The embodiments described herein relate to components for converting a firearm to fire simulated rounds, and more particularly, a drop-in trainer bolt and magazine system to convert a firearm to simulate recoil and interact with a target hit detection system.
Known replica weapons for training, such as airsoft guns, are typically modeled after firearms used by law enforcement or military personnel. In particular, airsoft guns are designed to look like its counterpart firearm and provide some degree of tactile feedback when operated. Airsoft guns in the related art operate on a low-powered platform and are designed to shoot non-metallic projectiles that have less penetrative and stopping powers than conventional ammunition. For example, airsoft guns generally have a low muzzle energy rating of between about 1.0-1.5 Joules (or about 0.74 to 1.10 ft-lb). While the low muzzle energy of the airsoft guns provide a small amount of recoil feedback, the tactile feedback is not on par with the recoil feedback experienced with an actual corresponding firearm. Furthermore, while airsoft guns mimic the overall look and feel of the actual corresponding firearm, the materials and weight of the airsoft gun are also not the same as the actual firearm. For example, it may be cost prohibitive to produce airsoft guns to “MIL-SPEC” standards in large quantities solely for training purposes.
Thus, a need exists for an improved training weapon system that more realistically replicates operating conditions of an actual firearm without the use of live or frangible rounds.
A training weapon system and methods for replicating live rounds and interacting with a target hit detection system are described herein. In some embodiments, an apparatus includes a bolt carrier assembly and a bolt assembly. The bolt assembly includes a bolt body member, the bolt body member having a proximal end portion and a distal end portion, and the bolt body member defining a longitudinal axis extending from the proximal end to the distal end. The bolt assembly includes a guide member attached to the proximal end portion, the guide member being parallel to the longitudinal axis. The bolt assembly includes a bolt chamber interface attached to a distal end portion, the bolt chamber interface being configured to nest within an interior wall of a firearm barrel, and the bolt chamber interface being configured to limit rotational and axial movement of the bolt assembly relative to the firearm barrel. The bolt assembly includes a bolt nipple connector for mating with a nipple assembly of a magazine assembly. The bolt carrier assembly includes a bolt carrier body and a guide member receiver extending through at least a portion of the bolt carrier body. The bolt carrier body is configured to slide relative to the bolt assembly, the bolt carrier body being slidable along the guide member via the guide member receiver in a direction parallel to the longitudinal axis.
A training weapon system and methods for replicating live rounds and interacting with a target hit detection system are described herein. In some embodiments, an apparatus includes a bolt carrier assembly and a bolt assembly. The bolt assembly includes a bolt body member, the bolt body member having a proximal end portion and a distal end portion, and the bolt body member defining a longitudinal axis extending from the proximal end to the distal end. The bolt assembly includes a guide member attached to the proximal end portion, the guide member being parallel to the longitudinal axis. The bolt assembly includes a bolt chamber interface attached to a distal end portion, the bolt chamber interface being configured to nest within an interior wall of a firearm barrel, and the bolt chamber interface being configured to limit rotational and axial movement of the bolt assembly relative to the firearm barrel. In some embodiments, the bolt assembly includes a bolt nipple connector for mating with a nipple assembly of a magazine assembly. In some embodiments, the bolt body member defines an interior volume for retaining pressurized gas. The interior volume is configured to receive pressurized gas from the magazine assembly via the bolt nipple connector. In some embodiments, the bolt assembly includes a balanced core seal member, and the balance core seal member is configured to actuate to release pressurized gas from the interior volume of the bolt body. The bolt carrier assembly includes a bolt carrier body and a guide member receiver extending through at least a portion of the bolt carrier body. The bolt carrier body is configured to slide relative to the bolt assembly, the bolt carrier body being slidable along the guide member via the guide member receiver in a direction parallel to the longitudinal axis. In some embodiments, the apparatus includes a magazine assembly. The magazine assembly includes a nipple assembly. The nipple assembly includes a proximal portion and a distal portion. The distal portion includes a recess configured to retain a sealing member, the sealing member extending radially inward relative to the nipple assembly. In some embodiments, the sealing member includes a first seal element and a second seal element, the first seal member at least partially surrounding the second seal element. In some embodiments, the first seal element is a U-shaped or a C-shaped member. In some embodiments, the proximal portion includes a recess configured to retain a second sealing member, the sealing member extending radially outward relative to the nipple assembly.
In some embodiments, the apparatus includes a target hit detection system. In some embodiments, the target hit detection system is a laser targeting system. The laser targeting system includes a laser body, the laser body having a proximal end portion and a distal end portion. The laser targeting system includes a laser output at the distal end portion. The laser targeting system includes a switch at the proximal end portion. In some embodiments, the bolt assembly includes a buffer spring member and an actuator pin. The actuator pin is configured to depress the switch of the laser targeting system when actuated.
In some embodiments, an apparatus includes a bolt assembly and a target system mount coupled to the bolt assembly. The bolt assembly includes a bolt body member with a proximal end portion and a distal end portion. The bolt body member defines a longitudinal axis extending from the proximal end portion to the distal end portion. The bolt assembly includes a bolt chamber interface attached to a distal end portion. The bolt chamber interface is configured to nest within an interior wall of a firearm chamber. The bolt chamber interface is configured to limit rotational and axial movement of the bolt assembly relative to the firearm chamber. The target system mount is configured to secure a laser targeting system to the distal end portion of the bolt body member. In some embodiments, the target system mount is a grommet including a first annular lip and a second annular lip. The first annular lip and the second annular lip are spaced axially apart along a longitudinal axis of the grommet. The first annular lip and the second annular lip are configured to interlock with the distal end portion of the bolt body member. In some embodiments, the target system mount is a cap including an outer surface and an end stop portion. The end stop portion is configured to abut against the distal end portion of the bolt body member while the outer surface is inserted within the distal end portion of the bolt body member. In some embodiments, the bolt chamber interface includes a plurality of bolt lugs dimensioned to interlock with corresponding lugs of a firearm barrel.
In some embodiments, a method of installing a training weapon system includes coupling a target hit detection system to a bolt assembly. The method further includes inserting a bolt assembly into a barrel assembly of a rifle. The method includes rotating the bolt assembly relative to the barrel assembly of the rifle to lock the bolt assembly within the barrel assembly. In some embodiments, the rotating can be performed manually by hand without any tools. The method includes coupling the upper assembly to the lower assembly of the rifle. The method includes coupling the magazine assembly to the bolt assembly. In some embodiments, the coupling of the magazine assembly to the bolt assembly includes aligning the nipple assembly of the magazine assembly with the bolt nipple connector of the bolt assembly. In some embodiment, the coupling of the magazine assembly to the bolt assembly further includes inserting the nipple assembly over the bolt nipple connector. In some embodiments, the coupling of the magazine assembly to the bolt assembly further includes centering a valve actuator pin relative to the bolt nipple connector. In some embodiments, the coupling of the magazine assembly to the bolt assembly includes depressing the valve actuator pin to release a pressurized gas from the magazine assembly into the bolt assembly upon completion of the attachment of the magazine assembly to the bolt assembly.
In some embodiments, a method of generating a simulated round in a firearm using a training weapon system includes conveying, via a bolt nipple connecting, pressurized gas into an interior volume of a bolt assembly. The interior volume is fluidically sealed by at least a balanced core seal member. The method includes actuating a balanced core to unseat the balanced core seal member and to release pressurized gas from the interior volume of the bolt assembly. The method further includes conveying the released pressurized gas to a bolt carrier body. The method includes actuating the bolt carrier body in response to a force applied by the released pressurized gas applied to the bolt carrier body. The actuation of the bolt carrier body causes the bolt carrier body to move away from a home position, and the actuation of the bolt carrier body generates a simulated recoil effect. In some embodiments, the method includes actuating the balanced coil to seat the balanced core seal member and to fluidically seal the interior volume of the bolt assembly. In some embodiments, the method includes actuating the bolt carrier body, via force from an action spring, to return to the home position.
In some embodiments, the conveying the pressurized gas into the interior volume includes pressurizing the interior volume of the bolt assembly to a pressure of between about 3102.6 kPa (450 psi) to 4136.9 kPa (600 psi). In some embodiments, the method includes actuating, via force from a century spring member, the balanced core to seat that balanced core seal member and to seal the interior volume of the bolt assembly. In some embodiments, the method includes actuating a switch of the laser targeting system to transmit a signal representative of a simulated round being fired.
The term “about” when used in connection with a referenced numeric indication means the referenced numeric indication plus or minus up to 10 percent of that referenced numeric indication. For example, “about 100” means from 90 to 110.
As used in this specification and the appended claims, the words “proximal” and “distal” refer to direction closer to and away from, respectively, an operator of the firearm. Thus, for example, the end of the firearm or firearm component nearest the operator during a firing operation would be the proximal end of the component, while the end opposite the proximal end would be the distal end of the component. For example, a proximal end of a rifle barrel would be the end portion that is coupled to the receiver, and the distal end would be end out of which the ammunition is expelled. Although a rifle is shown and described with reference to the figures, the training weapon system can be used with various types of firearms, including but not limited to. pistols, shotguns, machine guns, and carbines. Additionally, the training weapon system can be used with automatic and semi-automatic firearms.
The term “parallel” is used herein to describe a relationship between two geometric constructions (e.g., two lines, two planes, a line and a plane, or the like) in which the two geometric constructions are non-intersecting as they extend substantially to infinity. For example, as used herein, a planar surface (i.e., a two-dimensional surface) is said to be parallel to a line when every point along the line is spaced apart from the nearest portion of the surface by a substantially equal distance. Similarly, a first line (or axis) is said to be parallel to a second line (or axis) when the first line and the second line do not intersect as they extend to infinity. Two geometric constructions are described herein as being “parallel” or “substantially parallel” to each other when they are nominally parallel to each other, such as for example, when they are parallel to each other within a tolerance. Such tolerances can include, for example, manufacturing tolerances, measurement tolerances or the like.
The terms “perpendicular,” “orthogonal,” and “normal” are used herein to describe a relationship between two geometric constructions (e.g., two lines, two planes, a line and a plane, or the like) in which the two geometric constructions intersect at an angle of approximately 90 degrees within at least one plane. For example, as used herein, a line (or axis) is said to be normal to a planar surface when the line and a portion of the planar surface intersect at an angle of approximately 90 degrees within the planar surface. Two geometric constructions are described herein as being, for example, “perpendicular” or “substantially perpendicular” to each other when they are nominally perpendicular to each other, such as for example, when they are perpendicular to each other within a tolerance. Such tolerances can include, for example, manufacturing tolerances, measurement tolerances or the like.
Similarly, geometric terms, such as “parallel,” “perpendicular,” “cylindrical,” “square,” “conical,” or “frusto-conical” are not intended to require absolute mathematical precision, unless the context indicates otherwise. Instead, such geometric terms allow for variations due to manufacturing or equivalent functions. For example, if an element is described as “conical” or “generally conical,” a component that is not precisely conical (e.g., one that is slightly oblong) is still encompassed by this description.
Once a magazine 1600 has been inserted into the rifle 1000, the charging handle 1130 can be pulled rearward and released by an operator. As the charging handle 1130 is pulled rearward, the charging handle 1130 engages a portion of the bolt carrier group 1400 and pulls the bolt carrier group 1400 along with the bolt assembly 1500 rearward in unison. As the bolt carrier group 1400 is moved rearward, the hammer 1250 is cocked during the rearward travel of the bolt carrier group 1400. When the operator releases the charging handle 1130, the bolt carrier group 1400 is advanced forward by the action spring 1230. As the bolt carrier group 1400 advances forward, the bolt assembly 1500 strips the next cartridge from the magazine 1600. As the bolt carrier group 1400 advances the bolt assembly 1500 and cartridge into the barrel 1310, the bolt assembly 1500 rotates relative to the bolt carrier group 1400 and partially into the bolt carrier group 1400 to lock the bolt assembly 1500 into place. When the operator pulls the trigger 1215, the hammer 1250 is actuated and strikes a proximal end of the cartridge, releasing the shot from the cartridge out through the barrel 1310. Since the bolt assembly 1500 is in the locked position, the pressurized gas (also referred to as blow back) from the cartridge does not immediately cause the bolt carrier group 1400 and bolt assembly 1500 to move rearward. Instead, gas from the gunpowder ignition returns from the barrel 1310 via a passage (not shown) and applies pressure on the bolt carrier key 1430 to force the bolt carrier group 1400 and bolt assembly 1500 back into an armed position. Depending on the cartridges selected, the muzzle energy may be in excess of about 3000 Joules (or about 2200 ft-lb). Thus, because replica weapons (e.g., airsoft weapons) do not use gunpowder ignition, the recoil feedback of such airsoft weapons is not comparable to an actual corresponding firearm. Moreover, modifying the airsoft weapons to operate at higher pressures to replicate more replicate more realistic conditions can be cost prohibitive and adversely alters the range and penetrative powers of the projectiles used with airsoft weapons, making them more dangerous and unsuitable for training purposes.
As shown in
As shown in
As shown in
As shown in
In some embodiments, as shown in
The target hit detection system 2700 is operable to produce and emit a wireless signal. A compatible receiver (not shown) is configured to monitor for the wireless signal to detect whether the wireless signal emitted by the target hit detection system 2700 has made a “hit” at or near the location of the receiver. In some embodiments, the target hit detection system 2700 is a laser targeting system. As shown in
With reference to
The bolt chamber interface 2590 is sized to engage corresponding lugs within the barrel 1310 to prevent movement of the bolt assembly 2500 relative to the barrel 1310 during operation of the training weapon system 2000. In some embodiments, the first contact surface 2590a extend parallel to a longitudinal axis of the bolt assembly 2500. In some embodiments, the second contact surface 2590b extends in both an axial and radial direction to engage and lock to the barrel 1310. For example, the second contact surface 2590b can include a rounded or chamfered surface. The bolt chamber interface 2590 includes a plurality of bolt lugs dimensioned to interlock with corresponding lugs of the barrel 1310 and prevent rotation of the bolt assembly 2500 during operation. The bolt chamber interface 2590 further aligns and centers the target hit detection system 2700 within the barrel. The bolt chamber interface 2590 accounts for misalignment and any eccentricity associated with each individual firearm due to variations from manufacturing tolerances and/or wear due to use. For example, in some embodiments, to provide a tight fit and to account for variations that are present, even across the same make and model of a firearm, the bolt chamber interface 2590 is dimensioned to fit within the MIL-SPEC of the barrel 1310 and have a tolerance of between about ±0.00254 cm (±0.001 inches) and about ±0.00508 cm (±0.002 inches). By comparison, the proximal end of the bolt carrier assembly 2400 is dimensioned to fit within the MIL-SPEC of the chamber and have a tolerance of up to about 0.02032 cm (0.008 inches). The bolt chamber interface 2590 engages the barrel 1310 to prevent lateral movement of the bolt assembly 2500 relative to a longitudinal axis of the barrel 1310 and improve centering and stability of the target hit detection system 2700, as will be described in greater detail below. In some embodiments, the lugs of the bolt chamber interface 2590 are about 5 to 25% longer in length (in a direction parallel to the longitudinal axis of the barrel 1310) than bolt lugs of a conventional bolt assembly in a corresponding firearm. For example, in some embedment's, the length of the lugs are between about 0.762 cm (0.3 inches) to about 0.9525 cm (0.375 inches). The lugs of the bolt chamber interface 2590 prevent rotation between the bolt assembly 2500 and the barrel 1310 during operation. In some embodiments, the lugs of the bolt chamber interface 2590 are about 10% longer than bolt lugs of a conventional bolt assembly in a corresponding firearm. For example, the length of the bolt lugs in a conventional AR-15 rifle 1000 are about 0.699 cm (0.275 inches) and the length of the lugs of the bolt chamber interface 2590 are about 0.787 cm (0.310 inches) in length. In some embodiments, the length of the lugs of the bolt chamber interface 2590 are up to about 1.105 cm (0.435 inches).
Once the training weapon system 2000 has been installed into the rifle 1000, the system 2000 can be operated to simulate a fired shot. As shown in
As shown in
As the pressurized gas flows from supply valve 2620 to the bolt assembly 2500, as indicated by the arrow AA in
As shown in
As shown in
As shown in
As shown in
The reciprocating action of the bolt carrier body 2410 can be repeated to simulate the recoil feedback of automatic or semi-automatic fire from the rifle 1000 within which the training weapon system 2000 has been installed. The simulated rounds and reciprocating action of the bolt carrier body 2410 can be repeated until the energy storage system 2610 is depleted or when the energy storage system 2610 reaches a level where it can no longer supply adequate pressure to simulate recoil with the bolt carrier body 2410. The magazine assembly 2600 can be charged or re-pressurized via the access port 2618 (shown in
Variations in tolerance exist between conventional firearms and magazines to promote interoperability and compatibility. For example, the design tolerance between the lower receiver 1220, the magazine 1600, and the magazine catch 1270 can vary from rifle to rifle (even across weapons of the same make and model). However, the additional clearance that results from higher tolerance presents additional challenges for converting the rifle 1000 for use with training systems. As such, a novel system for mounting and aligning a training system to a conventional weapon to accommodate the built in clearance while also provide precision to the training system is desired.
As shown in
To accommodate for the variation and play that exist in firearms, such as the AR-15 rifle 1000, the bolt assembly 2500 includes a bolt nipple interface 2580. The bolt nipple interface 2580 includes a first contact surface 2580a and a second contact surface 2580b. The first contact surface 2580a is a cylindrical side wall and the second contact surface 2580b is an annular end wall with a U-shaped cross section. The first contact surface 2580a and the second contact surface 2580b are configured to receive and guide the nipple assembly 2630 to the bolt nipple connector 2570 during coupling.
With reference to
With reference to
As shown in
When an operator pulls the trigger 1215 of the rifle 1000, the hammer 1250 actuates and causes the firing pin 2430 of the bolt carrier assembly 2400 to move in the distal direction, as discussed above. The firing pin 2430 moves the balanced core 2510 in the distal direction. In addition to unseating the bolt cap seal member 2535, the balanced core 2510 applies force against a buffer spring 2550. Because of the sensitivity of the electronics and other components within the laser targeting system 2700, the buffer spring 2550 moderates and buffers the force transferred from the balanced core 2510 to the targeting system 2700. A portion of the force received from the balanced core 2510 is transferred to an actuator pin 2560 of the bolt assembly 2500. The force applied to the actuator pin 2560 causes the actuator pin 2560 to advance in the distal direction relative to the bolt body member 2502. With the laser body 2710 secured to the bolt assembly 2500 via the laser mounting member 2740, distal travel of the actuator pin 2560 depresses the switch 2730 of the laser targeting system 2700. When the switch 2730 is actuated, the laser targeting system 2700 emits a beam of laser via the laser output 2720. The emitted laser can be used to simulate a shot being fired from the rifle 1000 and a compatible training system can be used to detect whether the emitted laser reached an intended target signifying a hit.
The laser targeting system 2700 further includes a laser mounting member 2740 to secure the proximal end portion 2710a to the bolt body member 2502. The laser mounting member 2740 is a floating mounting member configured to absorb lateral and/or axial input forces. For example, as shown in
The laser mounting member 2740 includes an internal surface configured to receive the proximal end of the laser body 2710. In a relaxed state, the internal surface of the laser mounting member 2740 defines a first inner diameter. In some embodiments, the first inner diameter of the laser mounting member 2740 is less than about 0.79375 cm (0.3125 inches). The proximal end of the laser body 2710a defines an outer diameter, the outer diameter being greater than the first inner diameter of the laser mounting member 2740. The internal surface of the laser mounting member 2740 is configured to expand to a second inner diameter to accommodate and secure the laser body 2710. In some embodiments, the second outer diameter is greater than the first outer diameter. The laser mounting member 2470 is made of an elastomeric material. In some embodiments, the laser mounting member 2470 is a rubber grommet. The laser mounting member 2470 is configured to accommodate misalignment of one or more of the barrel 1310, the bolt assembly 2500, and the laser targeting system 2700. Furthermore, because of the sensitive electronic components within the laser targeting system 2700, the laser mounting members 2470 absorbs shock to prevent damage to the laser targeting system 2700. The laser mounting member 2470 further enables the laser targeting system 2700 to be quickly decoupled from or installed onto the bolt assembly 2500 when both the laser target system 2700 and the bolt assembly 2500 are removed from the rifle 1000. This allows the laser target system 2700 to be quickly and easily separated from the bolt assembly 2500 for servicing and inspection.
In some embodiments, as shown in
The laser mounting member 2840 includes an outer surface 2841, an end stop portion 2842, and an internal surface 2843. The outer surface 2841 is configured to be inserted into the bolt laser interface 2595′. The outer surface 2841 of the laser mounting member is configured to support one or more sealing members, such as O-ring members. The outer surface 2841 includes a recess 2841a configured to retain a first sealing member 2844 at a first location. The end stop portion 2842 limits movement of a second sealing member 2845 on the outer surface 2841 at a second location. The second location is different from the first location. In some embodiments, the first sealing member 2844 is thicker than the second sealing member 2845. Stated in a different manner, a radius of the tube forming the first sealing member 2844 is greater than a radius of the tube forming the second sealing member 2845. In some embodiments, an outer radius of the first sealing member 2844 extending from a central axis of the first sealing member 2844 is greater than an outer radius of the second sealing member 2845 extending from a central axis of the second sealing member 2845.
In some embodiments, when the laser mounting member 2840 is inserted into the bolt body member 2502, the first seal member 2844 is configured to contact the first seal surface 2956′ and the second seal member 2845 is configured to contact the second seal surface 2957′. The end stop portion 2842 is configured to abut against a distal end surface 2503 of the bolt body member 2502. An outer diameter of the end stop portion 2842 is greater than a maximum inner diameter of the second seal surface 2957′
In some embodiments, the laser mounting member 2480 is made of one or more of a polymer, composite, and/or metallic material. The laser mounting member 2480 is configured to accommodate misalignment of one or more of the barrel 1310, the bolt assembly 2500, and the laser targeting system 2700. Furthermore, because of the sensitive electronic components within the laser targeting system 2700, the laser mounting member 2480 absorbs shock, via the one or more seal members 2844, 2845 to prevent damage to the laser targeting system 2700. The laser mounting member 2480 further enables the laser targeting system 2700 to be quickly decoupled from or installed onto the bolt assembly 2500 when both the laser target system 2700 and the bolt assembly 2500 are removed from the rifle 1000. This allows the laser target system 2700 to be quickly and easily separated from the bolt assembly 2500 for servicing and inspection.
The training weapon system 2000 (or any other training weapon systems described herein) can be used to perform any of the methods described herein, such as the method 3000 of installing the training weapon system 2000 (see
In some embodiments, the training weapon system 2000 can be installed in a firearm, such as AR-15 rifle 1000. For example,
The method 3000 includes coupling the magazine assembly 2600 to the bolt assembly 2500. In some embodiments, the coupling of the magazine assembly 2600 includes aligning the nipple assembly 2630 of the magazine assembly 2600 with the bolt nipple connector 2570 of the bolt assembly 2500, at 3050. In some embodiments, the coupling of the magazine assembly 2600 further includes inserting the nipple assembly 2630 over the bolt nipple connector 2570, at 3060. In some embodiments, the coupling of the magazine assembly 2600 further includes centering a valve actuator pin 2624 relative to the bolt nipple connector 2570, at 3070. In some embodiments, the coupling of the magazine assembly 2600 includes depressing the valve actuator pin 2624 to release a pressurized gas from the magazine assembly into the bolt assembly 2500 upon completion of the attachment of the magazine assembly 2600 to the bolt assembly 2500, at 3080.
In some embodiments, the training weapon system 2000 can be operated to simulate firing of an ammunition round. For example,
The method 4000 includes actuating, via force from the released pressurized gas, the bolt carrier body 2410 in the proximal direction to simulate recoil resulting to a live ammunition round, at 4060. The method 4000 includes actuating, via force from the action spring 1230, the bolt carrier body 2410 in the distal direction to return the bolt carrier body 2410 back to the home position, at 4070. The method 4000 includes actuating a switch of the laser targeting system 2700 to transmit a signal representative of a simulated round being fired from the firearm, at 4080.
Although the steps of associated with the installation method 3000 and the operating method 4000 are shown and described in a particular order, the sequencing of the steps may be rearranged and/or the steps can be performed concurrently, as will be appreciated to one skilled in the art in view of the present disclosure.
Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments where appropriate.
This application claims priority to and the benefit of U.S. Patent Application No. 62/943,711, filed Dec. 4, 2019, entitled “SYSTEMS AND METHODS FOR SIMULATED RIFLE ROUNDS”, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62943711 | Dec 2019 | US |