This disclosure generally relates to pedaled drivetrains. More particularly, this disclosure generally relates to selectively changing a pedaled drivetrain from transmission of torque in a first direction only to transmission of torque in both rotational directions.
Cyclic motion can be very efficient power output for transportation and/or movement and is used in bicycles, tricycles, and other land-based vehicles; pedal boats and other water vehicles; and ultralight aircraft, microlight aircraft, and other aerial vehicles. Similarly, the biomechanics of the cyclic motion may produce lower impact on a user, reducing the risk of joint injury, skeletal injury, muscle injury, or combinations thereof. In contrast to other exercises such as running, cyclic motion may avoid repeated impacts on the body. Therefore, cyclic motion is a common exercise technique for fitness and/or rehabilitation. For example, elliptical running machines, stationary bicycles, handcycles, and other cyclic and/or rotary motion machines may provide resistance training or endurance training with little or no impacts upon the user's body.
A human-powered cycling system may have a drivetrain to direct energy from a user to a wheel, flywheel, or other rotating component of the cycling system. The drivetrain may transmit energy from the user to a rotational axis in only one direction about the rotational axis, or the drivetrain may transmit energy from the user to the rotational axis in both directions about the rotational axis. For example, many conventional bicycles include a freewheel hub in the rear of the bicycle that may receive energy from a drive mechanism, such as a chain, to rotate the rear wheel in a forward direction and propel the bicycle. Rearward rotation of the drive mechanism relative to the wheel may be not transferred. For example, “backpedaling” on a bicycle with a freewheel hub may result in little or no energy transmitted to the rear wheel. Additionally, the freewheel hub may freely rotate in the forward direction relative to the drive mechanism (i.e., rotate in the forward direction faster than the drive mechanism), allowing the bicycle to roll forward faster than a user pedals the drive mechanism.
Some bicycles may have a direct drive or “fixed gear” drivetrain that allows a user to slow a forward motion and/or propel the bicycle in a rearward direction by backpedaling. In such bicycles, the direct drive may couple the drive mechanism to the wheel, such that rotational movement of the drive mechanism in either direction is transmitted to the wheel and rotational movement of the wheel in either direction is similarly transmitted to the drive mechanism.
Conventional exercise devices utilize either a freewheel hub to simulate a conventional bicycle experience for exercise and/or training purposes or a direct drive to increase the energy requirements from the user and provide a more intense training experience.
In some embodiments, a pedaled drivetrain includes a drive mechanism, a wheel, a freewheel hub, and a locking mechanism. The wheel has a rotational axis. The freewheel hub connects the drive mechanism to the wheel, and the freewheel hub transmits torque from the drive mechanism to the wheel in a first rotational direction around the rotational axis. The locking mechanism has a locked state and an unlocked state. The locked state rotationally fixes a component of the drive mechanism to the wheel relative to the rotational axis.
In some embodiments, a cycling system includes a frame, handlebars supported by the frame, and a drivetrain supported by the frame. The drivetrain includes a drive mechanism configured to receive an input torque from a user, a wheel, and a freewheel hub connecting the drive mechanism to the wheel and configured to transmit the input torque from the drive mechanism to the wheel in a first rotational direction of the wheel only. The drivetrain further includes a locking mechanism connected to the drive mechanism and the wheel. The locking mechanism has a locked state and an unlocked state. The locked state is configured to transmit at least 95% of the input torque to the wheel in the first rotational direction and in a second rotational direction of the wheel. The second rotational direction is opposite the first rotational direction.
In some embodiments, a method of transmitting torque in a pedaled drivetrain includes receiving a first input force with at least one pedal, converting the first input force to a first input torque in a drivetrain in a first rotational direction of the drivetrain, and transmitting the first input torque through a freewheel hub to a wheel in a first rotational direction of the wheel. A locking mechanism is then moved from an unlocked state to a locked state to rotationally fix a component of the drivetrain to the wheel. The method further includes receiving a second input force at the at least one pedal, converting the second input force to a second input torque in a drivetrain in a second rotational direction of the drivetrain opposite the first rotational direction of the drivetrain; and transmitting the second input torque through the locking mechanism to the wheel in the second rotational direction of the wheel.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Additional features and advantages will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of the teachings herein. Features and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. Features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
In order to describe the manner in which the above-recited and other features of the disclosure can be obtained, a more particular description will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. For better understanding, the like elements have been designated by like reference numbers throughout the various accompanying figures. While some of the drawings may be schematic or exaggerated representations of concepts, at least some of the drawings may be drawn to scale. Understanding that the drawings depict some example embodiments, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
In some embodiments of a human-powered cycling system according to the present disclosure, a drivetrain may include a freewheel hub with a selectively actuatable locking mechanism to bypass the freewheel hub and create a direct drive linkage. As described herein, a lockable hub may provide additional training and/or propulsion options while increasing efficiency, safety, and enjoyment for a user.
In some embodiments, an exercise bicycle 100 may use one or more displays 112 to display feedback or other data regarding the operation of the exercise bicycle 100. In some embodiments, the drivetrain 104 may be in data communication with the display 112 such that the display 112 presents real-time information collected from one or more sensors on the drivetrain 104. For example, the display 112 may present information to the user regarding cadence, wattage, simulated distance, duration, simulated speed, resistance, incline, heart rate, respiratory rate, other measured or calculated data, or combinations thereof. In other examples, the display 112 may present use instructions to a user, such as workout instructions for predetermined workout regimens (stored locally or accessed via a network); live workout regimens, such as live workouts broadcast via a network connection; or simulated bicycle rides, such as replicated stages of real-world bicycle races. In yet other examples, the display 112 may present one or more entertainment options to a user during usage of the exercise bicycle 100. The display 112 may display broadcast or cable television, locally stored videos and/or audio, video and/or streamed via a network connection, video and/or audio displayed from a connected device (such as a smartphone, laptop, or other computing device connected to the display 112) or other entertainment sources. In other embodiments, an exercise bicycle 100 may lack a display 112 and provide information regarding the drivetrain 104 or other exercise session data to an external or peripheral device. For example, the exercise bicycle 100 may communicate with a smartphone, wearable device, tablet computer, laptop, or other electronic device to allow a user to log their exercise information.
The exercise bicycle 100 may have a computing device 114 in data communication with one or more components of the exercise bicycle 100. For example, the computing device 114 may allow the exercise bicycle 100 to collect information from the drivetrain 104 and display such information in real-time. In other examples, the computing device 114 may send a command to activate one or more components of the frame 102 and/or drivetrain 104 to alter the behavior of the exercise bicycle 100. For example, the frame 102 may move to simulate an incline or decline displayed on the display 112 during a training session. Similarly, the drivetrain 104 may change to alter resistance, gear, or other characteristics to simulate different experiences for a user. The drivetrain 104 may increase resistance to simulate climbing a hill or other experience that requires greater energy input from the user, or the drivetrain 104 may change gear (e.g., physically or “virtually”) and the distance calculated by the computing device 114 may reflect the selected gear.
In some embodiments, the drivetrain 104 may be in data communication with the display 112 such that the drivetrain 104 may change in response to simulate one or more portions of an exercise experience. The display 112 may present an incline to a user and the drivetrain 104 may increase in resistance to reflect the simulated incline. In at least one embodiment, the display 112 may present an incline to the user and the frame 102 may incline and the drivetrain 104 may increase resistance simultaneously to create an immersive experience for a user.
The computing device 114 may allow tracking of exercise information, logging of exercise information, communication of exercise information to an external electronic device, or combinations thereof with or without a display 112. For example, the computing device 114 may include a communications device that allows the computing device 114 to communicate data to a third-party storage device (e.g., internet and/or cloud storage) that may be subsequently accessed by a user.
In some embodiments, the drivetrain 104 may include an input component that receives an input force from the user and a drive mechanism that transmits the force through the drivetrain 104 to a hub that moves a wheel 106. In the embodiment illustrated in
The hub 122 may be a freewheel hub 122 that allows the wheel 106 to continue rotating if the rotational velocity of the wheel 106 exceeds that of the axle 120. The hub 122 may be a direct drive or “fixed gear” hub 122 that communicates torque between the axle 120 and the wheel 106 in both directions about the rotational axis 124 of the wheel 106, axle 120, and hub 122. In some embodiments, the hub 122 may be selectively movable from a freewheel behavior in an unlocked state to a direct drive behavior in a locked state to further enhance a user's experience and/or provide additional exercise options to a user.
The unlocked state may transmit an input torque from the drivetrain to a wheel in a first rotational direction and may transmit little or no torque in a second rotational direction. For example, the unlocked state may transmit substantially all of an input torque (less drivetrain losses and up to a tensile or other yield strength of the components) in the first rotational direction and less than 5% of an input torque in the second rotational direction. In another example, the unlocked state may transmit substantially all of an input torque in the first rotational direction and less than 3% of an input torque in the second rotational direction. In yet another example, the unlocked state may transmit substantially all of an input torque in the first rotational direction and less than 1% of an input torque in the second rotational direction. In at least some examples, the unlocked state may transmit less than 0.1% of an input torque in the second rotational direction.
The locked state may transmit substantially all of an input torque (less drivetrain losses and up to a tensile or other yield strength of the components) in the first rotational direction and in the second rotational direction. In some embodiments, the locked state may transmit greater than 95% of an input torque in the first rotational direction and in the second rotational direction. In other embodiments, the locked state may transmit greater than 97% of an input torque in the first rotational direction and in the second rotational direction. In yet other embodiments, the locked state may transmit greater than 99% of an input torque in the first rotational direction and in the second rotational direction.
In some embodiments, the locked state may transmit greater than 300 Newton-meters (N-m) of torque from the drivetrain to the wheel in the first rotational direction and second rotational direction without slipping of the drivetrain and wheel relative to one another. In other embodiments, the locked state may transmit greater than 400 N-m of torque from the drivetrain to the wheel in the first rotational direction and second rotational direction without slipping of the drivetrain and wheel relative to one another. In some embodiments, the locked state may transmit greater than 500 N-m of torque from the drivetrain to the wheel in the first rotational direction and second rotational direction without slipping of the drivetrain and wheel relative to one another.
In some embodiments in the unlocked state, it is possible for the pedals 116 of the drivetrain 104 to continue moving after input from a user has ceased. For example, the rotational inertia of the wheel 106 may urge the pedals 116 to continue rotating without further input from the user. For safety purposes, a brake 123 may be positioned on or supported by the frame 102 and configured to stop or slow the wheel 106 or other part of the drivetrain 104.
In some embodiments, the brake 123 may be a friction brake, such as a drag brake, a drum brake, caliper brake, a cantilever brake, or a disc brake, that may be actuated mechanically, hydraulically, pneumatically, electronically, by other means, or combinations thereof. In other embodiments, the brake 123 may be a magnetic brake that slows and/or stops the movement of the wheel 106 and/or drivetrain 104 through the application of magnetic fields. In some examples, the brake may be manually forced in contact with the wheel 106 by a user rotating a knob to move the brake 123. In other examples, the brake 123 may be a disc brake with a caliper hydraulically actuated with a lever on the handlebars 110. In yet other examples, the brake may be actuated by the computing device 114 in response to one or more sensors.
In some embodiments, the changing of the drivetrain 104 from a freewheel (unidirectional) drivetrain to a direct-drive (bi-directional) drivetrain may be limited by a lockout device. For example, the drivetrain 104 may be movable between the locked state and the unlocked state below a defined rotational velocity of the wheel 106. In some embodiments, the lockout device may prevent the movement between the locked state and the unlocked state when the wheel 106 has a rotational velocity greater than 60 revolutions per minute (RPM). In other embodiments, the lockout device may prevent the movement between the locked state and the unlocked state when the wheel 106 has a rotational velocity greater than 30 RPM. In yet other embodiment, the lockout device may prevent the movement between the locked state and the unlocked state when the wheel 106 has a rotational velocity greater than 10 RPM. In further embodiments, the lockout device may prevent the movement between the locked state and the unlocked state when the wheel 106 has a rotational velocity greater than 0 RPM. In at least one embodiment, the lockout device may prevent the movement between the locked state and the unlocked state unless the brake 123 is engaged with the wheel 106 and/or drivetrain 104 to prevent movement of the wheel 106 and/or drivetrain.
In other embodiments, the lockout device and/or the safety brake may be in data communication with one or more sensors, such as a speed sensor, a torque sensor, a wattmeter, or other sensor to measure and monitor the user's inputs and movement of the drivetrain 104 and/or wheel 106.
The hub 222 may be a freewheel hub 222 that allows the wheel 206 to continue rotating if the rotational velocity of the wheel 206 exceeds that of the axle 220. The hub 222 may be a direct drive hub 222 that communicates torque between the axle 220 and the wheel 206 in both directions about the rotational axis 224 of the wheel 206, axle 220, and hub 222. In some embodiments, the hub 222 may be selectively movable from a freewheel behavior to a direct drive behavior to further enhance a user's experience and/or provide additional exercise options to a user.
The hub 322 may be a freewheel hub 322 that allows the wheel 306 to continue rotating if the rotational velocity of the wheel 306 exceeds that of the axle 320. The hub 322 may be a direct drive hub 322 that communicates torque between the axle 320 and the wheel 306 in both directions about the rotational axis 324 of the wheel 306, axle 320, and hub 322. In some embodiments, the hub 322 may be selectively movable from a freewheel behavior to a direct drive behavior to further enhance a user's experience and/or provide additional exercise options to a user. In some embodiments, the hub 322 may be movable between a locked position and an unlocked position by a controller 326 positioned on the handlebars 310 or other location accessible by the user during use of the bicycle 300.
For example, a user may apply a forward torque 428 to the pedals 416, which is transmitted through the chain 418 to the axle 420. The drivetrain 404 rotationally locks the axle 420 and wheel 406 in the locked state. Movement of the wheel 406, conversely, may apply a torque to the axle 420 through the hub 422, moving the pedals 416. For example, when the wheel is moving in the first rotational direction 430, the pedals 416 also move. The user may apply a rearward torque 438 through the pedals 416 to decelerate the wheel 406 (i.e., accelerate the wheel 406 in the second rotational direction 436) without the need for other brakes on the wheel 406 itself.
In some embodiments, the drivetrain may transition between the unlocked state and the locked state during movement of the drivetrain, and in other embodiments, the drivetrain may transition from the unlocked state to the locked state when the drivetrain is stationary. In yet other embodiments, a drivetrain may be configured to transition from the unlocked state to the locked state both during movement and while stationary. In at least one example, a drivetrain may transition between the unlocked state and the locked state while the axle of the drivetrain and the wheel are moving at an equivalent rotational velocity.
In some embodiments, the drivetrain 504 may include a locking mechanism 540. The locking mechanism 540 may be movable between an unlocked state (illustrated in
In some embodiments, the drive member 544 may be rotationally fixed relative to the drive mechanism (e.g., the belt 518) and/or the axle 520, such that the drive member 544 rotates at the same rotational velocity as the axle 520. The wheel member 542 may be rotationally fixed relative to the wheel 506, such that the wheel member 542 rotates at the same rotational velocity as the wheel 506. While in the illustrated embodiment of
In other embodiments, the wheel member 542 and/or drive member 544 may include a unidirectional bearing. The freewheel hub 522 may transmit torque in a first rotational direction 530. In a locked state, the unidirectional bearing may transmit torque through the locking mechanism 540 in a second rotational direction. In the locked state, therefore, the freewheel hub 522 and unidirectional bearing of the locking mechanism 540 may work in concert to rotationally fix the wheel 506 to the drivetrain 504.
The drive member 544 may be selectively coupled to the wheel member 542 to transfer torque from the drive member 544 to the wheel member 542, and for the wheel member 542 to transfer torque to the drive member 544. Engaging the wheel member 542 and drive member 544 may allow a user greater control over the movement of the wheel 506 and/or may enhance a user's exercise experience.
In some embodiments, the wheel member 542 and the drive member 544 may engage by one or more interlocking mechanical features. For example, the embodiment illustrated in
As the hub 522 is bypassed in the locked state, in the embodiment illustrated in
In some embodiments, the wheel member 542 of the locking mechanism 540 may be rotationally fixed to the wheel 506 and axially movable relative to the wheel 506 one or more posts 552. In other embodiments, the wheel member 542 may be movable relative to the wheel 506 in the axial direction 546 along another mechanism and may transfer torque to the wheel 506 through one or more splines, frictional engagement, magnetic engagement, viscous engagement, or combinations thereof.
In some embodiments, the wheel member 642 may be movable by a pushrod 654 that may apply an axial force to move the wheel member 642 in the axial direction 646. The axial position of the pushrod 654 may be selected by the user. In other embodiments, the axial position of the pushrod 654 may be selected by an electric motor in data communication with a computing device, such as a computing device described in relation to
In some embodiments, the axial position of the pushrod 654 may be at least partially controlled by a handle 656. The handle 656 may allow the user to manually adjust the position of the pushrod 654 relative to the wheel 606 and/or drive member 644. For example, the handle 656 may be movable in the axial direction 646 to urge the pushrod 654 in the axial direction 646. In other examples, the handle 656 may be rotatable with a sloped surface to urge the pushrod 654 in the axial direction 646.
The handle 656 may urge the pushrod 654 axially relative to the wheel member 642. In some embodiments, the wheel member 642 and drive member 644 may engage via interlocking features 648 on the drive member 644 and complementary interlocking features 650 on the wheel member 642. In some instances, the interlocking features 648 and complementary interlocking features 650 may be misaligned. In such instances, urging the wheel member 642 toward the drive member 644 may grind or damage the interlocking features 648 and complementary interlocking features 650. In other embodiments, the locking mechanism 640 may include a motor 672 that urges the pushrod 654 and/or wheel member 642 in the axial direction 646. For example, the locking mechanism 640 may include an electric motor, a pneumatic piston-and-cylinder, a hydraulic piston-and-cylinder, a linear magnet, or other actuator to urge the wheel member 642 and drive member 644 toward one another. In other examples, the motor 672 may apply a torque to the handle 656 to rotate the handle 656 and urge the pushrod 654 and/or wheel member 642 in the axial direction 646.
In some embodiments, a biasing element 658 may be positioned between the pushrod 654 and the wheel member 642. For example, the biasing element 658 may apply a force to the wheel member 642 based upon the axial position of the pushrod 654 (e.g., based upon Hooke's Law). In some examples, the biasing element 658 may be a coil spring, such as illustrated in
In some embodiments, the handle 656 may have one or more surface features 662 to increase or improve a user's grip or tactile feedback with the handle 656. For example, the surface features may include a textured surface, a rubberized surface, protrusions, recesses, or other features that may allow a user to identify and operate the handle more easily without visual confirmation.
In some embodiments, the handle 656 may be bistable. For example, a bistable handle 656 may have two positions in which the handle 656 is stable. The embodiment of a handle 656 illustrated in
In some embodiments, the shallow end 668 of the sloped surface 664 may have a recess or depression 670 therein, such that the pushrod may rest in the recess or depression 670, creating a second stable position of the handle 656. When located in any position between the first stable position and the second stable position, the contact from the pushrod may bias the handle 656 toward the first stable position. In the embodiment of a locking mechanism and handle 656 of
In other embodiments, the sloped surface may be continuous and undulating about the rotational axis 624 of the handle 656. In such embodiments, the handle 656 may rotate through indexed stable positions that alternate between a locked state and an unlocked state. For example, continuous rotation of the handle 656 in a first direction may cycle the locking mechanism between a locked state and an unlocked state.
While
The locking mechanism 740 may have a wheel member 742 and a drive member 744. In some embodiments, the drive member 744 may be driven by a drive mechanism 718 directly. In other embodiments, the drive mechanism 718 may drive at least part of an axle 720 and/or hub 722 to which the drive member 744 is rotationally fixed. The wheel member 742 may be movable in an axial direction 746 toward or away from the drive member 744. In some embodiments, the wheel member 742 and drive member 744 may be movable relative to one another by manual manipulation by a user (such as the handle 656 described in relation to
In some embodiments, a surface of the wheel member 742 may contact a surface of the drive member 744. The friction between the wheel member 742 and drive member 744 may be sufficient such that torque applied to the drive member 744 by the drive mechanism 718 may be transferred fully to the wheel member 742 (e.g., without slippage between the wheel member 742 and drive member 744) during usage. In some embodiments, the surfaces of the wheel member 742 and drive member 744 in contact with one another may be substantially flat, with little or no surface relief or other interlocking features. For example, the wheel member 742 and drive member 744 may transmit torque therebetween similar to a friction clutch plate system. In other embodiments, the wheel member 742 and drive member 744 may have one or more surface features having a height in the axial direction 746 to increase friction and/or improve torque transmission between the wheel member 742 and drive member 744.
The frictional force between the wheel member 742 and drive member 744 is at least partially related to the contact force between the wheel member 742 and drive member 744 in the axial direction 746. In some embodiments, the contact force may be provided by a rotatable handle such as described in relation to
The extensions 874 may contact or be connected to the wheel member 842. For example, the extensions 874 may be uncoupled from the wheel member 842, allowing the wheel member 842 to rotate with the wheel 806 during use. The extensions 874 may apply a force in the axial direction 846 while sliding on an outer surface 878 of the wheel member 842 as the wheel 806 and wheel member 842 continue to rotate. The electric motor 872 and extensions 874 may apply an axial force to the wheel member 842 without impairing the rotation of the wheel 806 or otherwise interrupting the use of the wheel 806. In some embodiments, the extensions 874 may slide along the outer surface 878 of the wheel member 842. In other embodiments, the extension 874 may include one or more bearings that contact outer surface 878 of the wheel member 842. In yet other embodiments, the outer surface 878 of the wheel member 842 may include one or more movable rings that may receive an axial force from the extensions 874 and transmit little or no torque from the contact with the extensions 874 to the remainder of the wheel member 842 and/or wheel 806.
In some embodiments, a wheel member and/or drive member may have one or more surface features that reduce the axial force necessary to transmit torque between the wheel member and drive member in the locked state.
The embodiment of a face gear illustrated in
As described herein, a locking mechanism may have a locked state and an unlocked state. In some embodiments, a locking mechanism may further have an intermediate state. An intermediate state may transmit some torque between a wheel member and a drive member without rotationally fixing the drive member and the wheel member. For example,
For example, the locking mechanism 1040 may have an unlocked state with the wheel member 1042 and the drive member 1044 at a spacing sufficient to transmit less than 5% of the torque therebetween, a locked state in which the wheel member 1042 and the drive member 1044 contact one another and are rotationally fixed to one another by friction forces and/or a mechanical interlock, and an intermediate state in which the fluid drag forces 1086 transmit greater than 5% of a torque between the wheel member 1042 and the drive member 1044 and the wheel member 1042 and the drive member 1044 are not rotationally fixed relative to one another. An intermediate state may be beneficial to allow the wheel member 1042 and the drive member 1044 to approach or match rotational velocities when transitioning between a locked state and an unlocked state during usage.
In some embodiments, the fluid 1082 may have a variable viscosity. For example, the fluid 1082 may be a magnetorheological fluid that changes effective viscosity with the application of a magnetic field to the fluid. In some embodiments, the fluid 1082 may have a variable viscosity with a range sufficient such that a low end of the viscosity range (i.e., a low viscosity regime with no magnetic field applied) transmits less than 5% of the torque between the drivetrain and the wheel and a high end of the viscosity range (i.e., high viscosity regime with a magnetic field applied) rotationally fixes the drivetrain and wheel in a locked state. In other words, a variable viscosity fluid may allow for a locking mechanism with a fixed spacing 1088 between the wheel member 1042 and the drive member 1044.
In some embodiments, a locking mechanism may include a wheel member and/or a drive member that is movable in a radial direction relative to a rotational axis of the wheel. For example, a pedaled drivetrain may have spatial limitations in the axial direction, and axial movement of a portion of the locking mechanism may be undesirable. In at least one example, increasing a width of a wheel, a hub, a cassette, or other portion of the drivetrain in an axial direction may require altering a frame of an existing bicycle or other device. It may be beneficial, therefore to move one or more components in a radial direction to accommodate different form factors and/or housing dimensions.
The method 1291 may further include converting the first input force to a first input torque in a first rotational direction at 1293 and transmitting the first input torque through a freewheel hub to a wheel in a first rotational direction of the wheel at 1294. The method 1291 includes moving a locking mechanism from an unlocked state to a locked state to rotationally fix at least a portion of the drivetrain to the wheel at 1295. When the locking mechanism is in the locked state, the method 1291 includes receiving a second input force from a user at 1296 and converting the second input force to a second input torque in a second rotational direction opposite the first rotational direction at 1297. The method 1291 then includes transmitting the second input torque through the locking mechanism in the locked state to the wheel in a second rotational direction of the wheel at 1298.
In some embodiments, the method may include moving the locking mechanism to an intermediate state. The intermediate state of the locking mechanism may transmit between 5% and 95% of a third input torque between the drivetrain and the wheel. For example, the intermediate state may transmit torque while allowing the drivetrain and the wheel to rotate at different rotational velocities. The locking mechanism may remain in the intermediate state until the drivetrain and the wheel have rotational velocities within 5% of one another. When a drivetrain rotational velocity at the locking mechanism and a wheel rotational velocity at the locking mechanism are within 5% of one another, the locking mechanism may move the locked state to rotationally fix the drivetrain and the wheel relative to one another.
In general, the present invention relates to selectively moving a hub in a pedaled drivetrain from an unlocked state to a locked state. The unlocked state may transmit an input torque from the drivetrain to a wheel in a first rotational direction and may transmit little or no torque in a second rotational direction. For example, the unlocked state may transmit substantially all of an input torque (less drivetrain losses and up to a tensile or other yield strength of the components) in the first rotational direction and less than 5% of an input torque in the second rotational direction. In another example, the unlocked state may transmit substantially all of an input torque in the first rotational direction and less than 3% of an input torque in the second rotational direction. In yet another example, the unlocked state may transmit substantially all of an input torque in the first rotational direction and less than 1% of an input torque in the second rotational direction.
The locked state may transmit substantially all of an input torque (less drivetrain losses and up to a tensile or other yield strength of the components) in the first rotational direction and in the second rotational direction. In some embodiments, the locked state may transmit greater than 95% of an input torque in the first rotational direction and in the second rotational direction. In other embodiments, the locked state may transmit greater than 97% of an input torque in the first rotational direction and in the second rotational direction. In yet other embodiments, the locked state may transmit greater than 99% of an input torque in the first rotational direction and in the second rotational direction.
In some embodiments, the locked state may transmit greater than 300 Newton-meters (N-m) of torque from the drivetrain to the wheel in the first rotational direction and second rotational direction without slipping of the drivetrain and wheel relative to one another. In other embodiments, the locked state may transmit greater than 400 N-m of torque from the drivetrain to the wheel in the first rotational direction and second rotational direction without slipping of the drivetrain and wheel relative to one another. In some embodiments, the locked state may transmit greater than 500 N-m of torque from the drivetrain to the wheel in the first rotational direction and second rotational direction without slipping of the drivetrain and wheel relative to one another.
In some embodiments, a pedaled drivetrain with a locked state and an unlocked state may according to the present disclosure may be used in exercise systems or devices, such as stationary bicycles, elliptical trainers, treadmills, cross-country skiing trainers, stationary handcycles, rowing machines, or other exercises systems or devices that include rotational movement of components. In other embodiments, a pedaled drivetrain with a locked state and an unlocked state may according to the present disclosure may be used in transportation and/or recreational devices and systems, such as bicycles (road bicycles, mountain bicycles, recumbent bicycles, handcycles, etc.), pedalboats, microlight aircraft, pedal cars, or other pedal-powered vehicles.
The pedaled drivetrain may be selectively moved between the locked state and unlocked state by actuating a locking mechanism to engage a wheel member and a drive member. The wheel member may be rotationally fixed to the wheel and the drive member may be rotationally fixed to a component of the drivetrain. In the unlocked state, the wheel member and drive member transmit less than 5% of an input torque therebetween in the second rotational direction. In the locked state, the wheel member and drive member may transmit greater than 95% of an input torque in the second rotational direction.
In some embodiments, the wheel member and drive member may selectively engage through the movement of the wheel member and drive member towards one another, and the wheel member and drive member may selectively disengage through the movement of the wheel member and drive member away from one another. For example, moving the locking mechanism between the locked state and the unlocked state may include moving the wheel member relative to the wheel and drivetrain. In other examples, moving the locking mechanism between the locked state and the unlocked state may include moving the drive member relative to the wheel and drivetrain. In other examples, moving the locking mechanism between the locked state and the unlocked state may include moving the both the wheel member and drive member relative to the wheel and drivetrain.
In some embodiments, moving the locking mechanism between the locked state and the unlocked state may include moving the wheel member relative to the wheel and drivetrain in an axial direction of the rotational axis of the wheel. In other examples, moving the locking mechanism between the locked state and the unlocked state may include moving the drive member relative to the wheel and drivetrain in an axial direction of the rotational axis of the wheel. In other examples, moving the locking mechanism between the locked state and the unlocked state may include moving the both the wheel member and drive member relative to the wheel and drivetrain in an axial direction of the rotational axis of the wheel. For example, the engagement of the wheel member and drive member in the axial direction may function similarly to a disc brake.
In other embodiments, moving the locking mechanism between the locked state and the unlocked state may include moving the wheel member relative to the wheel and drivetrain in a radial direction of the rotational axis of the wheel. In other examples, moving the locking mechanism between the locked state and the unlocked state may include moving the drive member relative to the wheel and drivetrain in a radial direction of the rotational axis of the wheel. In other examples, moving the locking mechanism between the locked state and the unlocked state may include moving the both the wheel member and drive member relative to the wheel and drivetrain in a radial direction of the rotational axis of the wheel. For example, the radial movement of the wheel member and the drive member may function similarly to a drum brake.
In some embodiments in the locked state, the wheel member and drive member may directly contact one another. For example, the wheel member and drive member may engage one another and transmit torque therebetween through frictional engagement, mechanical interlocking features (such as radially and/or axially oriented gear teeth), or other surface features such as splines or uneven surfaces. For example, the wheel member and drive member may engage through frictional engagement of the wheel member and drive being compressed against one another.
In some embodiments, the wheel member and drive member may have axially oriented interlocking features and the wheel member and drive member may engage through movement relative to one another in the axial direction (such as face gears). In other embodiments, the wheel member and drive member may have radially oriented interlocking features and the wheel member and drive member may engage through movement relative to one another in the axial direction (such as splines that rotationally interlock and allow axial translation). In yet other embodiments, the wheel member and drive member may have radially oriented interlocking features and the wheel member and drive member may engage through movement relative to one another in the radial direction (such as interlocking radial teeth).
In other embodiments in the locked state, the wheel member and drive member may indirectly engage one another with or without direct contact. For example, the wheel member and drive member may engage one another and transmit torque therebetween through magnetic engagement (permanent magnets and/or electromagnets), fluid drag engagement, or through other forces that do not require contact between the wheel member and drive member.
In some embodiments, a fluid may be positioned between the wheel member and drive member. The drag of the fluid may transmit at least a portion of the torque between the wheel member and drive member when the wheel member and drive member move relative to one another and induce movement of the fluid therebetween. The transmission of torque through the fluid drag may change with a spacing between the wheel member and drive member. For example, more torque may be transmitted through the fluid drag as a spacing between the wheel member and drive member decreases. In other examples, more torque may be transmitted through the fluid drag in a higher viscosity fluid than in a lower viscosity fluid. In at least one example, the fluid may have a variable viscosity, such as a magnetorheological fluid that changes effective viscosity through the application of a magnetic field.
In other embodiments, the wheel member and/or drive member may include one or more magnets. The magnets of the wheel member and/or drive member may produce a magnetic field that may interact with and apply a force between the wheel member and the drive member. For example, the wheel member may include a first magnet and the drive member may include a second magnet. As the wheel member and drive member move closer to one another, a magnetic force between the first magnet and second magnet may increase, enabling the transmission of a greater amount of torque between the wheel member and drive member. In some examples, the first magnet and/or second magnet may be an electromagnetic that may be selectively magnetized. In such examples, a spacing between the wheel member and drive member may be constant and the magnetic force therebetween may be increased or decreased by increasing or decreasing the magnetic field of the electromagnet(s).
In some embodiments, moving the locking mechanism between the locked state and the unlocked state (particularly moving into the locked state) while the wheel member and drive member are rotating with different rotational velocities may break, bent, erode, wear, or otherwise damage the wheel member and/or drive member. For example, the mechanical interlocking features may grind or bend, inhibiting engagement of the wheel and drive members. In other examples, “slipping” of frictional engagement surfaces (such as in a friction clutch) may prematurely wear the frictional engagement surfaces of the wheel member and/or drive member.
In some embodiments, a lockout device may prevent the engagement or movement of the wheel member and/or drive member toward one another when a wheel rotational velocity of the wheel member and a drive rotational velocity of the drive member are different. For example, the lockout device may prevent movement engagement or movement of the wheel member and/or drive member toward one another when a wheel rotational velocity of the wheel member and a drive rotational velocity of the drive member are different by more than 0.1 RPM, 1.0 RPM, 6.0 RPM, 10.0 RPM, 30.0 RPM, 60.0 RPM, or more. In some examples, the lockout device may prevent movement engagement or movement of the wheel member and/or drive member toward one another unless the wheel rotational velocity and the drive rotational velocity are the same. In other examples, the lockout device may prevent movement engagement or movement of the wheel member and/or drive member toward one another unless the wheel rotational velocity and the drive rotational velocity are both 0 RPM (i.e., both are stationary).
In other embodiments, the lockout device may prevent engagement or movement of the wheel member and/or drive member toward one another unless a safety brake is engaged. The safety brake may limit and/or prevent the rotation of the wheel and/or the drivetrain. In at least one embodiment, the locking mechanism may only be movable between the locked state and the unlocked state while the safety brake is engaged.
In yet other embodiments, the locking mechanism may have an intermediate state in which more than 5% and less than 95% of torque is transmitted between the wheel member and the drive member. The intermediate state may allow the wheel member and drive member to “slip” relative to one another to allow the wheel rotational velocity and drive rotational velocity to approach one another. For example, a drive rotational speed may be 0 RPM and the wheel rotational velocity may have a speed of 100 RPM. The locking mechanism may move to the intermediate state to transmit a portion of the torque therebetween, and the drive rotational velocity may increase while the wheel rotational velocity may decrease. When the drive rotational velocity and wheel rotational velocity are within a predetermined range, the locking mechanism may move to the locked state. For example, during movement from an unlocked state to a locked state, a user may apply a transition input force into the drivetrain and the locking mechanism may transmit a portion of the transition input force through the locking mechanism in an intermediate state so the drive rotational velocity may approach the wheel rotational velocity. Once the drive rotational velocity and the wheel rotational velocity are within a predetermined threshold, the locking mechanism may move to the locked state. In other embodiments, a lockout device may prevent movement from the intermediate state to the locked state with the transition input force is greater than 1 pound (4.45 Newtons).
In some embodiments, the locking mechanism, lockout device, safety brake, or combinations thereof may be manually controlled by a user. For example, a locking mechanism may be actuated by a handle. A handle may include a sloped surface that, upon rotation of the handle relative to the locking mechanism may urge the wheel member and the drive member to move relative to one another. In other examples, the handle may have a cam lobe that urges the wheel member and the drive member to move relative to one another.
The locking mechanism may be actuated through automated or powered means other than a manual lever moved by a user. In some embodiments, the handle may be rotated by a motor. In other embodiments, the position of the wheel member and the drive member relative to one another may be controlled by an electric motor, such as a stepper motor or worm gear. In yet other embodiments, the position of the wheel member and the drive member relative to one another by a pneumatic piston-and-cylinder. In further embodiments, the position of the wheel member and the drive member relative to one another by a hydraulic piston-and-cylinder. In yet further embodiments, the position of the wheel member and the drive member relative to one another by a linear magnetic actuator.
A controller may allow the user to selectively actuate the locking mechanism. For example, a controller may be provided on the handlebars and/or frame of a bicycle, a stationary bicycle, elliptical machine, or other pedaled device.
In other embodiments, the locking mechanism, lockout device, safety brake, or combinations thereof may be controlled by a computing device. In some examples, the computing device may coordinate the actuation of one or more of the locking mechanism, lockout device, and safety brake. For example, upon a user requesting the locking mechanism to move from an unlocked state to a locked state, the computing device may activate the safety brake to stop the wheel rotational velocity and/or drive rotational velocity, deactivate the lockout device, and actuate the locking mechanism to move to the locked state.
In other examples, upon a user requesting the locking mechanism to move from an unlocked state to a locked state, the computing device may measure the wheel rotational velocity and/or the drive rotational velocity using one or more sensors (speed sensors, torque sensors, power meters, etc.), and the computing device may actuate the locking mechanism only when the wheel rotational velocity and drive rotational velocity are within a predetermined range.
In other embodiments, the computing device may present to a user a predetermined exercise routine. The predetermined exercise routine may include a portion of the routine pedaling the pedaled drivetrain in an unlocked state and portion of the routine pedaling the pedaled drivetrain in the locked state. In such examples, the computing device may activate the safety brake to slow and/or stop the wheel rotational velocity and/or drive rotational velocity, deactivate the lockout device, and actuate the locking mechanism to move to the locked state, and disengage the safety brake. In other examples, the computing device may move the locking mechanism to an intermediate state to transfer a portion of the torque between the wheel member and drive member. The partial transfer of torque may cause the wheel rotational velocity and drive rotational velocity to approach one another. The computing device may measure the wheel rotational velocity and/or the drive rotational velocity using one or more sensors, and the computing device may actuate the locking mechanism when the wheel rotational velocity and drive rotational velocity are within a predetermined range.
The articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements in the preceding descriptions. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. For example, any element described in relation to an embodiment herein may be combinable with any element of any other embodiment described herein. Numbers, percentages, ratios, or other values stated herein are intended to include that value, and also other values that are “about” or “approximately” the stated value, as would be appreciated by one of ordinary skill in the art encompassed by embodiments of the present disclosure. A stated value should therefore be interpreted broadly enough to encompass values that are at least close enough to the stated value to perform a desired function or achieve a desired result. The stated values include at least the variation to be expected in a suitable manufacturing or production process, and may include values that are within 5%, within 1%, within 0.1%, or within 0.01% of a stated value.
A person having ordinary skill in the art should realize in view of the present disclosure that equivalent constructions do not depart from the spirit and scope of the present disclosure, and that various changes, substitutions, and alterations may be made to embodiments disclosed herein without departing from the spirit and scope of the present disclosure. Equivalent constructions, including functional “means-plus-function” clauses are intended to cover the structures described herein as performing the recited function, including both structural equivalents that operate in the same manner, and equivalent structures that provide the same function. It is the express intention of the applicant not to invoke means-plus-function or other functional claiming for any claim except for those in which the words ‘means for’ appear together with an associated function. Each addition, deletion, and modification to the embodiments that falls within the meaning and scope of the claims is to be embraced by the claims.
It should be understood that any directions or reference frames in the preceding description are merely relative directions or movements. For example, any references to “front” and “back” or “top” and “bottom” or “left” and “right” are merely descriptive of the relative position or movement of the related elements.
The present disclosure may be embodied in other specific forms without departing from its spirit or characteristics. The described embodiments are to be considered as illustrative and not restrictive. The scope of the disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. Changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
By way of example, pedaled drivetrains according to the present disclosure may be described according to any of the following sections:
This application is a continuation of U.S. patent application Ser. No. 16/210,963, filed Dec. 5, 2018, which claims priority to U.S. Provisional Patent Application No. 62/596,815 entitled “SYSTEMS AND METHODS FOR SELECTIVELY ROTATIONALLY FIXING A PEDALED DRIVETRAIN” filed Dec. 9, 2017 and U.S. Provisional Patent Application No. 62/609,718 entitled “SYSTEMS AND METHODS FOR SELECTIVELY ROTATIONALLY FIXING A PEDALED DRIVETRAIN” filed Dec. 22, 2017, which applications are herein incorporated by reference for all that they disclose.
Number | Name | Date | Kind |
---|---|---|---|
3123646 | Easton | Mar 1964 | A |
3579339 | Chang et al. | May 1971 | A |
4023795 | Pauls | May 1977 | A |
4300760 | Bobroff | Nov 1981 | A |
D286311 | Martinell | Oct 1986 | S |
4630839 | Seol | Dec 1986 | A |
4681318 | Lay | Jul 1987 | A |
4684126 | Dalebout et al. | Aug 1987 | A |
4728102 | Pauls | Mar 1988 | A |
4750736 | Watterson | Jun 1988 | A |
4796881 | Watterson | Jan 1989 | A |
4813667 | Watterson | Mar 1989 | A |
4830371 | Lay | May 1989 | A |
4844451 | Bersonnet et al. | Jul 1989 | A |
4850585 | Dalebout et al. | Jul 1989 | A |
D304849 | Watterson | Nov 1989 | S |
4880225 | Lucas et al. | Nov 1989 | A |
4883272 | Lay | Nov 1989 | A |
D306468 | Watterson | Mar 1990 | S |
D306891 | Watterson | Mar 1990 | S |
4913396 | Dalebout et al. | Apr 1990 | A |
D307614 | Bingham | May 1990 | S |
D307615 | Bingham | May 1990 | S |
4921242 | Watterson | May 1990 | A |
4932650 | Bingham et al. | Jun 1990 | A |
D309167 | Griffin | Jul 1990 | S |
D309485 | Bingham | Jul 1990 | S |
4938478 | Lay | Jul 1990 | A |
D310253 | Bersonnet | Aug 1990 | S |
4955599 | Bersonnet et al. | Sep 1990 | A |
4971316 | Dalebout et al. | Nov 1990 | A |
D313055 | Watterson | Dec 1990 | S |
4974832 | Dalebout | Dec 1990 | A |
4979737 | Kock | Dec 1990 | A |
4981294 | Dalebout et al. | Jan 1991 | A |
D315765 | Measom | Mar 1991 | S |
4998725 | Watterson et al. | Mar 1991 | A |
5000442 | Dalebout et al. | Mar 1991 | A |
5000443 | Dalebout et al. | Mar 1991 | A |
5000444 | Dalebout et al. | Mar 1991 | A |
D316124 | Dalebout | Apr 1991 | S |
5013033 | Watterson et al. | May 1991 | A |
5014980 | Bersonnet et al. | May 1991 | A |
5016871 | Dalebout et al. | May 1991 | A |
D318085 | Jacobson | Jul 1991 | S |
D318086 | Bingham | Jul 1991 | S |
D318699 | Jacobson | Jul 1991 | S |
5029801 | Dalebout et al. | Jul 1991 | A |
5034576 | Dalebout et al. | Jul 1991 | A |
5058881 | Measom | Oct 1991 | A |
5058882 | Dalebout et al. | Oct 1991 | A |
D321388 | Dalebout | Nov 1991 | S |
5062626 | Dalebout et al. | Nov 1991 | A |
5062627 | Bingham | Nov 1991 | A |
5062632 | Dalebout et al. | Nov 1991 | A |
5062633 | Engel et al. | Nov 1991 | A |
5067710 | Watterson et al. | Nov 1991 | A |
5072929 | Peterson et al. | Dec 1991 | A |
D323009 | Dalebout | Jan 1992 | S |
D323198 | Dalebout | Jan 1992 | S |
D323199 | Dalebout | Jan 1992 | S |
D323863 | Watterson | Feb 1992 | S |
5088729 | Dalebout | Feb 1992 | A |
5090694 | Pauls et al. | Feb 1992 | A |
5102380 | Jacobson et al. | Apr 1992 | A |
5104120 | Watterson et al. | Apr 1992 | A |
5108093 | Watterson | Apr 1992 | A |
D326491 | Dalebout | May 1992 | S |
5122105 | Engel et al. | Jun 1992 | A |
5135216 | Bingham et al. | Aug 1992 | A |
5147265 | Pauls et al. | Sep 1992 | A |
5149084 | Dalebout et al. | Sep 1992 | A |
5149312 | Croft et al. | Sep 1992 | A |
5171196 | Lynch | Dec 1992 | A |
D332347 | Raadt | Jan 1993 | S |
5190505 | Dalebout et al. | Mar 1993 | A |
5192255 | Dalebout et al. | Mar 1993 | A |
5195937 | Engel et al. | Mar 1993 | A |
5203826 | Dalebout | Apr 1993 | A |
D335511 | Engel | May 1993 | S |
D335905 | Cutter | May 1993 | S |
D336498 | Engel | Jun 1993 | S |
5217487 | Engel et al. | Jun 1993 | A |
D337361 | Engel | Jul 1993 | S |
D337666 | Peterson | Jul 1993 | S |
D337799 | Cutter | Jul 1993 | S |
5226866 | Engel et al. | Jul 1993 | A |
5244446 | Engel et al. | Sep 1993 | A |
5247853 | Dalebout | Sep 1993 | A |
5259611 | Dalebout et al. | Nov 1993 | A |
D342106 | Campbell | Dec 1993 | S |
5279528 | Dalebout et al. | Jan 1994 | A |
D344112 | Smith | Feb 1994 | S |
D344557 | Ashby | Feb 1994 | S |
5282776 | Dalebout | Feb 1994 | A |
5295931 | Dreibelbis et al. | Mar 1994 | A |
5302161 | Loubert et al. | Apr 1994 | A |
D347251 | Dreibelbis | May 1994 | S |
5316534 | Dalebout et al. | May 1994 | A |
D348493 | Ashby | Jul 1994 | S |
D348494 | Ashby | Jul 1994 | S |
5328164 | Soga | Jul 1994 | A |
D349931 | Bostic | Aug 1994 | S |
5336142 | Dalebout et al. | Aug 1994 | A |
5344376 | Bostic et al. | Sep 1994 | A |
D351202 | Bingham | Oct 1994 | S |
D351435 | Peterson | Oct 1994 | S |
D351633 | Bingham | Oct 1994 | S |
D352534 | Dreibelbis | Nov 1994 | S |
D353422 | Bostic | Dec 1994 | S |
5372559 | Dalebout et al. | Dec 1994 | A |
5374228 | Buisman et al. | Dec 1994 | A |
5382221 | Hsu et al. | Jan 1995 | A |
5387168 | Bostic | Feb 1995 | A |
5393690 | Fu et al. | Feb 1995 | A |
D356128 | Smith | Mar 1995 | S |
5409435 | Daniels | Apr 1995 | A |
5429563 | Engel | Jul 1995 | A |
5431612 | Holden | Jul 1995 | A |
D360915 | Bostic | Aug 1995 | S |
5468205 | McFall | Nov 1995 | A |
5489249 | Brewer | Feb 1996 | A |
5492517 | Bostic | Feb 1996 | A |
D367689 | Wilkinson | Mar 1996 | S |
5511740 | Loubert | Apr 1996 | A |
5512025 | Dalebout | Apr 1996 | A |
D370949 | Furner | Jun 1996 | S |
D371176 | Furner | Jun 1996 | S |
5527245 | Dalebout | Jun 1996 | A |
5529553 | Finlayson | Jun 1996 | A |
5540429 | Dalebout | Jul 1996 | A |
5549533 | Olson | Aug 1996 | A |
5554085 | Dalebout | Sep 1996 | A |
5569128 | Dalebout | Oct 1996 | A |
5591105 | Dalebout | Jan 1997 | A |
5591106 | Dalebout | Jan 1997 | A |
5595556 | Dalebout | Jan 1997 | A |
5607375 | Dalebout | Mar 1997 | A |
5611539 | Watterson | Mar 1997 | A |
5622527 | Watterson | Apr 1997 | A |
5626538 | Dalebout | May 1997 | A |
5626542 | Dalebout | May 1997 | A |
D380024 | Novak | Jun 1997 | S |
5637059 | Dalebout | Jun 1997 | A |
D380509 | Wilkinson | Jul 1997 | S |
5643153 | Nylen | Jul 1997 | A |
5645509 | Brewer | Jul 1997 | A |
D384118 | Deblauw | Sep 1997 | S |
5662557 | Watterson | Sep 1997 | A |
5669857 | Watterson | Sep 1997 | A |
5672140 | Watterson | Sep 1997 | A |
5674156 | Watterson | Oct 1997 | A |
5674453 | Watterson | Oct 1997 | A |
5676624 | Watterson | Oct 1997 | A |
5683331 | Dalebout | Nov 1997 | A |
5683332 | Watterson | Nov 1997 | A |
D387825 | Fleck | Dec 1997 | S |
5695433 | Buisman | Dec 1997 | A |
5695434 | Dalebout | Dec 1997 | A |
5695435 | Dalebout | Dec 1997 | A |
5702325 | Watterson | Dec 1997 | A |
5704879 | Watterson | Jan 1998 | A |
5718657 | Dalebout et al. | Feb 1998 | A |
5720200 | Anderson | Feb 1998 | A |
5720698 | Dalebout | Feb 1998 | A |
D392006 | Dalebout | Mar 1998 | S |
5722922 | Watterson | Mar 1998 | A |
5733229 | Dalebout | Mar 1998 | A |
5743833 | Watterson | Apr 1998 | A |
5762584 | Daniels | Jun 1998 | A |
5762587 | Dalebout | Jun 1998 | A |
5772560 | Watterson | Jun 1998 | A |
5810698 | Hullett | Sep 1998 | A |
5827155 | Jensen | Oct 1998 | A |
5830114 | Halfen | Nov 1998 | A |
5860893 | Watterson | Jan 1999 | A |
5860894 | Dalebout | Jan 1999 | A |
5899834 | Dalebout | May 1999 | A |
D412953 | Armstrong | Aug 1999 | S |
D413948 | Dalebout | Sep 1999 | S |
5951441 | Dalebout | Sep 1999 | A |
5951448 | Bolland | Sep 1999 | A |
5961424 | Warner et al. | Oct 1999 | A |
D416596 | Armstrong | Nov 1999 | S |
6003166 | Hald | Dec 1999 | A |
6019710 | Dalebout | Feb 2000 | A |
6027429 | Daniels | Feb 2000 | A |
6033347 | Dalebout et al. | Mar 2000 | A |
D425940 | Halfen | May 2000 | S |
6059692 | Hickman | May 2000 | A |
D428949 | Simonson | Aug 2000 | S |
6123646 | Colassi | Sep 2000 | A |
6171217 | Cutler | Jan 2001 | B1 |
6171219 | Simonson | Jan 2001 | B1 |
6174267 | Dalebout | Jan 2001 | B1 |
6193631 | Hickman | Feb 2001 | B1 |
6228003 | Hald | May 2001 | B1 |
6238323 | Simonson | May 2001 | B1 |
6251052 | Simonson | Jun 2001 | B1 |
6261022 | Dalebout et al. | Jul 2001 | B1 |
6280362 | Dalebout et al. | Aug 2001 | B1 |
6296594 | Simonson | Oct 2001 | B1 |
D450872 | Dalebout | Nov 2001 | S |
6312363 | Watterson | Nov 2001 | B1 |
D452338 | Dalebout | Dec 2001 | S |
D453543 | Cutler | Feb 2002 | S |
D453948 | Cutler | Feb 2002 | S |
6350218 | Dalebout et al. | Feb 2002 | B1 |
6387020 | Simonson | May 2002 | B1 |
6413191 | Harris | Jul 2002 | B1 |
6422980 | Simonson | Jul 2002 | B1 |
6447424 | Ashby et al. | Sep 2002 | B1 |
6458060 | Watterson | Oct 2002 | B1 |
6458061 | Simonson | Oct 2002 | B2 |
6471622 | Hammer | Oct 2002 | B1 |
6563225 | Soga | May 2003 | B2 |
6601016 | Brown | Jul 2003 | B1 |
6623140 | Watterson | Sep 2003 | B2 |
6626799 | Watterson | Sep 2003 | B2 |
6652424 | Dalebout | Nov 2003 | B2 |
6685607 | Olson | Feb 2004 | B1 |
6695581 | Wasson | Feb 2004 | B2 |
6701271 | Willner | Mar 2004 | B2 |
6702719 | Brown | Mar 2004 | B1 |
6712740 | Simonson | Mar 2004 | B2 |
6730002 | Hald | May 2004 | B2 |
6743153 | Watterson | Jun 2004 | B2 |
6746371 | Brown | Jun 2004 | B1 |
6749537 | Hickman | Jun 2004 | B1 |
6761667 | Cutler et al. | Jul 2004 | B1 |
6770015 | Simonson | Aug 2004 | B2 |
6786852 | Watterson | Sep 2004 | B2 |
6808472 | Hickman | Oct 2004 | B1 |
6821230 | Dalebout | Nov 2004 | B2 |
6830540 | Watterson | Dec 2004 | B2 |
6863641 | Brown | Mar 2005 | B1 |
6866613 | Brown | Mar 2005 | B1 |
6875160 | Watterson | Apr 2005 | B2 |
D507311 | Butler | Jul 2005 | S |
6918858 | Watterson | Jul 2005 | B2 |
6921351 | Hickman | Jul 2005 | B1 |
6974404 | Watterson | Dec 2005 | B1 |
6997852 | Watterson | Feb 2006 | B2 |
7025713 | Dalebout | Apr 2006 | B2 |
D520085 | Willardson | May 2006 | S |
7044897 | Myers | May 2006 | B2 |
7052442 | Watterson | May 2006 | B2 |
7060006 | Watterson | Jun 2006 | B1 |
7060008 | Watterson et al. | Jun 2006 | B2 |
7070539 | Brown | Jul 2006 | B2 |
7097588 | Watterson | Aug 2006 | B2 |
D527776 | Willardson | Sep 2006 | S |
7112168 | Dalebout et al. | Sep 2006 | B2 |
7128693 | Brown | Oct 2006 | B2 |
7166062 | Watterson | Jan 2007 | B1 |
7166064 | Watterson | Jan 2007 | B2 |
7169087 | Ercanbrack | Jan 2007 | B2 |
7169093 | Simonson | Jan 2007 | B2 |
7192388 | Dalebout | Mar 2007 | B2 |
7250022 | Dalebout | Jul 2007 | B2 |
7282016 | Simonson | Oct 2007 | B2 |
7285075 | Cutler | Oct 2007 | B2 |
7344481 | Watterson | Mar 2008 | B2 |
7377882 | Watterson | May 2008 | B2 |
7425188 | Ercanbrack | Sep 2008 | B2 |
7429236 | Dalebout | Sep 2008 | B2 |
7455622 | Watterson | Nov 2008 | B2 |
7482050 | Olson | Jan 2009 | B2 |
D588655 | Utykanski | Mar 2009 | S |
7510509 | Hickman | Mar 2009 | B2 |
7537546 | Watterson | May 2009 | B2 |
7537549 | Nelson | May 2009 | B2 |
7537552 | Dalebout | May 2009 | B2 |
7540828 | Watterson | Jun 2009 | B2 |
7549947 | Hickman | Jun 2009 | B2 |
7556590 | Watterson et al. | Jul 2009 | B2 |
7563203 | Dalebout | Jul 2009 | B2 |
7575536 | Hickman | Aug 2009 | B1 |
7601105 | Gipson, III | Oct 2009 | B1 |
7604573 | Dalebout | Oct 2009 | B2 |
D604373 | Dalebout | Nov 2009 | S |
7618350 | Dalebout | Nov 2009 | B2 |
7618357 | Dalebout | Nov 2009 | B2 |
7625315 | Hickman | Dec 2009 | B2 |
7625321 | Simonson | Dec 2009 | B2 |
7628730 | Watterson | Dec 2009 | B1 |
7628737 | Kowallis | Dec 2009 | B2 |
7637847 | Hickman | Dec 2009 | B1 |
7645212 | Ashby et al. | Jan 2010 | B2 |
7645213 | Watterson | Jan 2010 | B2 |
7658698 | Pacheco | Feb 2010 | B2 |
7674205 | Dalebout | Mar 2010 | B2 |
7713171 | Hickman | May 2010 | B1 |
7713172 | Watterson | May 2010 | B2 |
7713180 | Wickens | May 2010 | B2 |
7717828 | Simonson | May 2010 | B2 |
7736279 | Dalebout | Jun 2010 | B2 |
7740563 | Dalebout | Jun 2010 | B2 |
7749144 | Hammer | Jul 2010 | B2 |
7766797 | Dalebout | Aug 2010 | B2 |
7771329 | Dalebout | Aug 2010 | B2 |
7775940 | Dalebout | Aug 2010 | B2 |
7789800 | Watterson | Sep 2010 | B1 |
7798946 | Dalebout | Sep 2010 | B2 |
7815550 | Watterson | Oct 2010 | B2 |
7857731 | Hickman | Dec 2010 | B2 |
7862475 | Watterson | Jan 2011 | B2 |
7862478 | Watterson | Jan 2011 | B2 |
7862483 | Hendrickson | Jan 2011 | B2 |
D635207 | Dalebout | Mar 2011 | S |
7901330 | Dalebout | Mar 2011 | B2 |
7909740 | Dalebout | Mar 2011 | B2 |
7980996 | Hickman | Jul 2011 | B2 |
7981000 | Watterson | Jul 2011 | B2 |
7985164 | Ashby | Jul 2011 | B2 |
8029415 | Ashby et al. | Oct 2011 | B2 |
8033960 | Dalebout | Oct 2011 | B1 |
D650451 | Olson | Dec 2011 | S |
D652877 | Dalebout | Jan 2012 | S |
8152702 | Pacheco | Apr 2012 | B2 |
D659775 | Olson | May 2012 | S |
D659777 | Watterson | May 2012 | S |
D660383 | Watterson | May 2012 | S |
D664613 | Dalebout | Jul 2012 | S |
8251874 | Ashby | Aug 2012 | B2 |
8298123 | Hickman | Oct 2012 | B2 |
8298125 | Colledge | Oct 2012 | B2 |
D671177 | Sip | Nov 2012 | S |
D671178 | Sip | Nov 2012 | S |
D673626 | Olson | Jan 2013 | S |
8690735 | Watterson | Apr 2014 | B2 |
D707763 | Cutler | Jun 2014 | S |
8740753 | Olson | Jun 2014 | B2 |
8758201 | Ashby | Jun 2014 | B2 |
8771153 | Dalebout | Jul 2014 | B2 |
8784270 | Watterson | Jul 2014 | B2 |
8808148 | Watterson | Aug 2014 | B2 |
8814762 | Butler | Aug 2014 | B2 |
D712493 | Ercanbrack | Sep 2014 | S |
8840075 | Olson | Sep 2014 | B2 |
8845493 | Watterson | Sep 2014 | B2 |
8870726 | Watterson | Oct 2014 | B2 |
8876668 | Hendrickson | Nov 2014 | B2 |
8894549 | Colledge | Nov 2014 | B2 |
8894555 | Olson | Nov 2014 | B2 |
8911330 | Watterson | Dec 2014 | B2 |
8920288 | Dalebout | Dec 2014 | B2 |
8986165 | Ashby | Mar 2015 | B2 |
8992364 | Law | Mar 2015 | B2 |
8992387 | Watterson | Mar 2015 | B2 |
D726476 | Ercanbrack | Apr 2015 | S |
9028368 | Ashby | May 2015 | B2 |
9028370 | Watterson | May 2015 | B2 |
9039578 | Dalebout | May 2015 | B2 |
D731011 | Buchanan | Jun 2015 | S |
9072930 | Ashby | Jul 2015 | B2 |
9119983 | Rhea | Sep 2015 | B2 |
9123317 | Watterson | Sep 2015 | B2 |
9126071 | Smith | Sep 2015 | B2 |
9126072 | Watterson | Sep 2015 | B2 |
9138615 | Olson | Sep 2015 | B2 |
9142139 | Watterson | Sep 2015 | B2 |
9144703 | Dalebout | Sep 2015 | B2 |
9149683 | Watterson | Sep 2015 | B2 |
9186535 | Ercanbrack | Nov 2015 | B2 |
9186549 | Watterson | Nov 2015 | B2 |
9254409 | Dalebout | Feb 2016 | B2 |
9254416 | Ashby | Feb 2016 | B2 |
9278248 | Tyger | Mar 2016 | B2 |
9278249 | Watterson | Mar 2016 | B2 |
9278250 | Buchanan | Mar 2016 | B2 |
9289648 | Watterson | Mar 2016 | B2 |
9339691 | Brammer | May 2016 | B2 |
9352185 | Hendrickson | May 2016 | B2 |
9352186 | Watterson | May 2016 | B2 |
9375605 | Tyger | Jun 2016 | B2 |
9381394 | Mortensen | Jul 2016 | B2 |
9387387 | Dalebout | Jul 2016 | B2 |
9393453 | Watterson | Jul 2016 | B2 |
9403047 | Olson | Aug 2016 | B2 |
9403051 | Cutler | Aug 2016 | B2 |
9421416 | Mortensen | Aug 2016 | B2 |
9457219 | Smith | Oct 2016 | B2 |
9457220 | Olson | Oct 2016 | B2 |
9457222 | Dalebout | Oct 2016 | B2 |
9460632 | Watterson | Oct 2016 | B2 |
9463356 | Rhea | Oct 2016 | B2 |
9468794 | Barton | Oct 2016 | B2 |
9468798 | Dalebout | Oct 2016 | B2 |
9480874 | Cutler | Nov 2016 | B2 |
9492704 | Mortensen | Nov 2016 | B2 |
9498668 | Smith | Nov 2016 | B2 |
9517378 | Ashby | Dec 2016 | B2 |
9521901 | Dalebout | Dec 2016 | B2 |
9533187 | Dalebout | Jan 2017 | B2 |
9539461 | Ercanbrack | Jan 2017 | B2 |
9579544 | Watterson | Feb 2017 | B2 |
9586086 | Dalebout | Mar 2017 | B2 |
9586090 | Watterson | Mar 2017 | B2 |
9604099 | Taylor | Mar 2017 | B2 |
9616276 | Dalebout | Apr 2017 | B2 |
9616278 | Olson | Apr 2017 | B2 |
9623281 | Hendrickson | Apr 2017 | B2 |
9636567 | Brammer | May 2017 | B2 |
9675839 | Dalebout | Jun 2017 | B2 |
9682307 | Dalebout | Jun 2017 | B2 |
9694234 | Dalebout | Jul 2017 | B2 |
9694242 | Ashby | Jul 2017 | B2 |
9707443 | Warren | Jul 2017 | B2 |
9737755 | Dalebout | Aug 2017 | B2 |
9757605 | Olson | Sep 2017 | B2 |
9764186 | Dalebout | Sep 2017 | B2 |
9767785 | Ashby | Sep 2017 | B2 |
9795822 | Smith | Oct 2017 | B2 |
9808672 | Dalebout | Nov 2017 | B2 |
9849326 | Smith | Dec 2017 | B2 |
9878210 | Watterson | Jan 2018 | B2 |
9889334 | Ashby | Feb 2018 | B2 |
9889339 | Douglass | Feb 2018 | B2 |
9937376 | McInelly | Apr 2018 | B2 |
9937377 | McInelly | Apr 2018 | B2 |
9937378 | Dalebout | Apr 2018 | B2 |
9937379 | Mortensen | Apr 2018 | B2 |
9943719 | Smith | Apr 2018 | B2 |
9943722 | Dalebout | Apr 2018 | B2 |
9948037 | Ashby | Apr 2018 | B2 |
9968816 | Olson | May 2018 | B2 |
9968821 | Finlayson | May 2018 | B2 |
9968823 | Cutler | May 2018 | B2 |
10010755 | Watterson | Jul 2018 | B2 |
10010756 | Watterson | Jul 2018 | B2 |
10029145 | Douglass | Jul 2018 | B2 |
D826350 | Hochstrasser | Aug 2018 | S |
10046196 | Ercanbrack | Aug 2018 | B2 |
D827733 | Hochstrasser | Sep 2018 | S |
10065064 | Smith | Sep 2018 | B2 |
10071285 | Smith | Sep 2018 | B2 |
10085586 | Smith | Oct 2018 | B2 |
10086254 | Watterson | Oct 2018 | B2 |
10136842 | Ashby | Nov 2018 | B2 |
10186161 | Watterson | Jan 2019 | B2 |
10188890 | Olson | Jan 2019 | B2 |
10207143 | Dalebout | Feb 2019 | B2 |
10207145 | Tyger | Feb 2019 | B2 |
10207147 | Ercanbrack | Feb 2019 | B2 |
10207148 | Powell | Feb 2019 | B2 |
10212994 | Watterson | Feb 2019 | B2 |
10220259 | Brammer | Mar 2019 | B2 |
10226396 | Ashby | Mar 2019 | B2 |
10226664 | Dalebout | Mar 2019 | B2 |
10252109 | Watterson | Apr 2019 | B2 |
10258828 | Dalebout | Apr 2019 | B2 |
10272317 | Watterson | Apr 2019 | B2 |
10279212 | Dalebout | May 2019 | B2 |
10293211 | Watterson | May 2019 | B2 |
D852292 | Cutler | Jun 2019 | S |
10343017 | Jackson | Jul 2019 | B2 |
10376736 | Powell | Aug 2019 | B2 |
10388183 | Watterson | Aug 2019 | B2 |
10391361 | Watterson | Aug 2019 | B2 |
D864320 | Weston | Oct 2019 | S |
D864321 | Weston | Oct 2019 | S |
10426989 | Dalebout | Oct 2019 | B2 |
10433612 | Ashby | Oct 2019 | B2 |
10441840 | Dalebout | Oct 2019 | B2 |
10441844 | Powell | Oct 2019 | B2 |
10449416 | Dalebout | Oct 2019 | B2 |
10471299 | Powell | Nov 2019 | B2 |
D868909 | Cutler | Dec 2019 | S |
10492519 | Capell | Dec 2019 | B2 |
10493349 | Watterson | Dec 2019 | B2 |
10500473 | Watterson | Dec 2019 | B2 |
10543395 | Powell et al. | Jan 2020 | B2 |
10561877 | Workman | Feb 2020 | B2 |
10561893 | Chatterton | Feb 2020 | B2 |
10561894 | Dalebout | Feb 2020 | B2 |
10569121 | Watterson | Feb 2020 | B2 |
10569123 | Hochstrasser | Feb 2020 | B2 |
10625114 | Ercanbrack | Apr 2020 | B2 |
10625137 | Dalebout | Apr 2020 | B2 |
10661114 | Watterson et al. | May 2020 | B2 |
10668320 | Watterson | Jun 2020 | B2 |
10671705 | Capell et al. | Jun 2020 | B2 |
10688346 | Brammer | Jun 2020 | B2 |
10702736 | Weston et al. | Jul 2020 | B2 |
10709925 | Dalebout et al. | Jul 2020 | B2 |
10726730 | Watterson | Jul 2020 | B2 |
10729965 | Powell | Aug 2020 | B2 |
10758767 | Olson | Aug 2020 | B2 |
10786706 | Smith | Sep 2020 | B2 |
10864407 | Watterson | Dec 2020 | B2 |
10918905 | Powell et al. | Feb 2021 | B2 |
10932517 | Ashby et al. | Mar 2021 | B2 |
10940360 | Dalebout et al. | Mar 2021 | B2 |
10953268 | Dalebout et al. | Mar 2021 | B1 |
10953305 | Dalebout et al. | Mar 2021 | B2 |
10967214 | Olson | Apr 2021 | B1 |
10994173 | Watterson | May 2021 | B2 |
11000730 | Dalebout et al. | May 2021 | B2 |
11013960 | Watterson | May 2021 | B2 |
11033777 | Watterson et al. | Jun 2021 | B1 |
11058913 | Dalebout et al. | Jul 2021 | B2 |
11058914 | Powell | Jul 2021 | B2 |
11187285 | Wrobel | Nov 2021 | B2 |
20120178592 | Chieh et al. | Jul 2012 | A1 |
20130334001 | Albrecht et al. | Dec 2013 | A1 |
20140251709 | Ruffieux | Sep 2014 | A1 |
20150107955 | Tronnberg | Apr 2015 | A1 |
20170124912 | Ashby et al. | May 2017 | A1 |
20170193578 | Watterson | Jul 2017 | A1 |
20170246904 | Emura | Aug 2017 | A1 |
20170266489 | Douglass et al. | Sep 2017 | A1 |
20170270820 | Ashby et al. | Sep 2017 | A1 |
20170313385 | Emura | Nov 2017 | A1 |
20180057107 | Yamamoto | Mar 2018 | A1 |
20180085630 | Capell et al. | Mar 2018 | A1 |
20180099116 | Ashby | Apr 2018 | A1 |
20180099180 | Wilkinson | Apr 2018 | A1 |
20180111034 | Watterson | Apr 2018 | A1 |
20190058370 | Tinney | Feb 2019 | A1 |
20190223612 | Watterson et al. | Jul 2019 | A1 |
20190269971 | Capell et al. | Sep 2019 | A1 |
20190376585 | Buchanan | Dec 2019 | A1 |
20200009417 | Dalebout | Jan 2020 | A1 |
20200222751 | Dalebout et al. | Jul 2020 | A1 |
20200238130 | Silcock et al. | Jul 2020 | A1 |
20200254295 | Watterson | Aug 2020 | A1 |
20200254309 | Watterson | Aug 2020 | A1 |
20200254311 | Watterson et al. | Aug 2020 | A1 |
20200391069 | Olson et al. | Aug 2020 | A1 |
20200338389 | Dalebout et al. | Oct 2020 | A1 |
20200368575 | Hays et al. | Nov 2020 | A1 |
20210046351 | Ercanbrack et al. | Feb 2021 | A1 |
20210046353 | Dalebout et al. | Feb 2021 | A1 |
20210106899 | Willardson et al. | Apr 2021 | A1 |
20210110910 | Ostler et al. | Apr 2021 | A1 |
20210138332 | Dalebout et al. | May 2021 | A1 |
20210146191 | Dalebout et al. | May 2021 | A1 |
20210146221 | Dalebout et al. | May 2021 | A1 |
20210161245 | Ashby et al. | Jun 2021 | A1 |
20210213331 | Watterson | Jul 2021 | A1 |
20210213332 | Watterson et al. | Jul 2021 | A1 |
20210220698 | Dalebout et al. | Jul 2021 | A1 |
20210268336 | Watterson et al. | Sep 2021 | A1 |
20210291013 | Nascimento | Sep 2021 | A1 |
20210299518 | Brammer et al. | Sep 2021 | A1 |
20210299542 | Brammer et al. | Sep 2021 | A1 |
20210339079 | Dalebout et al. | Nov 2021 | A1 |
20220023702 | Watterson | Jan 2022 | A1 |
20220062685 | Ashby et al. | Mar 2022 | A1 |
20220074455 | Wrobel | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
203609796 | May 2014 | CN |
102014224366 | Jun 2016 | DE |
2169363 | Jul 1986 | GB |
2169363 | Jul 1986 | GB |
H10167158 | Jun 1998 | JP |
2017036009 | Feb 2017 | JP |
WO2013138303 | Sep 2013 | WO |
Entry |
---|
Machine translation of DE102014224366 (Year: 2022). |
U.S. Appl. No. 29/702,127, filed Sep. 16, 2019, Cutler et al. |
U.S. Appl. No. 63/079,697, filed Sep. 7, 2020, Willardson et al. |
U.S. Appl. No. 17/066,485, filed Oct. 9, 2020, Weston et al. |
U.S. Appl. No. 63/086,793, filed Oct. 20, 2020, Ashby. |
U.S. Appl. No. 63/134,036, filed Jan. 5, 2021, Ercanbrack et al. |
U.S. Appl. No. 63/150,066, filed Feb. 16, 2021, Smith. |
U.S. Appl. No. 63/156,801, filed Mar. 4, 2021, Watterson. |
U.S. Appl. No. 63/165,498, filed Mar. 4, 2021, Archer. |
U.S. Appl. No. 63/200,903, filed Apr. 2, 2021, Watterson et al. |
U.S. Appl. No. 63/179,094, filed Apr. 23, 2021, Watterson et al. |
U.S. Appl. No. 63/180,521, filed Apr. 27, 2021, Watterson et al. |
U.S. Appl. No. 63/187,348, filed May 11, 2021, Dalebout et al. |
U.S. Appl. No. 63/188,431, filed May 13, 2021, Plummer. |
U.S. Appl. No. 63/211,870, filed Jun. 17, 2021, Watterson et al. |
U.S. Appl. No. 63/216,313, filed Jun. 29, 2021, Watterson et al. |
U.S. Appl. No. 63/229,794, filed Aug. 12, 2021, Brammer. |
U.S. Appl. No. 63/235,002, filed Aug. 19, 2021, Smith. |
U.S. Appl. No. 17/462,687, filed Aug. 31, 2021, Ashby et al. |
U.S. Appl. No. 63/073,081, filed Sep. 1, 2021, Ashby et al. |
U.S. Appl. No. 17/476,899, filed Sep. 16, 2021, Willardson et al. |
U.S. Appl. No. 17/492,104, filed Oct. 1, 2021, Ashby. |
U.S. Appl. No. 63/254,470, filed Oct. 11, 2021, Powell. |
U.S. Appl. No. 63/278,714, filed Nov. 12, 2021, Taylor. |
U.S. Appl. No. 63/289,997, filed Dec. 15, 2021, Taylor et al. |
U.S. Appl. No. 63/290,455, filed Dec. 16, 2021, Taylor et al. |
U.S. Appl. No. 63/290,557, filed Dec. 16, 2021, Ashby. |
U.S. Appl. No. 17/568,882, filed Jan. 5, 2022, Ercanbrack et al. |
U.S. Appl. No. 63/298,170, filed Jan. 10, 2022, Ercanbrack et al. |
U.S. Appl. No. 63/299,357, filed Jan. 13, 2022, Toles et al. |
U.S. Appl. No. 17/589,027, filed Jan. 31, 2022, Dalebout et al. |
U.S. Appl. No. 17/589,075, filed Jan. 31, 2022, Ashby. |
Examination Report in Australian Patent Application No. 2021204037, dated May 16, 2022, 6 pages. |
Examination Report in Australian Patent Application No. 2018378967, dated Nov. 18, 2020, 5 pages. |
Second Examination Report in Australian Patent Application No. 2018378967, dated May 21, 2021, 4 pages. |
Office Action in Canadian Patent Application No. 3085313, dated Oct. 15, 2021, 5 pages. |
Office Action in Taiwanese Patent Application No. 110106594, dated Aug. 31, 2021, 9 pages. |
Extended European Search Report for EP Application No. 18885683.5, dated Jul. 27, 2021, 9 pages. |
Office Action in Chinese Application No. 201880079356.5, dated Dec. 31, 2020, 22 pages. |
Office Action in Chinese Application No. 201880079356.5, dated Aug. 27, 2021, 19 pages. |
Number | Date | Country | |
---|---|---|---|
20220074455 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62609718 | Dec 2017 | US | |
62596815 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16210963 | Dec 2018 | US |
Child | 17525265 | US |