The present invention relates to selectively securing a cylindrical body. In particular, at least some implementations of the present invention relate to a device that is configured to selectively provide access to and/or secure a cylindrical riser of a pressurized pop-up water sprinkler head to allow for the adjustment and/or replacement of a sprinkler component, such as a filter and/or nozzle.
Pop-up sprinklers have been used by homeowners and commercial business owners and have proven to be reliable and adjustable products that provide effective irrigation to specific landscaped areas. The connection diameter and threading provide a universal fit to existing irrigational piping and fittings. The internal, pop-up portion of the pressurized sprinkler, referred to as a riser, includes a sprinkler nozzle that provides for the necessary directional, distance and volume control of water flow through the use of a customized nozzle. The nozzle is protected from small water carrying debris through the use of an independent filter imbedding in the riser.
Over time, property owners and landscape maintenance professionals may find a need to maintain or exchange the sprinkler nozzle and or nozzle filter due to a change in landscape layout, water direction, water volume, or the obstruction or damage of a nozzle or filter. In order to complete this maintenance, the riser is typically raised and secured against the tension of an internal spring housed in the sprinkler body while the nozzle and/or filter are removed, inspected, and/or re-installed or exchanged.
In many circumstances, completing this maintenance or exchange process is done by an individual using his/her fingers or hands to somehow gain access to the recessed riser, pull up the riser, and secure the riser by hand against its internal spring tension. This leaves the individual with one hand to remove the nozzle and/or filter, sort through replacement parts, and use other tools as necessary while effectively being tethered to the sprinkler at arm's length. This process can prove challenging and can reduce the individual's efficiency and capability. It can also result in minor damage to the user's hand. Additionally, any release of the secured pop-up riser, once the nozzle has been removed, results in the riser recessing below the exposed top portion of the sprinkler, causing increased work time, delays, and frustration. It is possible that repeated slips can damage the sprinkler with the need of replacing the overall sprinkler versus the nozzle and filter components.
Thus, while techniques currently exist that are used to replace sprinkler nozzles and filters, challenges still exist. Accordingly, it would be an improvement in the art to augment or even replace current techniques with other techniques.
The present invention relates to selectively securing a cylindrical body. In particular, at least some implementations of the present invention relate to a device that is configured to selectively provide access to and/or secure a cylindrical riser of a pressurized pop-up water sprinkler head to allow for the adjustment and/or replacement of a sprinkler component, such as a filter and/or nozzle.
At least some implementations of the present invention allow access to a recessed sprinkler riser by lifting between the nozzle lip and the external sprinkler housing of the sprinkler head, and then extending the riser above the external sprinkler housing. The cylindrical riser is then clamped by the tool, thus holding the riser is an accessible position and allowing the individual to move about in making repairs or completing maintenance. Additionally, at least some implementations of the present invention secure a sprinkler riser that has a diameter in the range of about 0.785 inches to about 1.168 inches with no manual adjustment. At least some implementations of the present invention embrace a tool that eliminates the need for manual adjustment and provides a range of clamping or securing onto a variety of different sized cylindrical bodies.
In at least some implementations, the device is a hand tool that is configured to provide access to a pop-up sprinkler riser and to selectively secure the riser while the nozzle and nozzle filter are removed, maintained, and/or replaced. Accordingly, the hand tool is configured to provide access to a pop-up sprinkler riser from a near flush position with its outer sprinkler body. The hand tool is also configured to selectively secure the sprinkler riser, hand-free, in its extended or raised position, thus allowing for free access to remove, inspect and/or replace the nozzle and imbedded filter or carry out other necessary maintenance. The hand tool can be used to secure a range of pop up riser diameters. Such characteristics increase the flexibility and capabilities of the multi-use tool.
While the methods and processes of the present invention have proven to be particularly useful in the area of accessing and/or securing a sprinkler riser, those skilled in the art can appreciate that the methods and processes can be used in a variety of different applications, with a variety of different cylindrical bodies, and in a variety of different areas of manufacture to yield an effective manner for selectively securing a cylindrical body.
These and other features and advantages of the present invention will be set forth or will become more fully apparent in the description that follows and in the appended claims. The features and advantages may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. Furthermore, the features and advantages of the invention may be learned by the practice of the invention or will be obvious from the description, as set forth hereinafter.
In order that the manner in which the above recited and other features and advantages of the present invention are obtained, a more particular description of the invention will be rendered by reference to specific embodiments thereof, which are illustrated in the appended drawings. Understanding that the drawings depict only typical embodiments of the present invention and are not, therefore, to be considered as limiting the scope of the invention, the present invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The present invention relates to selectively securing a cylindrical body. In particular, at least some embodiments of the present invention relate to a device that is configured to selectively provide access to and/or secure a cylindrical riser of a pressurized pop-up water sprinkler head to allow for the adjustment and/or replacement of a sprinkler component, such as a filter and/or nozzle.
At least some embodiments allow access to a recessed sprinkler riser by lifting between the nozzle lip and the external sprinkler housing of the sprinkler head, and then extending the riser above the external sprinkler housing. The cylindrical riser is then clamped by the tool, thus holding the riser is an accessible position and allowing the individual to move about in making repairs or completing maintenance. Additionally, while those of ordinary skill in the art will understand that embodiments of the present invention selectively secure cylindrical bodies having any of a variety of diameters, at least some embodiments secure a sprinkler riser that has a diameter in the range of about 0.785 inches to about 1.168 inches with no manual adjustment. Some embodiments secure cylindrical bodies that have smaller diameters. Yet, other embodiments secure cylindrical bodies that have larger diameters. At least some embodiments of the present invention embrace a tool that eliminates the need for manual adjustment and provides a range of clamping or securing onto a variety of different sized cylindrical bodies.
In at least some embodiments, the device is a hand tool that is configured to provide access to a pop-up sprinkler riser and to selectively secure the riser while the nozzle and nozzle filter are removed, maintained, and/or replaced. Accordingly, the hand tool is configured to provide access to a pop-up sprinkler riser from a near flush position with its outer sprinkler body. The hand tool is also configured to selectively secure the sprinkler riser, hand-free, in its extended or raised position, thus allowing for free access to remove, inspect and/or replace the nozzle and imbedded filter or carry out other necessary maintenance. The hand tool can be used to secure a range of pop up riser diameters. Such characteristics increase the flexibility and capabilities of the multi-use tool.
With reference now to
With reference now to
In some embodiments, compression spring 18 provides an outward arm force and inward clamping bay pressure for securing the pop-up sprinkler riser in an upward or extended position from the outer sprinkler housing. The compression spring 18 shown in a semi-compressed state in
In some embodiments, the compression spring is closed and ground on the ends to provide a level contact point within the spring holding compression cavities 20 of the left and right arms 22. In some embodiments, the compression spring is zinc plated to prevent corrosion. In a further embodiment, the compression spring has a 0.081 inch outside diameter steel music wire.
In the illustrated embodiment, the tool rotates about a steel connector bolt, which includes female component 30 and male component 32 (
In some embodiments, the tip 10 of the tool is sloped at about a 20-degree to a 40-degree angle from the tip rising to full thickness at the clamping bay. In one embodiment, the tip 10 is sloped at about a 25-degree angle from the tip rising to full thickness at the clamping bay. In another embodiment, the tip 10 is sloped at about a 30-degree angle from the tip rising to full thickness at the clamping bay. This degree allows an optimal lift point between the riser “lip” and the pop-up sprinkler outer housing. Additionally, the designed angle thickness provides the necessary size and strength for tool endurance over repeated use.
Embodiments of the invention provide diversity in the use of varying clamping diameters between the smaller pop-up sprinklers of 0.785 inches to the medium sized pop up of 1.168 inches. The circular clamping area 12 includes a first arc portion and a second arc portion and provides clamping of the diameters with the higher end of this range secured by four designed contact points, 40 and 42 (
Thus, as discussed herein, embodiments of the present invention embrace systems and methods for selectively securing a cylindrical body. In particular, at least some implementations of the present invention relate to a device that is configured to selectively provide access to and/or secure a cylindrical riser of a pressurized pop-up water sprinkler head to allow for the adjustment and/or replacement of a sprinkler component, such as a filter and/or nozzle.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims priority to U.S. patent application Ser. No. 16/112,405, which was filed Aug. 24, 2018, and is entitled SYSTEMS AND METHODS FOR SELECTIVELY SECURING A CYLINDRICAL BODY; which claims priority to U.S. Provisional Patent Application Ser. No. 62/549,791, which was filed Aug. 24, 2017, and is entitled SYSTEMS AND METHODS FOR SELECTIVELY SECURING A CYLINDRICAL BODY; the entire disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
63393 | Johnson | Apr 1867 | A |
150439 | Smith | May 1874 | A |
166160 | Topping | Jul 1875 | A |
304769 | Whittleton | Sep 1884 | A |
1481517 | Kurz | Jan 1924 | A |
2593201 | Saunders | Apr 1952 | A |
2922209 | Longhi | Jan 1960 | A |
3161085 | Pratt | Dec 1964 | A |
3973318 | Strachan | Aug 1976 | A |
4063333 | Schweitzer | Dec 1977 | A |
4145793 | Berlet | Mar 1979 | A |
4318316 | Guilliams | Mar 1982 | A |
4614008 | Brill et al. | Sep 1986 | A |
4938514 | D'Addezio | Jul 1990 | A |
6325432 | Sensat | Dec 2001 | B1 |
7111526 | Flojo | Sep 2006 | B1 |
7490504 | Hirsch et al. | Feb 2009 | B1 |
8544370 | Lamar | Oct 2013 | B2 |
10086506 | Pumomohadi et al. | Oct 2018 | B2 |
10112287 | Gallagher | Oct 2018 | B2 |
10144117 | Khristyuchenko et al. | Dec 2018 | B2 |
10391512 | Samuel | Aug 2019 | B1 |
10857653 | Merrill | Dec 2020 | B2 |
20070130775 | Holbrook | Jun 2007 | A1 |
20120151681 | Pumomohadi et al. | Jun 2012 | A1 |
20140331825 | Khristyuchenko et al. | Nov 2014 | A1 |
20150308033 | Boocock | Oct 2015 | A1 |
20170021474 | Gallagher | Jan 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20210053190 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62549791 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16112405 | Aug 2018 | US |
Child | 17090771 | US |