The present disclosure relates generally to the field of signal processing. More particularly, the present disclosure relates to systems and methods for shaped single carrier orthogonal frequency division multiplexing with low peak to average power ratio.
Orthogonal Frequency Division Multiplexing (OFDM) signals have been applied to communication systems operating in frequency-selective fading channels due in part to their equalizer structure. OFDM signals can suffer from large peak to average power ratio (PAPR). This requires significant back-off of an average power level in a power amplifier (PA) to avoid clipping and the associated spectral re-growth due to the clipping. The PA back-off decreases an efficiency of the PA and available power from a transmitter.
Advanced OFDM-based systems can utilize a combination of techniques to mitigate excessive PAPR. For example, in a cellular system (e.g., 3GPP, 4G, or 5G), a modified waveform known as a Single-Carrier OFDM (SC-OFDM) is utilized in a mobile uplink segment where PA inefficiency can negatively impact battery life. The tradeoff for power efficiency in SC-OFDM is that spectral efficiency is approximately 50% or less compared with an unmodified OFDM utilized in a mobile downlink segment. Distortion minimizing techniques can be applied to the PA (e.g., dynamic envelop-tracking bias adjustment or complex pre-distortion) which require added real-time adjustment to either the PA bias or the modem output as a function of the instantaneous amplitude at an input of the PA. These PA compensation techniques can require additional computational and hardware resources which can increase a cost of user equipment.
Thus, what would be desirable is a system that automatically and efficiently processes signals using a SC-OFDM modulator with low peak to average power ratio. Accordingly, the systems and methods disclosed herein solve these and other needs.
This present disclosure relates to systems and methods for shaped single carrier orthogonal frequency division multiplexing with low peak to average power ratio. The system receives an input signal and modulates the input signal to form Dirichlet kernels in a time domain to generate an offset Dirichlet kernel output time array where each Dirichlet kernel has a main lobe and a plurality of side lobes. Modulating the input signal suppresses a peak to average power ratio of the offset Dirichlet kernel output time array by reducing the plurality of side lobes of each Dirichlet kernel and respective amplitudes of the side lobes. The system modulates the input signal by receiving the input signal by an N-point time input array and transforming the N-point time input array to the frequency domain by a discrete Fourier transform to generate an N-point input frequency array. The system replicates the N-point input frequency array to generate an M-point input frequency array where M is greater than N and utilizes a filter to generate a shaped M-point output filtered frequency array by multiplying the M-point input frequency array and the filter. The system transforms the shaped M-point output filtered frequency array by an inverse discrete Fourier transform to generate an M-point offset Dirichlet kernel output time array. The system generates a cyclic prefix time array by replicating duration points of an end of the M-point offset Dirichlet kernel output time array, and appends the cyclic prefix time array to a beginning of the M-point offset Dirichlet kernel output time array to generate an M-point and duration point output time array.
The foregoing features of the invention will be apparent from the following Detailed Description of the Invention, taken in connection with the accompanying drawings, in which:
The present disclosure relates to systems and methods for shaped single carrier orthogonal frequency division multiplexing with low peak to average power ratio, as described in detail below in connection with
By way of background, Orthogonal Frequency Division Multiplexing (OFDM) utilizes the Inverse Discrete Fourier Transform (IDFT) as a modulator and a Discrete Fourier Transform (DFT) as a demodulator. Generally, the IDFT and the DFT are implemented by one of an Inverse Forward Fast Fourier Transform (IFFT) or a Forward Fast Fourier Transform (FFT) algorithms. It should be understood that the baseband representation of the modulated signal is a weighted sum of complex sinusoids. The complex sinusoids are the basis sequences of the DFT process where the sinusoids span N samples and include an integer number of cycles per N samples. These sinusoidal sequences are mutually orthogonal. The orthogonality can be understood as the inner product of two complex sinusoids that results in a sum equal to zero when the sinusoid frequencies are different or a sum equal to N when the sinusoid frequencies are the same.
In the OFDM process, an amplitude of the complex sinusoid is constant and is equivalent to a scaled rectangle window or gating sequence. The scaling term is formed by a mapping process from input bit sequences to an amplitude of cosine and sine at each frequency. It should be understood that a sampled complex sinusoid forms a continuous periodic spectrum which can be observed by a sampled DFT. A shape of the spectrum is a Dirichlet kernel which is a periodically extended version of the sin(x)/(x) or sinc function as shown below by Equation 1:
Equation 1 describes a non-causal version of the time series h(n). The actual time series h(n) would be causal with non-zero samples located in the interval 0≤n≤N−1 and the spectrum H(θ) containing a phase shift term reflecting a time delay of the causal sequence version of h(n).
The DFT forms H(k) which are uniformly spaced samples of the continuous spectrum H(θ) where θ=k 2π/N. These sample locations correspond to the frequencies of the complex sinusoids with integer cycles per interval and coincide with the zeros of the spectrum H(θ). It should be understood that the zero locations are also the zeros of the Z-transform H(Z) of the sequence h(n).
The initial OFDM sampled data sequence formed by the IDFT is shown by Equation 2 below:
The amplitudes H(k) are complex numbers corresponding to constellation sample points of the M In-Phase and Quadrature grid values of the selected constellation suite M Quadrature Amplitude Modulated (M-QAM). Typical values include, but are not limited to, 64-QAM and 256-QAM.
A subset of the spectral weights H(k) have zero values. The zero valued weights are utilized to form an empty spectral span between the periodic spectral replicates of the occupied frequency band associated with the sampled data Fourier transform. This empty spectral interval is required by the process that utilizes Digital to Analog Converters (DACs) and smoothing filters to form continuous analog waveforms from the sampled data sequences. The empty spectral interval permits reasonable transition bandwidth requirements of the analog filters following the DAC. An interpolator following the output of the IDFT can be utilized to raise the sample rate of the modulated sampled data sequence. The resulting higher sample rate increases a spacing between the spectral replicates and reduces the order and therefore a cost of the analog filters following the DAC. The IDFT can also be utilized to interpolate the output time series while performing the modulation process. The IDFT can raise the sample rate and thereby increase the spacing between spectral replicates by performing a larger IDFT (e.g., by a factor of 2) and placing additional zero valued spectral samples in the increased number of spectral bins.
The output time sequence formed by Equation 2 will now be described. As shown in Equation 2, the amplitudes H(k) can be a list of random numbers drawn from a list of possible amplitudes. The multiple weighted sums at each position “n” in h(n) is then a sum of a large number of identically distributed random variables. By the central limit theorem, for each sample position, an amplitude of the in phase and an amplitude of the quadrature phase time is a Gaussian distributed random variable and the amplitude of the resulting complex number at each sample position is Rayleigh distributed. The Rayleigh distribution exhibits long tails with peak excursions between 3 to 4 times the root mean square (rms) signal level. As such, a final output power amplifier (PA) would have to back off approximately 9.5 to 12 dB to avoid clipping of the peak excursion signal levels. This is indicative of the high peak to average power ratio (PAPR) problem associated with an OFDM signal set.
For example,
The high PAPR associated with an OFDM signal set is tolerable because OFDM provides for a desirable signal denoted by a collection of different frequency sinusoids. Sinusoids are special functions which, in their analog form, when propagating through systems described as linear equations, do not change their shape. Similarly, sinusoids are sequences which, in their sampled data form, when propagating through systems described as linear difference equations, do not change their shape. Accordingly, sinusoids are eigen-functions (or eigen-sequences) of linear differential (or difference) systems. Therefore, if a sinewave is differentiated and the derivative is scaled and added back to the original sinewave, the resulting sinewave has the same steady state shape as the original. As such, a system can change a size of a sinewave but cannot change its shape. Thus, when a sinusoid propagates through a channel and experiences the summation of a delayed and scaled version of itself due to multipath, the shape is preserved and the effect of the channel is a complex gain change, magnitude and phase or A(f)xexp(jθ(f)). Equalization, the inversion of the channel when sinusoids propagate through the channel, becomes a task of estimating the channel's sinusoidal steady state gain and applying a corrective multiplicative inverse. Since the modulator and demodulator of the OFDM signal set is a Fourier transform, the channel sinusoidal steady state gain at each frequency can be determined by probing the channel with a preamble and then applying the channel inversion gain correction to payload symbols with information gleaned from the channel by the probing preamble. OFDM is advantageous because the channel can be trivially inverted. This is an important consideration when evaluating wide bandwidth channels.
The standard model of a multipath channel is a tapped delay line and finite impulse response (FIR) filter where its delay spread function is the impulse response of the filter. Each frequency in a modulated OFDM signal will have a different impulse response and hence a different steady state frequency response. Each frequency in the modulation process is probed with a sinusoid at that frequency where the amplitude and phase at the modulator is known to the demodulator. The ratio of the output gain and phase to the input gain and phase presents, to the demodulator, estimates of the channel gain at each frequency.
During the modulation process it is important to avoid coupling between successive symbols known as inter symbol interference (ISI). ISI is the result of channel memory in its frequency dependent point spread function. The coupling of successive symbols can be avoided by inserting a time gap or guard interval between successive symbols with the gap duration exceeding the largest delay spread interval thereby rendering the ISI equivalent to zero.
Convolution can be problematic during the modulation process. For example, convolution of the modulated signal with the channel impulse response can cause a starting transient and a stopping transient as the time signal enters and leaves the channel. This transient causes amplitude modulation of the sinusoids in the signal set which breaks the orthogonality of the original rectangle enveloped signal set. Orthogonality is integral to the modulation process because it is essential to the orthogonal steady state gains of the equalizer process. Therefore, to preserve signal orthogonality, a segment of the back end of the symbol can be copied and appended to a front end of the signal. This appended segment is known as a cyclic prefix. Since the sinewaves in the modulation process include an integer number of cycles, the summed sequence is periodic in its own length such that the next sample at the right most edge is the first sample at the left most edge. Copying a segment of the back end to the front edge provides for forming, at the boundary, the periodic extension of the sequence and shifting the discontinuity at the former boundary to the left most edge of the appended segment. It should be understood that the appended cyclic prefix fits in the guard interval inserted between successive symbols. As such, when the sequence with the appended cyclic prefix is convolved with the channel, the starting transient of the current symbol resides in the interval including the cyclic prefix and the stopping transient from the previous symbol also resides in the cyclic prefix interval. With both transients in the interval including the cyclic prefix, the demodulator discards the cyclic prefix interval. Accordingly, there is no transient at the previous boundary because of the continuity of the cyclic prefix with the symbol. An attribute of the cyclic prefix in the convolution of the channel with the cyclic prefix appended signal is that, even though the convolution is a linear convolution, the cyclic prefix in that convolution makes the convolution appear to be a circular convolution. Accordingly, the cyclic prefix can be utilized to fool a linear convolution to become a circular, transient free circular convolution. This trick preserves the orthogonality of the IDFT basis set presented to and processed by the demodulator.
As described above, an OFDM signal can be formed with an N-point transform that forms an N sample interval containing a summation of weighted complex sinusoids. Each sinusoid contains an integer number of cycles. This is a sufficient condition for the sinusoid sequences to be mutually orthogonal. The number of sinusoids is less than the size of the IDFT as a technique to leave an empty spectral guard interval between spectral replicates. Successive symbols can be appended with guard intervals and cyclic prefaces to move the symbols through multipath channels without corrupting a structure of the modulated symbols. After signal acquisition, the guard interval of each is identified and discarded and the channel effects are removed by spectral gain corrections as signal conditioning during the demodulation process.
In a standard OFDM signal, a rectangle envelope is utilized in the time domain and a Dirichlet kernel is utilized in the frequency domain. Each of the orthogonal sinewaves utilizes the same time sequence rectangle envelope to form its signal component. The spectrum of each time domain sinusoid is the Dirichlet kernel offset in the frequency domain which is an integer multiple of (2π/N) to form H(θ−k×2π/N) where k is a number of cycles per interval in the time as well as the frequency offset index in the frequency domain.
PAPR can be reduced by interchanging the two functions such that the rectangle envelope sinusoids reside in the frequency domain and the offset Dirichlet kernels reside in the time domain. This interchange is possible given the symmetry of the Fourier transform but the algorithmic implementation thereof requires a slight modification. The initial step of the interchange involves the formation of Dirichlet kernel samples in the time domain. In this regard,
Graph 120 of
The Dirichlet kernels can be positioned in the time domain because Dirichlet kernels are sin(x)/x like signals where each Dirichlet kernel has a tall main lobe at its center and low level side lobes positioned away from the main lobe. When performing the sum of OFDM sinewaves, the sum at each location becomes large because the amplitude is carried by the complex sinusoid to all sample locations. This is not possible when performing the sum of SC-OFDM scaled and time offset Dirichlet kernels because the amplitude is localized and is not distributed to all sample locations. It should be understood that the main lobe of a Dirichlet kernel does not overlay the main lobe of a neighboring Dirichlet kernel but rather overlays the side lobes of the neighboring Dirichlet kernel. Accordingly, the weighted sum of Dirichlet kernels is dominated by the single large peaks of the respective Dirichlet kernels.
As described above, the SC-OFDM process replaces complex sinusoids, the time domain basis functions of the DFT with Dirichlet kernels and the frequency domain basis functions of the DFT. The weighted sum of time shifted Dirichlet kernels has a smaller PAPR than the weighted sum of overlapped sinusoids (as shown in
The code 156 (i.e., non-transitory, computer-readable instructions) could be stored on a computer-readable medium and executable by the transceiver 152 or one or more computer systems. The code 156 could include various custom-written software modules that carry out the steps/processes discussed herein, and could include, but is not limited to, a shaped SC-OFDM modulator 158a and a shaped SC-OFDM demodulator 158b. The code 156 could be programmed using any suitable programming languages including, but not limited to, C, C++, C#, Java, Python or any other suitable language. Additionally, the code 156 could be distributed across multiple computer systems in communication with each other over a communications network, and/or stored and executed on a cloud computing platform and remotely accessed by a computer system in communication with the cloud platform. The code 156 could communicate with the signal set database 154, which could be stored on the same transceiver as the code 156, or on one or more computer systems in communication with the code 156.
Still further, the system 150 could be embodied as a customized hardware component such as a field-programmable gate array (“FPGA”), application-specific integrated circuit (“ASIC”), embedded system, or other customized hardware components without departing from the spirit or scope of the present disclosure. It should be understood that
Next, in step 288, the system 150 utilizes a filter to generate a shaped filtered frequency array by multiplying the M-point input frequency array and the filter which is equivalent to convolution in the time domain. The filter can be a Nyquist filter or a Dirichlet kernel filter having a square root of a low side lobe response characteristic. A Nyquist filter is utilized in a traditional QAM modem. It should be understood that in a QAM modulator, the Nyquist pulse in linearly convolved with the constellation samples while in the SC-OFDM modulator, the Dirichlet kernel is circularly convolved with the constellation samples with the circular convolution performed by a spectral product in the frequency domain.
The impulse response of the Nyquist filter is a time domain shape that supports a given symbol rate with zero ISI while minimizing the modulation bandwidth. The minimum modulation bandwidth is a spectral rectangle with two-sided bandwidth equal to the modulation rate. A known disadvantage of the minimum bandwidth Nyquist pulse is that its impulse response is infinitely long because its spectrum is discontinuous. This can be addressed by applying a finite width time domain window to the impulse response. For example, a window can be a rectangle with values of 1 in the desired span of the filter length and 0 elsewhere. The time domain product of the Nyquist impulse response and the applied finite duration window forms a finite duration impulse response having a spectrum obtained by the convolution of the ideal rectangular spectrum with the window's spectrum. Nyquist proposed a window whose transform was a half cycle of a cosine and the resulting filter is referred to as a cosine tapered Nyquist filter. The spectral convolution of the two functions widens the modulation bandwidth beyond the minimum rectangular bandwidth.
It should be understood that since the windowed time impulse response series does not have a rectangle spectrum, the system 150 splits the shaping process with the square-root spectra by performing half of the shaping at the shaped SC-OFDM modulator 202a and half of the shaping at the shaped SC-OFDM demodulator 202b similar to Nyquist filtered QAM modems. For the rectangle shaped spectrum, the shaping filter and the matched filter each have rectangle spectra and, as such, their product is also rectangle shaped. With a spectral taper, each of the shaping filter and the matched filter have square root spectral shapes and, as such, their product is the cosine tapered Nyquist spectrum. The filters utilized in conventional QAM modems are referred to as SQRT cosine tapered Nyquist filters. It should be understood that the system 150 can utilize the SQRT cosine tapered Nyquist filters in the shaped SC-OFDM or can generate a tapered SQRT filter with an optimal window.
Referring back to
Having thus described the system and method in detail, it is to be understood that the foregoing description is not intended to limit the spirit or scope thereof. It will be understood that the embodiments of the present disclosure described herein are merely exemplary and that a person skilled in the art can make any variations and modification without departing from the spirit and scope of the disclosure. All such variations and modifications, including those discussed above, are intended to be included within the scope of the disclosure. What is desired to be protected by Letters Patent is set forth in the following claims.
This application is a continuation of U.S. patent application Ser. No. 17/236,886 filed on Apr. 21, 2021 which claims priority to U.S. Provisional Patent Application Ser. No. 63/014,682 filed on Apr. 23 2020 and U.S. Provisional Patent Application Ser. No. 63/129,956 filed on Dec. 23, 2020, each of which is hereby expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5325318 | Harris | Jun 1994 | A |
7627056 | Harris | Dec 2009 | B1 |
8090037 | Harris | Jan 2012 | B1 |
8482445 | Harris | Jul 2013 | B1 |
8582675 | Harris | Nov 2013 | B1 |
8761280 | Harris | Jun 2014 | B1 |
8824602 | Das | Sep 2014 | B2 |
8958469 | Harris | Feb 2015 | B1 |
8958510 | Harris | Feb 2015 | B1 |
9054838 | Harris | Jun 2015 | B1 |
9112735 | Harris | Aug 2015 | B1 |
9148327 | Harris | Sep 2015 | B1 |
9590803 | Derras | Mar 2017 | B2 |
9602323 | Lorca Hernando | Mar 2017 | B2 |
9831970 | Harris | Nov 2017 | B1 |
10541847 | Bouttier | Jan 2020 | B2 |
10680870 | Levinbook | Jun 2020 | B2 |
11063804 | Hadani | Jul 2021 | B2 |
11563617 | Harris | Jan 2023 | B2 |
20070004465 | Papasakellariou | Jan 2007 | A1 |
20070071125 | Tan | Mar 2007 | A1 |
20070183386 | Muharemovic | Aug 2007 | A1 |
20070183520 | Kim | Aug 2007 | A1 |
20080117868 | Maruyama | May 2008 | A1 |
20080267157 | Lee | Oct 2008 | A1 |
20090097466 | Lee | Apr 2009 | A1 |
20090310589 | Nangia | Dec 2009 | A1 |
20090316568 | Harris | Dec 2009 | A1 |
20100085865 | Nilsbo | Apr 2010 | A1 |
20110206163 | Lowdermilk | Aug 2011 | A1 |
20110231862 | Walsh | Sep 2011 | A1 |
20130013262 | Allegra | Jan 2013 | A1 |
20130182754 | Das | Jul 2013 | A1 |
20150358193 | Lorca Hernando | Dec 2015 | A1 |
20170012596 | Harris | Jan 2017 | A1 |
20170012598 | Harris | Jan 2017 | A1 |
20180242287 | Chae | Aug 2018 | A1 |
20190058622 | Bouttier | Feb 2019 | A1 |
20190222455 | Sahin | Jul 2019 | A1 |
20190238189 | Delfeld | Aug 2019 | A1 |
20190268202 | Levinbook | Aug 2019 | A1 |
20200036470 | Olesen | Jan 2020 | A1 |
20200052947 | Sahin | Feb 2020 | A1 |
20200100262 | Dinan | Mar 2020 | A1 |
20200313949 | Hadani | Oct 2020 | A1 |
20210226836 | Sahin | Jul 2021 | A1 |
20210336828 | Harris | Oct 2021 | A1 |
20210359889 | Bouttier | Nov 2021 | A1 |
20220200635 | Harris | Jun 2022 | A1 |
20220200637 | Harris | Jun 2022 | A1 |
20220294680 | Bouttier | Sep 2022 | A1 |
20230049687 | Harris | Feb 2023 | A1 |
20230275796 | Harris | Aug 2023 | A1 |
Number | Date | Country | |
---|---|---|---|
20230275796 A1 | Aug 2023 | US |
Number | Date | Country | |
---|---|---|---|
63129956 | Dec 2020 | US | |
63014682 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17236886 | Apr 2021 | US |
Child | 18096940 | US |