B2
7370232 Safford May 2008 B2
7373364 Chapman May 2008 B1
7380072 Kottomtharayil et al. May 2008 B2
7389311 Crescenti et al. Jun 2008 B1
7392360 Aharoni et al. Jun 2008 B1
7395282 Crescenti et al. Jul 2008 B1
7401064 Arone et al. Jul 2008 B1
7409509 Devassy et al. Aug 2008 B2
7415488 Muth et al. Aug 2008 B1
7428657 Yamasaki Sep 2008 B2
7430587 Malone et al. Sep 2008 B2
7433301 Akahane et al. Oct 2008 B2
7440982 Lu et al. Oct 2008 B2
7454569 Kavuri et al. Nov 2008 B2
7461230 Gupta et al. Dec 2008 B1
7464236 Sano et al. Dec 2008 B2
7467167 Patterson Dec 2008 B2
7467267 Mayock Dec 2008 B1
7469262 Baskaran et al. Dec 2008 B2
7472238 Gokhale Dec 2008 B1
7472312 Jarvis et al. Dec 2008 B2
7475284 Koike Jan 2009 B2
7484054 Kottomtharayil et al. Jan 2009 B2
7490207 Amarendran Feb 2009 B2
7496589 Jain et al. Feb 2009 B1
7496690 Beverly et al. Feb 2009 B2
7500053 Kavuri et al. Mar 2009 B1
7500150 Sharma et al. Mar 2009 B2
7502902 Sato Mar 2009 B2
7509316 Greenblatt et al. Mar 2009 B2
7512601 Cucerzan et al. Mar 2009 B2
7516088 Johnson et al. Apr 2009 B2
7519726 Palliyll et al. Apr 2009 B2
7523483 Dogan Apr 2009 B2
7529745 Ahluwalia et al. May 2009 B2
7529748 Wen et al. May 2009 B2
7529782 Prahlad et al. May 2009 B2
7529898 Nguyen et al. May 2009 B2
7532340 Koppich et al. May 2009 B2
7533181 Dawson et al. May 2009 B2
7536291 Retnamma et al. May 2009 B1
7539707 Prahlad et al. May 2009 B2
7539835 Kaiser May 2009 B2
7543125 Gokhale Jun 2009 B2
7546324 Prahlad et al. Jun 2009 B2
7546364 Raman et al. Jun 2009 B2
7565572 Yamasaki Jul 2009 B2
7581077 Ignatius et al. Aug 2009 B2
7593966 Therrien et al. Sep 2009 B2
7596586 Gokhale et al. Sep 2009 B2
7606841 Ranade Oct 2009 B1
7606844 Kottomtharayil Oct 2009 B2
7613748 Brockway et al. Nov 2009 B2
7613750 Valiyaparambil et al. Nov 2009 B2
7617253 Prahlad et al. Nov 2009 B2
7617262 Prahlad et al. Nov 2009 B2
7617321 Clark Nov 2009 B2
7617369 Bezbaruah et al. Nov 2009 B1
7617541 Plotkin et al. Nov 2009 B2
7627598 Burke Dec 2009 B1
7627617 Kavuri et al. Dec 2009 B2
7636743 Erofeev Dec 2009 B2
7651593 Prahlad et al. Jan 2010 B2
7661028 Erofeev Feb 2010 B2
7668798 Scanlon et al. Feb 2010 B2
7669029 Mishra et al. Feb 2010 B1
7685126 Patel et al. Mar 2010 B2
7689467 Belanger et al. Mar 2010 B1
7702533 Barnard et al. Apr 2010 B2
7702670 Duprey et al. Apr 2010 B1
7707184 Zhang et al. Apr 2010 B1
7716171 Kryger May 2010 B2
7734715 Hyakutake et al. Jun 2010 B2
7739235 Rousseau et al. Jun 2010 B2
7810067 Kaelicke et al. Oct 2010 B2
7831553 Prahlad et al. Nov 2010 B2
7831622 Prahlad et al. Nov 2010 B2
7840533 Prahlad et al. Nov 2010 B2
7840537 Gokhale et al. Nov 2010 B2
7870355 Erofeev Jan 2011 B2
7904681 Bappe Mar 2011 B1
7930476 Castelli et al. Apr 2011 B1
7962455 Erofeev Jun 2011 B2
7962709 Agrawal Jun 2011 B2
8005795 Galipeau et al. Aug 2011 B2
8024294 Kottomtharayil Sep 2011 B2
8121983 Prahlad et al. Feb 2012 B2
8166263 Prahlad Apr 2012 B2
8190565 Prahlad et al. May 2012 B2
8195623 Prahlad et al. Jun 2012 B2
8204859 Ngo Jun 2012 B2
8219524 Gokhale Jul 2012 B2
8271830 Erofeev Sep 2012 B2
8285684 Prahlad et al. Oct 2012 B2
8352422 Prahlad et al. Jan 2013 B2
8463751 Kottomtharayil Jun 2013 B2
8489656 Erofeev Jul 2013 B2
8504515 Prahlad et al. Aug 2013 B2
8504517 Agrawal Aug 2013 B2
8572038 Erofeev Oct 2013 B2
8589347 Erofeev Nov 2013 B2
20010029512 Oshinsky et al. Oct 2001 A1
20010029517 De Meno et al. Oct 2001 A1
20010032172 Moulinet et al. Oct 2001 A1
20010035866 Finger et al. Nov 2001 A1
20010042222 Kedem et al. Nov 2001 A1
20010044807 Kleiman et al. Nov 2001 A1
20020002557 Straube et al. Jan 2002 A1
20020004883 Nguyen et al. Jan 2002 A1
20020019909 D'Errico Feb 2002 A1
20020023051 Kunzle et al. Feb 2002 A1
20020040376 Yamanaka et al. Apr 2002 A1
20020042869 Tate et al. Apr 2002 A1
20020049626 Mathias et al. Apr 2002 A1
20020049718 Kleiman et al. Apr 2002 A1
20020049738 Epstein Apr 2002 A1
20020049778 Bell et al. Apr 2002 A1
20020062230 Morag et al. May 2002 A1
20020069324 Gerasimov et al. Jun 2002 A1
20020083055 Pachet et al. Jun 2002 A1
20020091712 Martin et al. Jul 2002 A1
20020103848 Giacomini et al. Aug 2002 A1
20020107877 Whiting et al. Aug 2002 A1
20020112134 Ohran et al. Aug 2002 A1
20020120741 Webb et al. Aug 2002 A1
20020124137 Ulrich et al. Sep 2002 A1
20020133511 Hostetter et al. Sep 2002 A1
20020133512 Milillo et al. Sep 2002 A1
20020161753 Inaba et al. Oct 2002 A1
20020174107 Poulin Nov 2002 A1
20020174416 Bates et al. Nov 2002 A1
20020181395 Foster et al. Dec 2002 A1
20030005119 Mercier et al. Jan 2003 A1
20030018657 Monday Jan 2003 A1
20030023893 Lee et al. Jan 2003 A1
20030028736 Berkowitz et al. Feb 2003 A1
20030033308 Patel et al. Feb 2003 A1
20030061491 Jaskiewicz et al. Mar 2003 A1
20030079018 Lolayekar et al. Apr 2003 A1
20030097296 Putt May 2003 A1
20030126200 Wolff Jul 2003 A1
20030131278 Fujibayashi Jul 2003 A1
20030135783 Martin et al. Jul 2003 A1
20030161338 Ng et al. Aug 2003 A1
20030167380 Green et al. Sep 2003 A1
20030177149 Coombs Sep 2003 A1
20030177321 Watanabe Sep 2003 A1
20030187847 Lubbers et al. Oct 2003 A1
20030225800 Kavuri Dec 2003 A1
20040006572 Hoshino et al. Jan 2004 A1
20040006578 Yu et al. Jan 2004 A1
20040010487 Prahlad et al. Jan 2004 A1
20040015468 Beier et al. Jan 2004 A1
20040039679 Norton et al. Feb 2004 A1
20040078632 Infante et al. Apr 2004 A1
20040098425 Wiss et al. May 2004 A1
20040107199 Dairymple et al. Jun 2004 A1
20040117438 Considine et al. Jun 2004 A1
20040117572 Welsh et al. Jun 2004 A1
20040133634 Luke et al. Jul 2004 A1
20040139128 Becker et al. Jul 2004 A1
20040193625 Sutoh et al. Sep 2004 A1
20040193953 Callahan et al. Sep 2004 A1
20040205206 Naik et al. Oct 2004 A1
20040225437 Endo et al. Nov 2004 A1
20040230829 Dogan et al. Nov 2004 A1
20040236958 Teicher et al. Nov 2004 A1
20040249883 Srinivasan et al. Dec 2004 A1
20040250033 Prahlad et al. Dec 2004 A1
20040254919 Giuseppini Dec 2004 A1
20040260678 Verbowski et al. Dec 2004 A1
20040267777 Sugimura et al. Dec 2004 A1
20040267835 Zwilling et al. Dec 2004 A1
20040267836 Armangau et al. Dec 2004 A1
20050027892 McCabe et al. Feb 2005 A1
20050033800 Kavuri et al. Feb 2005 A1
20050044114 Kottomtharayil et al. Feb 2005 A1
20050060613 Cheng et al. Mar 2005 A1
20050080928 Beverly et al. Apr 2005 A1
20050086443 Mizuno et al. Apr 2005 A1
20050108292 Burton et al. May 2005 A1
20050114406 Borthakur et al. May 2005 A1
20050131900 Palliyll et al. Jun 2005 A1
20050138306 Panchbudhe et al. Jun 2005 A1
20050144202 Chen Jun 2005 A1
20050172073 Voigt et al. Aug 2005 A1
20050187982 Sato Aug 2005 A1
20050187992 Prahlad et al. Aug 2005 A1
20050188109 Shiga et al. Aug 2005 A1
20050188254 Urabe et al. Aug 2005 A1
20050193026 Prahlad et al. Sep 2005 A1
20050198083 Saika et al. Sep 2005 A1
20050228875 Monitzer et al. Oct 2005 A1
20050246376 Lu et al. Nov 2005 A1
20050246510 Retnamma et al. Nov 2005 A1
20050254456 Sakai Nov 2005 A1
20050268068 Ignatius et al. Dec 2005 A1
20060005048 Osaki et al. Jan 2006 A1
20060010154 Prahlad et al. Jan 2006 A1
20060010227 Atluri Jan 2006 A1
20060010341 Kodama Jan 2006 A1
20060020616 Hardy et al. Jan 2006 A1
20060034454 Damgaard et al. Feb 2006 A1
20060047805 Byrd et al. Mar 2006 A1
20060047931 Saika Mar 2006 A1
20060092861 Corday et al. May 2006 A1
20060107089 Jansz et al. May 2006 A1
20060120401 Harada et al. Jun 2006 A1
20060129537 Torii et al. Jun 2006 A1
20060136685 Griv et al. Jun 2006 A1
20060155946 Ji Jul 2006 A1
20060171315 Choi et al. Aug 2006 A1
20060174075 Sutoh Aug 2006 A1
20060215564 Breitgand et al. Sep 2006 A1
20060230244 Amarendran et al. Oct 2006 A1
20060242371 Shono et al. Oct 2006 A1
20060242489 Brockway et al. Oct 2006 A1
20070033437 Kawamura Feb 2007 A1
20070043956 El Far et al. Feb 2007 A1
20070050547 Sano Mar 2007 A1
20070055737 Yamashita et al. Mar 2007 A1
20070094467 Yamasaki Apr 2007 A1
20070100867 Celik et al. May 2007 A1
20070112897 Asano et al. May 2007 A1
20070113006 Elliott et al. May 2007 A1
20070124347 Vivian et al. May 2007 A1
20070124348 Claborn et al. May 2007 A1
20070130373 Kalwitz Jun 2007 A1
20070143371 Kottomtharayil Jun 2007 A1
20070143756 Gokhale Jun 2007 A1
20070179990 Zimran et al. Aug 2007 A1
20070183224 Erofeev Aug 2007 A1
20070185852 Erofeev Aug 2007 A1
20070185937 Prahlad et al. Aug 2007 A1
20070185938 Prahlad et al. Aug 2007 A1
20070185939 Prahland et al. Aug 2007 A1
20070185940 Prahlad et al. Aug 2007 A1
20070186042 Kottomtharayil et al. Aug 2007 A1
20070186068 Agrawal Aug 2007 A1
20070198602 Ngo et al. Aug 2007 A1
20070226438 Erofeev Sep 2007 A1
20070244571 Wilson et al. Oct 2007 A1
20070260609 Tulyani Nov 2007 A1
20070276848 Kim Nov 2007 A1
20070288536 Sen et al. Dec 2007 A1
20080016126 Kottomtharayil et al. Jan 2008 A1
20080016293 Saika Jan 2008 A1
20080028009 Ngo Jan 2008 A1
20080059515 Fulton Mar 2008 A1
20080077634 Quakenbush Mar 2008 A1
20080103916 Camarador et al. May 2008 A1
20080104357 Kim et al. May 2008 A1
20080114815 Sutoh May 2008 A1
20080147878 Kottomtharayil et al. Jun 2008 A1
20080183775 Prahlad et al. Jul 2008 A1
20080205301 Burton et al. Aug 2008 A1
20080208933 Lyon Aug 2008 A1
20080228987 Yagi Sep 2008 A1
20080229037 Bunte et al. Sep 2008 A1
20080243914 Prahlad et al. Oct 2008 A1
20080243957 Prahlad et al. Oct 2008 A1
20080243958 Prahlad et al. Oct 2008 A1
20080244205 Amano et al. Oct 2008 A1
20080250178 Haustein et al. Oct 2008 A1
20080306954 Hornqvist Dec 2008 A1
20080313497 Hirakawa Dec 2008 A1
20090013014 Kern Jan 2009 A1
20090044046 Yamasaki Feb 2009 A1
20090113056 Tameshige et al. Apr 2009 A1
20090150462 McClanahan et al. Jun 2009 A1
20090182963 Prahlad et al. Jul 2009 A1
20090187944 White et al. Jul 2009 A1
20090319534 Gokhale Dec 2009 A1
20090319585 Gokhale Dec 2009 A1
20100005259 Prahlad Jan 2010 A1
20100049753 Prahlad et al. Feb 2010 A1
20100094808 Erofeev Apr 2010 A1
20100100529 Erofeev Apr 2010 A1
20100122053 Prahlad et al. May 2010 A1
20100131461 Prahlad et al. May 2010 A1
20100131467 Prahlad et al. May 2010 A1
20100145909 Ngo Jun 2010 A1
20100153338 Ngo et al. Jun 2010 A1
20100179941 Agrawal et al. Jul 2010 A1
20100205150 Prahlad et al. Aug 2010 A1
20100211571 Prahlad et al. Aug 2010 A1
20110066599 Prahlad et al. Mar 2011 A1
20110246429 Prahlad et al. Oct 2011 A1
20110295804 Erofeev Dec 2011 A1
20110295806 Erofeev Dec 2011 A1
20120011336 Saika Jan 2012 A1
20120317074 Ngo Dec 2012 A1
20130006926 Erofeev Jan 2013 A1
20130006938 Prahlad et al. Jan 2013 A1
20130006942 Prahlad et al. Jan 2013 A1
20130254166 Kottomtharayil Sep 2013 A1
Foreign Referenced Citations (34)
Number Date Country
2006331932 Dec 2006 AU
2632935 Dec 2006 CA
0259912 Mar 1988 EP
0405926 Jan 1991 EP
0467546 Jan 1992 EP
0774715 May 1997 EP
0809184 Nov 1997 EP
0862304 Sep 1998 EP
0899662 Mar 1999 EP
0981090 Feb 2000 EP
1174795 Jan 2002 EP
1349089 Jan 2003 EP
1349088 Oct 2003 EP
1579331 Sep 2005 EP
1974296 Oct 2008 EP
2256952 Dec 1992 GB
2411030 Aug 2005 GB
05189281 Jul 1993 JP
06274605 Sep 1994 JP
09016463 Jan 1997 JP
11259348 Sep 1999 JP
200347811 Dec 2000 JP
WO 9303549 Feb 1993 WO
WO 9513580 May 1995 WO
WO 9839707 Sep 1998 WO
WO 9912098 Mar 1999 WO
WO 9914692 Mar 1999 WO
WO 02095632 Nov 2002 WO
WO 03028183 Apr 2003 WO
WO 2004034197 Apr 2004 WO
WO 2005055093 Jun 2005 WO
WO 2005086032 Sep 2005 WO
WO 2007053314 May 2007 WO
WO 2010068570 Jun 2010 WO
Non-Patent Literature Citations (43)
Entry
Armstead et al., “Implementation of a Campus-Wide Distributed Mass Storage Service: The Dream vs. Reality,” IEEE, 1995, pp. 190-199.
Arneson, “Development of Onnniserver; Mass Storage Systems,” Control Data Corporation, 1990, pp. 88-93.
Arneson, “Mass Storage Archiving in Network Environments” IEEE, 1998, pp. 45-50.
Arneson, David A., Control Data Corporation, Development of Omniserver; Mass Storage Systems, 1990, pp. 88-93.
Ashton, et al., “Two Decades of policy-based storage management for the IBM mainframe computer”, www.research.ibm.conn, 19 pages, published Apr. 10, 2003, printed Jan. 3, 2009., www.research.ibm.conn, Apr. 10, 2003, pp. 19.
Cabrera, et al. “ADSM: A Multi-Platform, Scalable, Back-up and Archive Mass Storage System,” Digest of Papers, Compcon '95, Proceedings of the 40th IEEE Computer Society International Conference, Mar. 5, 1995-Mar. 9, 1995, pp. 420-427, San Francisco, CA.
Calvert, Andrew, “SQL Server 2005 Snapshots”, published Apr. 3, 2006, http:/www.simple-talk.com/contnet/print.aspx?article=137, 6 pages.
Eitel, “Backup and Storage Management in Distributed Heterogeneous Environments,” IEEE, 1994, pp. 124-126.
Gait, “The Optical File Cabinet: A Random-Access File system for Write-Once Optical Disks,” IEEE Computer, vol. 21, No. 6, pp. 11-22 (1988).
Gray, et al. “Transaction processing: concepts andtechniques” 1994, Morgan Kaufmann Publishers, USA, pp. 604-609, 646-655.B7.
Harrington, “The RFP Process: How to Hire a Third Party”, Transportation & Distribution, Sep. 1988, vol. 39, Issue 9, in 5 pages.
http://en.wikipedia.org/wiki/Naive—Bayes—classifier, printed on Jun. 1, 2010, in 7 pages.
Dander, “Launching Storage-Area Net,” Data Communications, US, McGraw Hill, NY, vol. 27, No. 4(Mar. 21, 1998), pp. 64-72.
Kashyap, et al., “Professional Services Automation: A knowledge Mangement approach using LSI and Domain specific Ontologies”, FLAIRS-01 Proceedings, 2001, pp. 300-302.
Lyon J., Design considerations in replicated database systems for disaster protection, COMPCON 1988, Feb. 29, 1988, pp. 428-430.
Microsoft Corporation, “Microsoft Exchange Server: Best Practices for Exchange Database Management,” 1998.
Rosenblum et al., “The Design and Implementation of a Log-Structure File System,” Operating Systems Review SIGOPS, vol. 25, No. 5, New York, US, pp. 1-15 (May 1991).
The Oracle8 Replication Manual, Part No. A58245-01; Chapters 1-2; Dec. 1, 1997; obtained from website: http://download-west.oracle.com/docs/cd/A64702—01/doc/server.805/a58245/toc.htm on May 20, 2009.
Veritas Software Corporation, “Veritas Volume Manager 3.2, Administrator's Guide,” Aug. 2001, 360 pages.
Wiesmann M, Database replication techniques: a three parameter classification, Oct. 16, 2000, pp. 206-215.
Final Office Action for Japanese Application No. 2003531581, Mail Date Mar. 24, 2009, 6 pages.
International Search Report and Written Opinion dated Nov. 13, 2009, PCT/US2007/081681.
First Office Action for Japanese Application No. 2003531581, Mail Date Jul. 8, 2008, 8 pages.
International Preliminary Report on Patentability, PCT Application No. PCT/US2009/066880, mailed Jun. 23, 2011, in 9 pages.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2011/030396, mailed Jul. 18, 2011, in 20 pages.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2011/38436, mailed Sep. 21, 2011, in 18 pages.
Canadian Office Action dated Sep. 24, 2012, Application No. 2,632,935, 2 pages.
European Examination Report; Application No. 06848901.2, Apr. 1, 2009, pp. 7.
Examiner's First Report ; Application No. 2006331932, May 11, 2011 in 2 pages.
Canadian Office Action dated Dec. 29, 2010, Application No. CA2546304.
Examiner's Report for Australian Application No. 2003279847, Dated Dec. 9, 2008, 4 pages.
First Office Action in Canadian application No. 2,632,935 dated Feb. 16, 2012, 5 pages.
International Search Report dated May 15, 2007, PCT/US2006/048273.
Second Examination Report in EU Appl. No. 06 848 901.2-2201 dated Dec. 3, 2010.
International Search Report and Written Opinion dated Mar. 25, 2010, PCT/US2009/066880.
International Preliminary Report on Patentability and Written Opinion in PCT/US2011/030396 mailed Oct. 2, 2012.
International Preliminary Report on Patentability and Written Opinion in PCT/US2011/038436 mailed Dec. 4, 2012.
International Search Report dated Dec. 28, 2009, PCT/US204/038324.
International Search Report and Written Opinion dated Jan. 11, 2006, PCT/US2004/038455.
Exam Report in Australian Application No. 2009324800 dated Jun. 17, 2013.
IBM, “Intelligent Selection of Logs Required During Recovery Processing”, ip.com, Sep. 16, 2002, 4 pages.
IBM, “Near Zero Impact Backup and Data Replication Appliance”, ip.com, Oct. 18, 2004, 5 pages.
Park et al., “An Efficient Logging Scheme for Recoverable Distributed Shared Memory Systems”, IEEE, 1997, 9 pages.
Related Publications (1)
Number Date Country
20140074777 A1 Mar 2014 US
Continuations (1)
Number Date Country
Parent 12749280 Mar 2010 US
Child 13957824 US