Systems and methods for simulating a rock band experience

Information

  • Patent Grant
  • 8663013
  • Patent Number
    8,663,013
  • Date Filed
    Wednesday, July 8, 2009
    14 years ago
  • Date Issued
    Tuesday, March 4, 2014
    10 years ago
Abstract
Described are methods, systems, apparatuses, computer program products embodied in a computer-readable storage medium and means for providing online challenges between bands in a musical video game. Typically the invention is executed on a game server in signal communication with a game platform and involves receiving, by the game server, musical game input data representing a musical performance of a band. Then, the game server calculates a composite score from the input data based on a gameplay challenge. Then the composite score is compared to a composite score of a second band's performance for the same gameplay challenge. In some embodiments, the comparison is displayed as a real-time representation of the two bands, even though score of the second band is based on a stored performance of the second band.
Description
FIELD OF THE INVENTION

The present invention relates to rhythm action games, and, more specifically, video games which simulate the experience of playing in a band.


BACKGROUND

Music making is often a collaborative effort among many musicians who interact with each other. One form of musical interaction may be provided by a video game genre known as “rhythm-action,” which involves a player performing phrases from a pre-recorded musical composition using a video game's input device to simulate a musical performance. If the player performs a sufficient percentage of the notes or cues displayed, he may score well and win the game. If the player fails to perform a sufficient percentage, he may score poorly and lose the game. Two or more players may compete against each other, such as by each one attempting to play back different, parallel musical phrases from the same song simultaneously, by playing alternating musical phrases from a song, or by playing similar phrases simultaneously. The player who plays the highest percentage of notes correctly may achieve the highest score and win. Two or more players may also play with each other cooperatively. In this mode, players may work together to play a song, such as by playing different parts of a song, either on similar or dissimilar instruments. One example of a rhythm-action game is the GUITAR HERO series of games published by Red Octane and Activision. Another example of a rhythm-action game is the KARAOKE REVOLUTION series of games published by Konami. Still another example is the ROCK BAND game published by Electronic Arts.


SUMMARY OF THE INVENTION

The invention is embodied in various methods, systems, computer program products, and apparatus with means for carrying out the invention. For example, in one aspect, there is a method executed on a game server in signal communication with a game platform. The method begins with receiving a first musical game input data that represents a musical performance of a first group of players. In some embodiments, the group of players play as a persistent band with a band identity carried over from gameplay session to gameplay session, while in other embodiments, the group of players is an ad-hoc group of players that do not play under a persistent band identity and are playing together only for a single gameplay session. The method further includes calculating a first composite score associated with the first musical game input data, and is based on a gameplay challenge. Gameplay challenges are described in more detail below. Then the first composite score is compared to a second composite score associated with a second group of players. The second group of players can also be a persistent band or an ad-hoc group of players.


Similar to the method, there is a system embodying the invention, which includes a game server configured carry out the steps of the method described above. Namely, the game server receives, from a game platform, a first musical game input data representing a musical performance of a first group of players, calculates, a first composite score associated with the first musical game input data, and based on a gameplay challenge, and compares, the first composite score to a second composite score associated with a second group of players.


There is also a computer program product, tangibly embodied in a computer readable storage medium, that includes instructions being operable to cause a data processing apparatus to receive, from a game platform, a first musical game input data representing a musical performance of a first group of players, to calculate a first composite score associated with the first musical game input data, and based on a gameplay challenge, and compare the first composite score to a second composite score associated with a second group of players.


There is also an apparatus in signal communication with a game platform that includes various means for carrying out the invention. Specifically, it includes means for receiving a first musical game input data representing a musical performance of a first group of players such as a network connection and processor configured to interpret the musical game input data. The apparatus also includes means for calculating, e.g., a processor or calculating module, a first composite score associated with the first musical game input data, and based on a gameplay challenge. The apparatus also includes means for comparing, e.g., a processor or comparison module, the first composite score to a second composite score associated with a second group of players.


In any of the aspects above, the second composite score associated with a second musical input data represents a musical performance of the second group and is based on the gameplay challenge. Additionally, in some embodiments, the second composite score (of the second group of players) is stored before the comparison step, allowing the comparison of the performances of the two groups of players to occur asynchronously. In some embodiments, the composite score for the first group of players is also stored in a storage device. Gameplay aspects of either performance can also be stored. Any of the above aspects may also provide the following advantages and benefits.


There is also another aspect executed on a game platform for simulating a competition between a first band and a target score. The aspect involves receiving, by the game platform, a first musical game input data representing a musical performance of a first group of players, calculating a first score for the first group of players based on the first musical game input, receiving a target score based on a gameplay challenge, and then simulating a competition based on the gameplay challenge in substantially real-time between the first group of players and the target score. The target score can be received from a game server, a different game platform, the first group of players, or it can be a stored score. In any of these instances, the target score can represent a score achieved by another band. And, as above, the stored score can be associated with a second musical input data that represents a musical performance of the second band or group and is based on the gameplay challenge.


Additionally, a unit of gameplay based on the gameplay challenge can be determined, as can a per-unit score associated with the target score. A unit of gameplay typically includes a segment of one or more songs, such as a time period in a song, e.g., a phrase or the whole song, which in turn includes one or more musical cues. The per-unit score is typically based on the unit of gameplay and the target score, for example the per-unit score can be an average score per musical cue for the song or phrase. Additionally, an estimated intermediate score can be determined based on the per-unit score and the number of units, e.g., cues, phrases, etc., that have been presented to the first group of players so that it can be determined how a group of players that achieved the target score were performing at a particular point in the song, or phrase, etc. In these scenarios, simulating the competition involves comparing the estimated intermediate score to the first score as the first group of players play. As such, the comparison can be updated based on a change to the first score and typically changes as the first group of players progress through the gameplay challenge. Alternatively, a per-unit score for the first group of players can be determined based on the unit of gameplay, the first score, and a number of units presented to the first group of players, such that simulating the competition involves comparing the per-unit score of the first group of players to the per-unit score associated with the target score. In those scenarios, simulating the competition involves updating the comparison based on a change to the per-unit score for the first group of players.


Gameplay challenges can take various forms. For example, the gameplay challenge can involve performing one or more songs corresponding to a theme. Gameplay challenges can also include one or more constraints which affect performance of the gameplay challenge. Constraints can be, e.g., difficulty level, completion during a particular time period, number of players, maximum number of attempts, type of instrument or instruments to be used, minimum qualifying score, completion of other gameplay, completion of another gameplay challenge, or combinations thereof. Gameplay challenges can also include one or more objectives associated with completion of the gameplay challenge, such as achieving a particular score, achieving a highest score, achieving a lowest score, a particular number of consecutive notes played, a number of bonuses received, a high level of audience enthusiasm, or combinations thereof.


In some embodiments, the gameplay mechanics of sessions during the gameplay challenge can be altered. Altering the mechanics can include making a bonus or reward available during the gameplay challenge that is not available during non-challenge gameplay, removing a bonus or reward during the gameplay challenge that is available during non-challenge gameplay, and penalizing the first or second group of players for failing.


In some implementations, a performance ranking is determined for the first group upon completion of the challenge, with the ranking being based on the first composite score. Typically a winner of the gameplay challenge is determined based on the comparison. In some embodiments, the second group of players is the same as the first group of players and the first group of players is attempting to beat their prior score. In some versions, the composite scores of the first and second groups are based in part on a performance level of each player in the respective groups of players.


In some versions, visual or audio indicators of the performance are utilized to indicate how well the first group of players is performing during the challenge. For example, in versions with speakers are in signal communication with the game platform, the comparison is produced via an audible indicator such as crowd noise, a distortion effect, a volume increase, or combinations thereof. Additionally or alternatively, the comparison can be displayed via a graphical indicator on a display that is in signal and/or electrical communication with the game platform, where the graphical indicator is a score comparison, a performance meter, crowd animation, venue animation, venue lighting, a graphical depiction of the second group of players, changes in mood of player avatars, status messages, or combinations thereof. Alternatively, the graphical indicator can appear as a tug of war between the first group and the second group or the graphical indicator can indicate a score momentum for the first group and second groups. The comparison between the first and second group can also be updated in real time based on a change to the first composite score.


In some implementations, in response to the performance of by the first group of players, additional gameplay challenges are made available to the first group of players. The gameplay challenge and the additional gameplay challenges can then be sorted into tiers. When sorting, a challenge can be assigned to a tier based on the difficulty of one or more songs in the gameplay challenge.


Various methods and means for matching the first and second group for the comparison exist. For example, the matching can include selecting the second group of players based on a performance ranking associated with the gameplay challenge for the second group. Additionally or alternatively, the matching can include selecting the second group of players based on an association between at least one player in the first group of players and at least one player in the second group of players, e.g., a member of one band is a friend of a member of the other band. In some versions, the second group of players is selected based on input from the first group of players. Matching can, however, instead include randomly selecting the second group of players, or selecting the second group of players because they were the group of players to most recently complete the challenge. The second group of players can also be selected based on a performance ranking associated with performance unrelated to the gameplay challenge.


Beneficially, the players in the first and second groups can play together via the same game platform or different game platforms. Specifically, all of the first group of players can provide musical game input data to the same game platform. Alternatively, at least one player from the first group of players provides musical game input data to a game platform different than the game platform of the other players of the first group. The second group of players can also be co-located with the first group or play remotely. For example, the second group of players can provide musical game input data to the same game platform as the first group or the second group of players can provides input data to a game platform different than the game platform of the first group.


In some implementations, it is determined, either by the game server or the game platform depending on implementation, that the game platform has downloaded additional content such as an individual song, an album of songs, a collection of songs by a particular artist or group of artists, or one or more songs in a designated collection. In response to determining the game platform has downloaded content, additional gameplay challenge can be made available to the first group of players. Beneficially, the additional gameplay challenge can include one or more songs of the downloaded content and one or more songs provided by the game platform. Alternatively, an existing gameplay challenge can be modified to include the downloaded content, e.g., based on information contained within the downloaded content such as genre, artist, and the like.


In some embodiments, the gameplay challenge is created by the first group of players. Alternatively, the gameplay challenge can be created by the second group of players. Alternatively, the gameplay challenge can be created by an administrator of a battle-of-the-bands server. Advantageously, an interface is provided for the game platform to access information associated with a gameplay challenge and to allow the groups or administrator to create, alter, or delete challenges.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:



FIG. 1A is an example of one embodiment of a screen display of players emulating a musical performance;



FIG. 1B is a block diagram of a system facilitating network play of a rhythm action game;



FIG. 1C is a example of one embodiment of a screen display for remote multiplayer play;



FIG. 1D depicts an indicator of the performance of a number of players on a single performance meter;



FIG. 2A is a block diagram depicting one embodiment of a system for providing asynchronous battle-of-the-bands gameplay;



FIG. 2B is an exemplary screenshot of a band competing on a challenge in a battle-of-the-bands mode; and



FIG. 2C is a second exemplary screenshot of a band competing on a challenge in a battle-of-the-bands mode;



FIG. 2D is a third exemplary screenshot of a band competing on a challenge in a battle-of-the-bands mode; and



FIG. 3 is an exemplary screenshot of a game that modifies an existing game structure in response to downloaded content.





DETAILED DESCRIPTION

Referring now to FIG. 1A, an embodiment of a screen display for a video game in which four players emulate a musical performance is shown. One or more of the players may be represented on screen by an avatar 110. Although FIG. 1A depicts an embodiment in which four players participate, any number of players may participate simultaneously. For example, a fifth player may join the game as a keyboard player. In this case, the screen may be further subdivided to make room to display a fifth avatar and/or music interface. In some embodiments, an avatar 110 may be a computer-generated image. In other embodiments, an avatar may be a digital image, such as a video capture of a person. An avatar may be modeled on a famous figure or, in some embodiments, the avatar may be modeled on the game player associated with the avatar.


Still referring to FIG. 1A, a lane 101102 has one or more game “cues” 124, 125, 126, 127, 130 corresponding to musical events distributed along the lane. During gameplay, the cues, also referred to as “musical targets,” “gems,” or “game elements,” appear to flow toward a target marker 140, 141. The cues are distributed on the lane in a manner having some relationship to musical content associated with the game level. For example, the cues may represent note information (gems spaced more closely together for shorter notes and further apart for longer notes), pitch (gems placed on the left side of the lane for notes having lower pitch and the right side of the lane for higher pitch), volume (gems may glow more brightly for louder tones), duration (gems may be “stretched” to represent that a note or tone is sustained, such as the gem 127), articulation, timbre or any other time-varying aspects of the musical content. The cues may be any geometric shape and may have other visual characteristics, such as transparency, color, or variable brightness.


As the gems move along a respective lane, musical data represented by the gems may be substantially simultaneously played as audible music. In some embodiments, audible music represented by a gem is only played (or only played at full or original fidelity) if a player successfully “performs the musical content” by capturing or properly executing the gem. How a player captures the gem depends on the instrument, though generally it involves performing an action with a controller that corresponds to the gem as the gem passes through a target marker (or “Now Bar”). For example, a player may strum a guitar controller's strum bar with one hand while holding down a particular key, e.g., a green key, with a finger of the other hand as a green gem passes over the Now Bar. Or, where the controller imitates a drum, the player strikes a particular drum pad as a gem of the same color as the drum pad passes through or over the Now Bar. In some embodiments, a musical tone is played to indicate successful execution of a musical event by a player. In other embodiments, a stream of audio is played to indicate successful execution of a musical event by a player. In certain embodiments, successfully performing the musical content triggers or controls the animations of avatars or objects in the depicted venue or background.


In other embodiments, the audible music, tone, or stream of audio represented by a cue is modified, distorted, or otherwise manipulated in response to the player's proficiency in executing cues associated with a lane. For example, various digital filters can operate on the audible music, tone, or stream of audio prior to being played by the game player. Various parameters of the filters can be dynamically and automatically modified in response to the player capturing cues associated with a lane, allowing the audible music to be degraded if the player performs poorly or enhancing the audible music, tone, or stream of audio if the player performs well. For example, if a player fails to execute a game event, the audible music, tone, or stream of audio represented by the failed event may be muted, played at less than full volume, or filtered to alter its sound.


In certain embodiments, a “wrong note” sound may be substituted for the music represented by the failed event. Conversely, if a player successfully executes a game event, the audible music, tone, or stream of audio may be played normally. In some embodiments, if the player successfully executes several, successive game events, the audible music, tone, or stream of audio associated with those events may be enhanced or mixed with an additional audio track, for example, by adding an echo or “reverb” to the audible music, or crowd cheers or boos. The filters can be implemented as analog or digital filters in hardware, software, or any combination thereof. Further, application of the filter to the audible music output, which in many embodiments corresponds to musical events represented by cues, can be done dynamically, that is, during play. Alternatively, the musical content may be processed before game play begins. In these embodiments, one or more files representing modified audible output may be created and musical events to output may be selected from an appropriate file responsive to the player's performance.


In addition to modification of the audio aspects of game events based on the player's performance, the visual appearance of those events may also be modified based on the player's proficiency with the game. For example, failure to execute a game event properly may cause game interface elements to appear more dimly. Alternatively, successfully executing game events may cause game interface elements to glow more brightly. Similarly, the player's failure to execute game events may cause their associated avatar or other avatars to appear embarrassed or dejected, while successful performance of game events may cause their associated avatar to appear happy and confident. In other embodiments, successfully executing cues associated with a lane causes the avatar associated with that lane to appear to play an instrument. For example, the drummer avatar will appear to strike the correct drum for producing the audible music. Successful execution of a number of successive cues may cause the corresponding avatar to execute a “flourish,” such as kicking their leg, pumping their fist, performing a guitar “windmill,” spinning around, winking at the “crowd,” or throwing drum sticks. Alternatively, failing or missing a note can likewise cause animations such as a drummer dropping a drum stick when a note is missed.


Player interaction with a cue may be required in a number of different ways. In general, the player is required to provide input when a cue passes under or over a respective one of a set of target markers 140, 141 disposed on the lane. For example, the player associated with lane 102 (lead guitar) may use a specialized controller to interact with the game that simulates a guitar, such as a Guitar Hero SG Controller, manufactured by RedOctane of Sunnyvale, Calif. In this embodiment, the player executes the cue by activating the “strum bar” while pressing the correct fret button of the controller when the cue 125 passes under the target marker 141. In other embodiments, the player may execute a cue by performing a “hammer on” or “pull off,” which requires quick depression or release of a fret button without activation of the strum bar. In other embodiments, the player may be required to perform a cue using a “whammy bar” provided by the guitar controller. For example, the player may be required to bend the pitch of a note represented by a cue using the whammy bar. In some embodiments, the guitar controller may also use one or more “effects pedals,” such as reverb or fuzz, to alter the sound reproduced by the gaming platform.


In other embodiments, player interaction with a cue may comprise singing a pitch or phoneme or a lyric associated with a cue. For example, the player associated with lane 101 may be required to sing into a microphone to match the pitches indicated by the gem 124 as the gem 124 passes over the target marker 140. As shown in FIG. 1A, the notes of a vocal track are represented by “note tubes” 124. In the embodiment shown in FIG. 1A, the note tubes 124 appear at the top of the screen and flow horizontally, from right to left, as the musical content progresses. In this embodiment, vertical position of a note tube 124 represents the pitch to be sung by the player; the length of the note tube indicates the duration for which the player must hold that pitch. In other embodiments, the note tubes may appear at the bottom or middle of the screen. The arrow 108 provides the player with visual feedback regarding the pitch of the note that is currently being sung. If the arrow is above the note tube 124, the player needs to lower the pitch of the note being sung. Similarly, if the arrow 108 is below the note tube 124, the player needs to raise the pitch of the note being sung. In these embodiments, the vocalist may provide vocal input using a USB microphone of the sort manufactured by Logitech International of Switzerland. In other embodiments, the vocalist may provide vocal input using another sort of simulated microphone. In still further embodiments, the vocalist may provide vocal input using a traditional microphone commonly used with amplifiers. As used herein, a “simulated microphone” is any microphone apparatus that does not have a traditional XLR connector. As shown in FIG. 1A, lyrics 105 may be provided to the player to assist their performance.


In still other embodiments, a player interaction with a cue may comprise any manipulation of any simulated instrument and/or game controller.


As shown in FIG. 1A, each lane may be subdivided into a plurality of segments. Each segment may correspond to some unit of musical time, such as a beat, a plurality of beats, a measure, or a plurality of measures. Although the embodiment shown in FIG. 1A show equally-sized segments, each segment may have a different length depending on the particular musical data to be displayed. In addition to musical data, each segment may be textured or colored to enhance the interactivity of the display. For embodiments in which a lane comprises a tunnel or other shape (as described above), a cursor is provided to indicate which surface is “active,” that is, with which lane surface a player is currently interacting. In these embodiments, the viewer can use an input device to move the cursor from one surface to another. As shown in FIG. 1A, each lane may also be divided into a number of sub-lanes, with each sub-lane containing musical targets indicating different input elements. For example, the lane 102 is divided into five sub-lanes, including sub-lanes 171 and 172. Each sub-lane may correspond to a different fret button on the neck of a simulated guitar.


Referring now to FIG. 1B, a second embodiment of a screen display for a video game in which four players emulate a musical performance is shown. In the embodiment shown, the lanes 103, 104 have graphical designs corresponding to gameplay events. For example, lane 103 comprises a flame pattern, which may correspond to a bonus activation by the player. For example, lane 104 comprises a curlicue pattern, which may correspond to the player achieving the 6× multiplier shown.


In other embodiments, a game display may alternate the display of one or more avatars and/or the display of the band as a whole. For example, during the performance of a song, a display may switch between a number of camera angles providing, for example, close-ups of the guitarist, bassist, drummer, or vocalist, shots of the band as a whole, shots of the crowd, and/or any combination of the avatars, stage, crowd, and instruments. In some embodiments, the sequence and timing of camera angles may be selected to resemble a music video. In some embodiments, the camera angles may be selected to display an avatar of a player who is performing a distinctive portion of a song. In other embodiments the camera angles may be selected to display an avatar of a player who is performing particularly well or poorly. In some embodiments, an avatar's gestures or actions may correspond to the current camera angle. For example, an avatar may have certain moves, such as a jump, head bang, devil horns, special dance, or other move, which are performed when a close-up of the avatar is shown. In some embodiments, the avatars motions may be choreographed to mimic the actual playing of the song. For example, if a song contains a section where the drummer hits a cymbal crash, the drummer avatar may be shown to hit a cymbal crash at the correct point in the song.


In some embodiments, avatars may interact with the crowd at a venue, and camera angles may correspond to the interaction. For example, in one camera angle, an avatar may be shown pointing at various sections of the crowd. In the next camera angle the various sections of the crowd may be shown screaming, waving, or otherwise interacting with the avatar. In other embodiments, avatars may interact with each other. For example, two avatars may lean back-to-back while performing a portion of a song. Or for example, the entire band may jump up and land simultaneously, and stage pyrotechnics may also be synchronized to the band's move.


In some embodiments, the “lanes” containing the musical cues to be performed by the players may be on screen continuously. In other embodiments one or more lanes may be removed in response to game conditions, for example if a player has failed a portion of a song, or if a song contains an extended time without requiring input from a given player.


Although depicted in FIGS. 1A and 1B, in some embodiments (not shown), instead of a lane extending from a player's avatar, a three-dimensional “tunnel” comprising a number of lanes extends from a player's avatar. The tunnel may have any number of lanes and, therefore, may be triangular, square, pentagonal, hexagonal, heptagonal, octagonal, nonagonal, or any other closed shape. In still other embodiments, the lanes do not form a closed shape. The sides may form a road, trough, or some other complex shape that does not have its ends connected. For ease of reference throughout this document, the display element comprising the musical cues for a player is referred to as a “lane.”


In some embodiments, a lane does not extend perpendicularly from the image plane of the display, but instead extends obliquely from the image plane of the display. In further embodiments, the lane may be curved or may be some combination of curved portions and straight portions. In still further embodiments, the lane may form a closed loop through which the viewer may travel, such as a circular or ellipsoid loop.


It should be understood that the display of three-dimensional “virtual” space is an illusion achieved by mathematically “rendering” two-dimensional images from objects in a three-dimensional “virtual space” using a “virtual camera,” just as a physical camera optically renders a two-dimensional view of real three-dimensional objects. Animation may be achieved by displaying a series of two-dimensional views in rapid succession, similar to motion picture films that display multiple still photographs per second.


To generate the three-dimensional space, each object in the three-dimensional space is typically modeled as one or more polygons, each of which has associated visual features such as texture, transparency, lighting, shading, anti-aliasing, z-buffering, and many other graphical attributes. The combination of all the polygons with their associated visual features can be used to model a three-dimensional scene. A virtual camera may be positioned and oriented anywhere within the scene. In many cases, the camera is under the control of the viewer, allowing the viewer to scan objects. Movement of the camera through the three-dimensional space results in the creation of animations that give the appearance of navigation by the user through the three-dimensional environment.


A software graphics engine may be provided which supports three-dimensional scene creation and manipulation. A graphics engine generally includes one or more software modules that perform the mathematical operations necessary to “render” the three-dimensional environment, which means that the graphics engine applies texture, transparency, and other attributes to the polygons that make up a scene. Graphics engines that may be used in connection with the present invention include Gamebryo, manufactured by Emergent Game Technologies of Calabasas, Calif., the Unreal Engine, manufactured by Epic Games, and Renderware, manufactured by Criterion Software of Austin, Tex. In other embodiments, a proprietary graphics engine may be used. In many embodiments, a graphics hardware accelerator may be utilized to improve performance. Generally, a graphics accelerator includes video memory that is used to store image and environment data while it is being manipulated by the accelerator.


In other embodiments, a three-dimensional engine may not be used. Instead, a two-dimensional interface may be used. In such an embodiment, video footage of a band can be used in the background of the video game. In others of these embodiments, traditional two-dimensional computer-generated representations of a band may be used in the game. In still further embodiments, the background may be only slightly related, or unrelated, to the band. For example, the background may be a still photograph or an abstract pattern of colors. In these embodiments, the lane may be represented as a linear element of the display, such as a horizontal, vertical, or diagonal element. Additionally or alternatively, the background may be captured, displayed, or rendered as a two-dimensional film.


Still referring to FIG. 1B The player associated with the middle lane 103 (drummer) may also use a specialized controller to interact with the game that simulates a drum kit, such as the DrumMania drum controller, manufactured by Topway Electrical Appliance Co., Ltd. of Shenzhen, China. In some embodiments, the drum controller provides four drum pads and a kick drum pedal. In other embodiments, the drum controller surrounds the player, as a “real” drum kit would do. In still other embodiments, the drum controller is designed to look and feel like an analog drum kit. In these embodiments, a cue may be associated with a particular drum. The player strikes the indicated drum when the cue 128 passes under the target marker 142, to successfully execute cue 128. In other embodiments, a player may use a standard game controller to play, such as a DualShock game controller, manufactured by Sony Corporation.


Referring back to FIG. 1A, in some embodiments, improvisational or “fill” sections may be indicated to a drummer or any other instrumentalist. In FIG. 1A, a drum fill is indicated by long tubes 130 filling each of the sub-lanes of the center lane which corresponds to the drummer.


In some embodiments, a player is associated with a “turntable” or “scratch” track. In these embodiments, the player may provide input using a simulated turntable such as the turntable controller sold by Konami Corporation.


Local play may be competitive or it may be cooperative. Cooperative play is when two or more players work together in an attempt to earn a combined score. Competitive play may be when a player competes against another player in an attempt to earn a higher score. In other embodiments, competitive play involves a team of cooperating players competing against another team of competing players in attempt to achieve a higher team score than the other team. Competitive local play may be head-to-head competition using the same instrument, head-to-head competition using separate instruments, simultaneous competition using the same instrument, or simultaneous competition using separate instruments. In some embodiments, rather than competing for a high score, players or teams may compete for the best crowd rating, longest consecutive correct note streak, highest accuracy, or any other performance metric. In some embodiments, competitive play may feature a “tug-of-war” on a crowd meter, in which each side tries to “pull” a crowd meter in their direction by successfully playing a song. In one embodiment, a limit may be placed on how far ahead one side can get in a competitive event. In this manner, even a side which has been significantly outplayed in the first section of a song may have a chance late in a song to win the crowd back and win the event.


In one embodiment, competition in local play may involve two or more players using the same type of instrument controller to play the game, for example, guitar controllers. In some embodiments, each player associates themselves with a band in order to begin play. In other embodiments, each player can simply play “solo,” without association with a band. In these embodiments, the other instruments required for performance of a musical composition are reproduced by the gaming platform. Each of the players has an associated lane and each player is alternately required to perform a predetermined portion of the musical composition. Each player scores depending on how faithfully he or she reproduces their portions of the musical composition. In some embodiments, scores may be normalized to produce similar scores and promote competition across different difficulty levels. For example, a guitarist on a “medium” difficulty level may be required to perform half of the notes as a guitarist on a “hard” difficulty level and, as such, should get 100 points per note instead of 50. An additional per-difficulty scalar may be required to make this feel “fair.”


This embodiment of head-to-head play may be extended to allow the players to use different types of game controllers and, therefore, to perform different portions of the musical composition. For example, one player may elect to play using a guitar-type controller while a second player may play using a drum-type controller. Alternatively, each player may use a guitar-type controller, but one player elects to play “lead guitar” while the other player elects to play “rhythm guitar” or, in some embodiments, “bass guitar.” In these examples, the gaming platform reproduces the instruments other than the guitar when it is the first player's turn to play, and the lane associated with the first player is populated with gems representing the guitar portion of the composition. When it is time for the second player to compete, the gaming platform reproduces the instruments other than, for example, the drum part, and the second player's lane is populated with gems representing the drum portion of the musical composition. In some of these embodiments, a scalar factor may be applied to the score of one of the player's to compensate for the differences in the parts of the musical composition.


In still other embodiments, the players may compete simultaneously, that is, each player may provide a musical performance at the same time as the other player. In some embodiments, both players may use the same type of controller. In these embodiments, each player's lane provides the same pattern of cues and each player attempts to reproduce the musical performance identified by those elements more faithfully than the other player. In other embodiments, the players use different types of controllers. In these embodiments, one player attempts to reproduce one portion of a musical composition while the other player tries to represent a different portion of the same composition.


In any of these forms of competition, the relative performance of a player may affect their associated avatar. For example, the avatar of a player that is doing better than the competition may, for example, smile, look confident, glow, swagger, “pogo stick,” etc. Conversely, the losing player's avatar may look depressed, embarrassed, etc.


Instead of competing, the players may cooperate in an attempt to achieve a combined score. In these embodiments, the score of each player contributes to the score of the team, that is, a single score is assigned to the team based on the performance of all players. As described above, a scalar factor may be applied to the score of one of the player's to compensate for the differences in the parts of the musical composition.


Still referring to FIG. 1A, an indicator of the performance of a number of players on a single performance meter 180 is shown. In brief overview, each of the players in a band may be represented by an icon 181, 182. In the figure shown the icons 181182 are circles with graphics indicating the instrument the icon corresponds to. For example, the icon 181 contains a microphone representing the vocalist, while icon 182 contains a drum set representing the drummer. The position of a player's icon on the meter 180 indicates a current level of performance for the player. A colored bar on the meter may indicate the performance of the band as a whole. Although the meter shown displays the performance of four players and a band as a whole, in other embodiments, any number of players or bands may be displayed on a meter, including two, three, four, five, six, seven, eight, nine, or ten players, and any number of bands.


Calculating a player score representing the performance of each player may be done according to any metric. In some embodiments, a weighted rolling average of a player's performance may be used. For example, a player's position on the meter may reflect a percentage of notes successfully hit, where more recent notes are weighted more heavily than less recent notes. In another embodiment, a player's position on the meter may be calculated by computing a weighted average of the player's performance on a number of phrases. In some embodiments, a player's position on the meter may be updated on a note-by-note basis. In other embodiments, a player's position on the meter may be updated on a phrase-by-phrase basis. The meter may also indicate any measure of a band's performance. In some embodiments, the meter may display the band's performance as an average of each of the players' performances. In other embodiments, the indicated band's performance may comprise a weighted average in which some players' performances are more heavily weighted.


In some embodiments, a single meter 180 may be used to display the performance level of multiple players as well as a band as a whole. A band composite performance level may be computed in any manner. In some embodiments, a band performance level may comprise an average of the performance of each player in the band. In other embodiments, a band performance level may comprise a weighted average of the performance of each player in the band, with weights being assigned based on difficulty of parts, amount of notes played recently, and/or any bonuses triggered.


A band performance level may be shown on a meter 180 in any manner. In some embodiments, the meter 180 may comprise subdivisions which indicate relative levels of performance. For example, in the embodiment shown, the meter 180 is divided roughly into thirds, which may correspond to Good, Average, and Poor performance. In some embodiments, a band performance level may be represented as a line or bar on a meter 180. In other embodiments, a band performance level may be represented as an icon or text on a meter 180. In the embodiment shown in FIG. 1D, a filled bar indicates the band's performance as a whole. In some embodiments, individual performances may not be indicated on a meter, and only the performance of the band as a whole may be displayed.


In some embodiments, a player or players in a band may “fail” a song if their performance falls to the bottom of the meter. In some embodiments, consequences of failing a song may include being removed from the rest of the song. In these embodiments, a player who has failed may have their lane removed from the display, and the audio corresponding to that player's part may be removed. In some embodiments, if a single member of a band fails a song, the band may consequently fail the song. In other embodiments, if a member of a band fails a song, one or more other members of the band may continue playing. In still other embodiments, one or more other members of a band may reinstate the failed player.


Individual player performance levels may be indicated on a meter in any manner. In the embodiment shown in FIG. 1A, the icons 181, 182 displayed to indicate each player may comprise any graphical or textual element. In some embodiments, the icons may comprise text with the name of one or more of the players. In another embodiment the icon may comprise text with the name of the instrument of the player. In other embodiments, the icons may comprise a graphical icon corresponding to the instrument of the player. For example, an icon containing a drawing of a drum 182 may be used to indicate the performance of a drummer.


Although described above in the context of a single player providing a single type of input, a single player may provide one or more types of input simultaneously. For example, a single player providing instrument-based input (such as for a lead guitar track, bass guitar track, rhythm guitar track, keyboard track, drum track, or other percussion track) and vocal input simultaneously.


Still referring to FIG. 1A, meters 150, 151 may be displayed for each player indicating an amount of stored bonus. The meters may be displayed graphically in any manner, including a bar, pie, graph, or number. In some embodiments, each player may be able to view the meters of remote players. In other embodiments, only bonus meters of local players may be shown. Bonuses may be accumulated in any manner including, without limitation, by playing specially designated musical phrases, hitting a certain number of consecutive notes, or by maintaining a given percentage of correct notes.


In some embodiments, if a given amount of bonuses are accumulated, a player may activate the bonus to trigger an in-game effect. An in-game effect may comprise a graphical display change including, without limitation, an increase or change in crowd animation, avatar animation, performance of a special trick by the avatar, lighting change, setting change, or change to the display of the lane of the player. An in-game effect may also comprise an aural effect, such as a guitar modulation, including feedback, distortion, screech, flange, wah-wah, echo, or reverb, a crowd cheer, an increase in volume, and/or an explosion or other aural signifier that the bonus has been activated. An in-game effect may also comprise a score effect, such as a score multiplier or bonus score addition. In some embodiments, the in-game effect may last a predetermined amount of time for a given bonus activation.


In some embodiments, bonuses may be accumulated and/or deployed in a continuous manner. In other embodiments, bonuses may be accumulated and/or deployed in a discrete manner. For example, instead of the continuous bar shown in FIG. 1A, a bonus meter may comprise a number of “lights” each of which corresponds to a single bonus earned. A player may then deploy the bonuses one at a time.


In some embodiments, bonus accumulation and deployment may be different for each simulated instrument. For example, in one embodiment only the bass player may accumulate bonuses, while only the lead guitarist can deploy the bonuses.



FIG. 1A also depicts score multiplier indicators 160, 161. A score multiplier indicator 160, 161 may comprise any graphical indication of a score multiplier currently in effect for a player. In some embodiments, a score multiplier may be raised by hitting a number of consecutive notes. In other embodiments, a score multiplier may be calculated by averaging score multipliers achieved by individual members of a band. For example, a score multiplier indicator 160, 161 may comprise a disk that is filled with progressively more pie slices as a player hits a number of notes in a row. Once the player has filled the disk, the player's multiplier may be increased, and the disk may be cleared. In some embodiments, a player's multiplier may be capped at certain amounts. For example, a drummer may be limited to a score multiplier of no higher than 4×. Or for example, a bass player may be limited to a score multiplier of no higher than 6×.


In some embodiments, a separate performance meter (not shown) may be displayed under the lane of each player. This separate performance meter may comprise a simplified indication of how well the player is doing. In one embodiment, the separate performance meter may comprise an icon which indicates whether a player is doing great, well, or poorly. For example, the icon for “great” may comprise a hand showing devil horns, “good” may be a thumbs up, and “poor” may be a thumbs down. In other embodiments, a player's lane may flash or change color to indicate good or poor performance.


Each player may use a gaming platform in order to participate in the game. In one embodiment, the gaming platform is a dedicated game console, such as: PLAYSTATION2, PLAYSTATION3, or PLAYSTATION PERSONAL, manufactured by Sony Corporation; DREAMCAST, manufactured by Sega Corp.; GAMECUBE, GAMEBOY, GAMEBOY ADVANCE, or WII, manufactured by Nintendo Corp.; or XBOX or XBOX360, manufactured by Microsoft Corp. In other embodiments, the gaming platform comprises a personal computer, personal digital assistant, or cellular telephone. In some embodiments, the players associated with avatars may be physically proximate to one another. For example, each of the players associated with the avatars may connect their respective game controllers into the same gaming platform (“local play”).


In some embodiments, one or more of the players may participate remotely. FIG. 1C depicts a block diagram of a system facilitating network play of a rhythm action game. As shown in FIG. 1C, a first gaming platform 100a and a second gaming platform 100b communicate over a network 196, such as a local area network (LAN), a metropolitan area network (MAN), or a wide area network (WAN) such as the Internet or the World Wide Web. The gaming platforms connect to the network through one of a variety of connections including standard telephone lines, LAN or WAN links (e.g., T1, T3, 56 kb, X.25), broadband connections (e.g., ISDN, Frame Relay, ATM), and wireless connections (e.g., 802.11a, 802.11g, Wi-Max). The first gaming platform 100a and the second gaming platform 100b may be any of the types of gaming platforms identified above. In some embodiments, the first gaming platform 100a and the second gaming platform 100b are of different types.


When a networked multiplayer game session begins at the direction of one of the players, that player's gaming platform 100a (the “host”) transmits a “start” instruction to all other gaming platforms participating in the networked game, and the game begins on all platforms. A timer begins counting on each gaming platform, each player's game cues are displayed, and each player begins attempting to perform the musical composition.


Gameplay on gaming platform 100a is independent from game play on gaming platform 100b, except that each player's gaming platform contains a local copy of the musical event data for all other players. The timers on the various gaming platforms communicate with each other via the network 196 to maintain approximate synchrony using any number of the conventional means known in the art.


The gaming platforms 100a, 100b also continually transmit game score data to each other, so that each system (and player) remains aware of the game score of all other systems (and players). Similarly, this is accomplished by any number of means known in the art. Note that this data is not particularly timing sensitive, because if there is momentary disagreement between any two gaming platforms regarding the score (or similar game-related parameters), the consequences to gameplay are negligible.


In one embodiment, as each player plays the game at their respective location, an analyzer module 187a, 187b on that player's gaming platform 100a, 100b continually extracts data from an event monitor 185a, 185b regarding the local player's performance, referred to hereafter as “emulation data”. Emulation data may include any number of parameters that describe how well the player is performing. Some examples of these parameters include:


whether or not the most recent event type was a correctly-played note or an incorrectly-played noted;


a timing value representing the difference between actual performance of the musical event and expected performance of the musical event;


a moving average of the distribution of event types (e.g., the recent ratio of correct to incorrect notes);


a moving average of the differences between the actual performance of musical events and the expected performance times of the musical events; or a moving average of timing errors of incorrect notes.


Each analyzer module 187a, 187b continually transmits the emulation data it extracts over the network 196 using transceiver 190a, 190b; each event monitor 185a, 185b continually receives the other gaming platform's emulation data transmitted over the network 196.


In one embodiment, the emulation data essentially contains a statistical description of a player's performance in the recent past. The event monitor 185a, 185b uses received emulation data to create a statistical approximation of the remote player's performance.


In one particular example, an incoming emulation parameter from a remote player indicates that the most recent remote event was correctly reproduced. When the local event monitor 185a, 185b reaches the next note in the local copy of the remote player's note data, it will respond accordingly by “faking” a successfully played note, triggering the appropriate sound. That is, the local event monitor 185a, 185b will perform the next musical event from the other players' musical event data, even though that event was not necessarily actually performed by the other player's event monitor 185a, 185b. If instead the emulation parameter had indicated that the most recent remote event was a miss, no sound would be triggered.


In another particular example, an incoming emulation parameter from a remote player indicates that, during the last 8 beats, 75% of events were correctly reproduced and 25% were not correctly reproduced. When the local event monitor 185a reaches the next note in the local copy of the remote player's note data, it will respond accordingly by randomly reproducing the event correctly 75% of the time and not reproducing it correctly 25% of the time.


In another particular example, an incoming emulation parameter from a remote player indicates that, during the last 4 beats, 2 events were incorrectly performed, with an average timing error of 50 “ticks.” The local event monitor 185a, 185b will respond accordingly by randomly generating incorrect events at a rate of 0.5 misses-per-beat, displacing them in time from nearby notes by the specified average timing error.


The above three cases are merely examples of the many types of emulation parameters that may be used. In essence, the remote player performances are only emulated (rather than exactly reproduced) on each local machine.


In this embodiment, the analyzer module 187a, 187b may extract musical parameters from the input and transmit them over a network 196 to a remote gaming platform. For example, the analyzer module 187a, 187b may simply transmit the input stream over a network 196 or it may extract the information into a more abstract form, such as “faster” or “lower.” Although described in the context of a two-player game, the technique may be used with any number of players.


Still referring to FIG. 1C, in another embodiment, analyzer module 187a, 187b extracts data from the event monitor 185a, 185b regarding the local player's performance. In this embodiment, however, the extracted data is transmitted over the network 196 using the transceiver 190a, 190b. When the analyzer 187a, 187b receives the transmitted data, it generates an emulation parameter representing the other player's musical performance and provides the locally-generated emulation parameter to the event monitor 185a, 185b, as described above. One advantage of this embodiment is that each player may locally set their preference for how they want the event monitor 185a, 185b to act on emulation parameters.


In other embodiments, the transmitted data is associated with a flag that indicates whether the transmitted data represents a successfully executed musical event or an unsuccessfully executed musical event. In these embodiments, the analyzer 187a, 187b provides a locally-generated emulation parameter to the event monitor 185a, 185b based on the flag associated with the transmitted data.


One unusual side effect of these techniques is that each local player does not hear an exact reproduction of the remote players' performances; only a statistical approximation. However, these statistical approximations have two countervailing positive attributes: because they are synchronized to the local player's timer and the local copy of the remote players' note data, they are synchronous with the local player's performance; and while not exact reproductions, they are “close enough” to effectively communicate to the local player the essence of how well the remote players are performing musically. In this model, delays in the transmission of the data over the network 196 do not have the intolerable side effect of causing cacophonous asynchronicity between the note streams triggering sounds on each player's local system.


In other embodiments, a central server may be used to facilitate communication between the gaming platforms 100a, 100b. Extraction of emulation parameters is performed, as described above. The server distributes data, whether music performance data or emulation parameter data, to all other gaming platforms participating in the current game. In other embodiments, the server may store received data for use later. For example, a band may elect to use the stored data for the performance of a band member who is unavailable to play in a specific game.


Referring now to FIG. 1D, one embodiment of a screen display for remote multiplayer play is shown. The embodiment of the screen display shown in FIG. 1D may be used for head-to-head play, for simultaneous competition, and for cooperative play. As shown in FIG. 1D, a local player's lane 109 is shown larger than the lanes 106107 of two remote players. The avatars for remote players may appear normally on stage in a similar manner as if the avatars represented local players. In other embodiments, the lanes may be displayed in a similar manner for both local multiplayer and remote multiplayer. In still other embodiments, in remote multiplayer, only the local player or player's avatars may be shown.


As shown in FIG. 1D, the lanes 106, 107 associated with the remote players are shown smaller than the local player's lane 109. In other embodiments, the lanes of one or more remote players may be graphically distinguished in any other way. For example, the remote players' lanes may be shown translucently. Or for example, the remote players' lanes may have a higher transparency than local player's lanes. Or the remote players' lanes may be shown in grayscale, or in a different screen location than local players' lanes. In some embodiments, a remote vocalist's lane may not be shown at all, and instead only the lyrics of the song may be displayed.


In some embodiments, multiple players participate in an online face-off between two bands. A “band” is two or more players that play in a cooperative mode. In some embodiments, the two bands need to have the same types of instruments at the same difficulty level selection, e.g., a guitarist playing on “hard” and a bassist playing on “medium” playing against a guitarist playing on “hard” and a bassist playing on “medium.” In other embodiments, the two bands still need to have the same types of instruments but the difficulty selections can be different: Players participating at a lower difficulty level simply have fewer gems to contribute to the overall score. The song to be played may be selected after the teams have been paired up. Alternatively, a band may publish a challenge to play a particular song and a team may accept the challenge.


For example, a local group of players may formed a band and give their band a name (“The Freqs.”). Each of the four players in the “The Freqs” is local to one another. They may then competing against a team of players located remotely, who have formed a band called “The Champs.” In some cases “The Champs” may each be local to one another. In other cases, members of “The Champs” may be remote to each other. Each player in “The Freqs” and “the Champs” may see a display similar to FIG. 1A or FIG. 1B. However, in some embodiments, an additional score meter may be displayed showing the score of the other band. In other embodiments, any other measure and indication of performance of a band may be given. For example, in some embodiments, meters may be displayed for each band indicating relative performance, crowd engagement, percentage of notes hit, or any other metric. In some embodiments, a four-in-one meter 180 as depicted in FIG. 1A may be displayed for each band. In some embodiments, avatars from both bands may be depicted on the stage.


In some embodiments, the bands “trade” alternating portions of the musical composition to perform; that is, the performance of the song alternates between bands. In these embodiments, musical performance output from “The Champs” is reproduced locally at the gaming platform used by “The Freqs” when “The Champs” are performing. Similarly, the musical performance of “The Freqs” is reproduced remotely (using the emulation parameter technique described above) at the gaming platform of “The Champs” when “The Freqs” are performing. In other embodiments, the bands play simultaneously. In these embodiments, the displayed score may be the only feedback that “The Freqs” are provided regarding how well “The Champs” are performing.


In some particular embodiments, members of cooperating bands may be local to one another or remote from one another. Similarly, members of competing bands may be local to one another or remote from one another. In one example, each player is remote from every other player.


In some embodiments, players may form persistent bands. In these embodiments, those bands may only compete when at least a majority of the band in available online. In some of the embodiments, if a member of a persistent band in not online and the other band members want to compete, a gaming platform may substitute for the missing band member. Alternatively, a player unaffiliated with the band may substitute for the missing band member. In still other embodiments, a stream of emulation parameters stored during a previous performance by the missing band member may be substituted for the player. In other embodiments, an online venue may be provided allowing players to form impromptu bands. Impromptu bands may dissolve quickly or they may become persistent bands.


Although FIGS. 1A, 1B, and 1D show a band comprising one or more guitars, a drummer, and a vocalist, a band may comprise any number of people playing any musical instruments. Instruments that may be simulated and played in the context of a game may include, without limitation, any percussion instruments (including cymbals, bell lyre, celeste, chimes, crotales, glockenspiel, marimba, orchestra bells, steel drums, timpani, vibraphone, xylophone, bass drum, crash cymbal, gong, suspended cymbal, tam-tam, tenor drum, tom-tom, acme siren, bird whistle, boat whistle, finger cymbals, flex-a-tone, mouth organ, marching machine, police whistle, ratchet, rattle, sandpaper blocks, slapstick, sleigh bells, tambourine, temple blocks, thunder machine, train whistle, triangle, vibra-slap, wind machine, wood block, agogo bells, bongo drum, cabaca, castanets, claves, conga, cowbell, maracas, scraper, timbales, kick drum, hi-hat, ride cymbal, sizzle cymbal, snare drum, and splash cymbal), wind instruments (including piccolo, alto flute, bass flute, contra-alto flute, contrabass flute, subcontrabass flute, double contrabass flute, piccolo clarinet, sopranino clarinet, soprano clarinet, basset horn, alto clarinet, bass clarinet, contra-alto clarinet, contrabass clarinet, octocontra-alto clarinet, octocontrabass clarinet, saxonette, soprillo, sopranino saxophone, soprano saxophone, conn-o-sax, clar-o-sax, saxie, mezzo-soprano saxophone, alto saxophone, tenor saxophone, baritone saxophone, bass saxophone, contrabass saxophone, subcontrabass saxophone, tubax, aulochrome, tarogato, folgerphone, contrabassoon, tenoroon, piccolo oboe, oboe d'amore, English horn, French horn, oboe de caccia, bass oboe, baritone oboe, contrabass oboe, bagpipes, bugle, cornet, didgeridoo, euphonium, flugelhorn, shofar, sousaphone trombone, trumpet, tuba, accordion, concertina, harmonica, harmonium, pipe organ, voice, bullroarer, lasso d'amore, whip and siren), other stringed instruments (including harps, dulcimer, archlute, arpeggione, banjo, cello, Chapman stick, cittern, clavichord, double bass, fiddle, slide guitar, steel guitar, harpsichord hurdy gurdy, kora, koto, lute, lyre, mandola, mandolin, sitar, ukulele, viola, violin, and zither) keyboard instruments (including accordion, bandoneon, calliope, carillon, celesta, clavichord, glasschord, harpsichord, electronic organ, Hammond organ, pipe organ, MIDI keyboard, baby grand piano, electric piano, grand piano, janko piano, toy piano, upright piano, viola organista, and spinets) or electronic instruments or effects device such as a turntable.


Referring now to FIG. 2A, a block diagram of one embodiment of a system for providing asynchronous battle-of-the-bands gameplay is shown. In brief overview, one or more consoles 204a, 204b, 204c (collectively 204) are connected via one or more networks 208 to a central server 212. The central server 212 hosts battle-of-the-bands challenges which can be accessed by the consoles 204. The consoles 204 may access challenges at any time, regardless of the activity of any of the other consoles 204. Asynchronous battle-of-the-bands gameplay may be provided with respect to any of the challenges by having the central server 212 store aspects of a first bands performance on a particular challenge. As a second band begins, or alternatively, performs, the challenge, they may be pitted against the first band, and be shown a running indication of how their performance compares to that of the first band.


Still referring to FIG. 2A, now in greater detail, a central server 210 may provide one or more challenges which can be accessed in a battle-of-the-bands mode. A challenge may comprise any song or set of songs which must be played by a band to complete the challenge. In some embodiments, the song or set of songs may correspond to a given theme or classification, such as songs from a particular decade, a set of songs from a particular band, or a set of songs of a particular genre. A challenge may comprise one, two, three, four, five, six, or any number of songs.


In some embodiments, a challenge may specify one or more constraints on the way in which the set of songs must be played. For example, the challenge may require a band with a particular instrumentation. For example, the challenge may require a guitar, bass, drum, and vocal part all be played. Or for example, a challenge may require that only guitar and vocals must be played. In some embodiments, a challenge may require that the set of songs be played during a given time period. For example, a challenge may be posted for one week, such that any bands wishing to compete must complete the challenge within the week. Or for example, a challenge may be posted only on a single day.


In some embodiments, the challenge may require that the songs be played at, above, and/or below a specified difficulty level. For example, a challenge may require that all parts be played on a “hard” difficulty level. Or for example, a challenge may be geared to novices, and require that all songs be played at a medium or easier difficulty level.


In some embodiments, a challenge may require a band to have particular qualifications. For example, a challenge may require that a band have unlocked or downloaded a particular song or set of songs during other gameplay. Or for example, a challenge may require that a band have scored above a given threshold on a particular song or set of songs to qualify for the challenge.


In some embodiments, a band may be limited in the number of times it can attempt a given challenge. For example, a band may be limited to attempting a challenge only once. Or for example, a band may be limited to only attempting a particular challenge five times. In other embodiments, a band may attempt a given challenge any number of times.


A challenge may have any objective, including without limitation achieving the highest score, achieving a lowest score, achieving the highest consecutive-note streak, achieving a lowest consecutive-note streak, earning the most bonuses, and/or maintaining the highest level of audience enthusiasm, As or after a band executes a challenge, any aspects of the band's performance may be saved on the central server to facilitate determining a winner of the challenge, and providing any of the battle-of-the-bands features described.


In some embodiments, gameplay in a challenge may be altered from gameplay outside a challenge. For example, certain bonuses may be enabled that are not available in non-challenge gameplay, or vice versa. Or for example, in a challenge, a band may be able to carry over bonuses and note streaks from song to song. In some embodiments, a special penalty may be assessed if a band fails a song that is part of a challenge. For example, a penalty of 10,000 points may be assessed, and the song may be restarted.


In some embodiments, bands matched in a battle-of-the-bands competition may be local to each other—that is, both bands perform on the same game console. In other embodiments, matched bands may be remote to each other—that is, each band performs on a different game console. In some embodiments, a band competing in a challenge may have all its members local to each other. In other embodiments, a band competing in a challenge may have one or more remote members.


Referring now to FIG. 2B, an example screenshot of a band competing on a challenge in a battle-of-the-bands mode is shown. In brief overview, a guitarist, vocalist, bassist, and drummer are performing a song. The band's total score 220 for the challenge to this point is displayed. Also displayed is a running score 224 for another band that the band has been selected to compete against.


Still referring to FIG. 2B, now in greater detail a running score 224 of another band may be displayed to provide a simulation of live competition, even in cases where the other band's performance occurred in the past. A running indication of a band's performance with respect to another band may be displayed in any manner. In some embodiments, a score comparison may be shown. In other embodiments, a “tug-of-war” style meter may be shown which illustrates a band's performance relative to the other band. Referring to FIG. 2C, one example of a tug-of-war meter 230 is shown. The meter shows a readout of the score of the band (“band X”) currently playing, and a readout of the running score of the band they have been matched against (“The freqs”). The meter also contains a line that moves towards the band with the higher current score. The position of the line on the meter may be computed using any algorithm. In some embodiments, the meter may be weighted to reflect shifts in relative score momentum of the bands. In this way, the meter may enhance the illusion that the band is competing in real-time against another band.


In any embodiments, other indications may be used additionally or alternatively to indicate a band's performance relative to another band that has completed the challenge, including without limitation crowd noise, crowd animation, venue animation, venue lighting, a graphical depiction of the other band, changes in mood of player avatars, and/or status messages.


The running score for the other band may be computed and displayed in any manner. In some embodiments, the other band's running score may be computed by taking the total score achieved by the other band and determining the average score the other band achieved for a given unit of the challenge. The units may be cues, time periods, or any other divisions of songs. For example, if a band scored 100,000 points on a challenge that contained 2500 cues, the band averaged 40 points per cue. Thus, as each cue passes the band playing the challenge, the other bands running score may be increased by 40 points. In this manner, a band can be given the illusion that they are competing live against another band, without requiring that the bands complete a challenge at the same time, or without requiring anything other than the total score of the bands being saved on a central server. In other embodiments, more granular measures of the first band's performance may be saved to provide a more realistic running tally. For example, instead of only saving a total score, a score for each song in the challenge may be saved, and then a per-cue average score for each song may be used to update the running display.


In some embodiments, a band may be able to select the band they are matched against for battle-of-the-bands gameplay. For example, a band may select to be matched against a particular friend's band, so that they can see whether they can beat that band's score on the challenge. Or for example, a band may select to be matched against the band that has scored the highest on the challenge so far. Or for example, a band may select to be matched against the band that has scored the highest on the challenge so far at a particular difficulty setting. Or for example, a band may select to be matched against the band that has completed the challenge most recently.


In other embodiments, when a band elects to compete in a challenge in battle-of-the-bands mode, a band they will compete against is selected for them. For example, when a band enters battle-of-the-bands mode for a specific challenge, the band may be automatically matched up against another band of similar skill level that has completed the challenge. Or for example, the band may be automatically matched against a band comprising one or more members who are “friends” of one or more members of the band. A “friend” may be a second player a first player has previously played games with, chatted with online using console messaging services, or have been otherwise designated as a player known to the first player.


A detailed example of how a band may be automatically matched against another band for asynchronous battle-of-the-bands follows. For each challenge, the server maintains a ranked listing of all bands that have completed the challenge, and the scores of those bands. When a band elects to compete in the challenge, if the band has already competed at least once in the challenge, the following rules apply:

    • 1) If the band is #1 overall, the band competes against its own previous top score
    • 2) If the band is in the top 100 overall, the band competes against the score of the band ranked above that band.
    • 3) If the band ranked #1 among all bands identified as “friends” of the band, the band competes against the score of the band ranked #100 overall
    • 4) If a friend's band is ranked higher, the band competes against the friend's band that is ranked immediately above the band.
    • 5) If the band has not yet completed the challenge, the band competes against the lowest-ranked friend, or, if no friend exists, the lowest-ranked band overall.


In other embodiments, any other combinations, modifications, and/or subsets of the above rules may be used. For example, the above rules may be applied, but where if a band has not yet completed the challenge, they are matched against a random band.


After a battle-of-the-bands session, information may be displayed to a player indicating their new rank on the challenge, both overall and/or among their friends. Along with the battle-of-the-bands feature, the server may provide interfaces for a console to access leaderboards and other information about each challenge. For example, a player may be able to browse a leaderboard of the top scores for a given challenge, and see the bands that have earned those scores. The player may also browse information about each challenge, such as the time the challenge will be available.


Referring now to FIG. 2D, a third example screenshot of a band competing on a challenge in a battle-of-the-bands mode is shown. In the example shown a local band “Nanorocks” is competing against a score previously obtained by the band “RedDeath.” The local band's score is shown above the “vs.” indicator and the running score for the other band is shown below the “vs.” A tug-of-war style meter is shown in the center that displays the relative performance of the bands. As the local band does better than the other band, the bar moves to the right. As the local band fall below the pace of the other band, the bar moves to the left. In some embodiments, the movement of the bar may be capped at a certain amount. In other embodiments, movement of the bar gives more weight to more recent performance.


Referring now to FIG. 3, an example screenshot of a game that modifies an existing game structure in response to downloaded content is shown. In brief overview, a number of set lists, or challenges, are displayed to a player. The player has the option of selecting any of the currently available challenges to complete (in the figure, available challenges are shown with a solid border, while unavailable challenges are shown with a dashed border). Each challenge may unlock a number of other challenges upon successful completion. For example, completing the “Boston Band Challenge” unlocks the “West Coast Band Challenge.” Alternatively, a challenge may be unlocked upon the band achieving a particular rank for an earlier challenge, e.g., being in the top 1000 highest scoring bands for that challenge.


Still referring to FIG. 3, a video game on a game console may be sold with a certain amount of content included on the game disc. For example, rhythm action game may and include a first number of songs on the game disc which may be played. An additional number of songs may be made available for free or paid download at the time of the game's release and/or at later times.


As additional songs are downloaded, existing challenges may be updated to include the downloaded songs. In some embodiments, downloaded songs may come with information specifying a genre, decade of release, or any other information which may enable the songs to be classified in groups along with the previously existing songs. Thus, a downloaded song may specify that it is a rock song from the 1970s, and be placed into any challenges involving the 1970s and/or rock. In other embodiments, downloaded songs may explicitly specify one or more challenges the songs should be added to. In some embodiments, the downloaded songs may also specify one or more conditions on their addition to a challenge, such as the existence of other content or songs on the game platform. In other embodiments, the challenges themselves may contain conditions on which downloaded songs are added. For example, it may be desirable that a “songs of 1985” challenge be limited to no more than 5 songs, even if a user downloads 7 songs from 1985.


Upon a newly downloaded song being added to a challenge, the challenge may subsequently be marked as incomplete or otherwise unfinished until a player completes the challenge including the new material. In some embodiments, a bonus or extra reward may be given to a player who successfully completes a challenge having additional content. Additionally, by downloading new songs, new challenges may be made available (e.g. downloading a song by a British artist may unlock the “British Punk challenge,” and existing challenges may be modified (e.g. the extra song is added to the “Boston Band Challenge.”


In some embodiments, bands and/or players may create their own challenges. For example, a player or band may select a set of songs and post a challenge to other bands to complete the same set of songs with a higher score. The band and/or players may then specify any number of constraints for the challenge. Challenges may also be created by the battle-of-the-bands server, and the administrator of the server may allow or disallow gameplay challenges submitted by players to the server.


In some embodiments, challenges may be sorted into two or more tiers according to their difficulty. A player may advance up to challenges in higher tiers by successfully completing challenges in lower tiers. In some embodiments, multiple paths may be provided to unlock a given tier and/or challenge in a tier. For example, in FIG. 3, a player may unlock the “Screaming Guitar Solo Challenge” by completing either the “Killer Guitar Riffs Challenge” or the “British Punk Challenge.” Thus, by downloading new songs, a player can increase the number of paths available to unlock a given challenge and/or a specific tier of challenges.


In some embodiments, new challenges may be automatically created upon downloading of new content. For example, a new challenge may be created any time a user downloads an entire album of songs, with the challenge comprising playing all the songs on the album. Or for example, a new challenge may be created any time a player obtains 3 or more songs from a given artist, with the challenge comprising playing all the songs of that artist. Such a challenge may be automatically created even if the three songs in the challenge were not downloaded at the same time. Such a challenge may be created even in cases where the songs by the artist are a mix of downloaded songs and songs contained on a game disc. Challenges may also be automatically created if a user downloads a designated collection of songs, such as, for example, a “punk pack.” The challenge may then comprise all the songs in the pack.


Automatically created challenges may be placed into a tiered challenge system in any way. In some embodiments, a tiered challenge structure may require that a player complete a certain number of challenges in a tier to advance to the next-highest tier. As a challenge is automatically created, it may be assigned to a tier based on the difficulty level of one or more songs in the challenge. For example, a challenge may be assigned to a tier based on the difficulty of the most difficult song in the challenge.


The above-described techniques can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. The implementation can be as a computer program product, i.e., a computer program tangibly embodied in a machine-readable storage device, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, a game console, or multiple computers or game consoles. A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or game console or on multiple computers or game consoles at one site or distributed across multiple sites and interconnected by a communication network.


Method steps can be performed by one or more programmable processors executing a computer or game program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by, and apparatus can be implemented as a game platform such as a dedicated game console, e.g., PLAYSTATION® 2, PLAYSTATION® 3, or PSP® manufactured by Sony Corporation; WII™, NINTENDO DS®, NINTENDO DSi™, or NINTENDO DS LITE™ manufactured by Nintendo Corp.; or XBOX® or XBOX 360® manufactured by Microsoft Corp. or special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit) or other specialized circuit. Modules can refer to portions of the computer or game program and/or the processor/special circuitry that implements that functionality.


Processors suitable for the execution of a computer program include, by way of example, both general and special-purpose microprocessors, and any one or more processors of any kind of digital computer or game console. Generally, a processor receives instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer or game console are a processor for executing instructions and one or more memory devices for storing instructions and data. Generally, a computer also includes, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Data transmission and instructions can also occur over a communications network. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM, DVD-ROM, or BLU-RAY™ disks. The processor and the memory can be supplemented by, or incorporated in special purpose logic circuitry.


To provide for interaction with a user, the above described techniques can be implemented on a computer or game console having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, a television, or an integrated display, e.g., the display of a PSP® or Nintendo DS. The display can in some instances also be an input device such as a touch screen. Other typical inputs include simulated instruments, microphones, or game controllers. Alternatively input can be provided by a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer or game console. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input.


The above described techniques can be implemented in a distributed computing system that includes a back-end component, e.g., as a data server, and/or a middleware component, e.g., an application server, and/or a front-end component, e.g., a client computer or game console having a graphical user interface through which a user can interact with an example implementation, or any combination of such back-end, middleware, or front-end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), e.g., the Internet, and include both wired and wireless networks.


The computing/gaming system can include clients and servers or hosts. A client and server (or host) are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.


In some embodiments, implementation of the methods described herein limit the game server to a particular purpose, e.g., administering battle of the bands competition. In these scenarios, the game server combined with the software described herein, in effect, becomes a particular machine while the software is executing. In some embodiments, though other tasks may be performed while the software is running, execution of the software still limits the game server and may negatively impact performance of the other tasks. The game server also can receive inputs provided by one or more players to game platforms in communication with the server, perform operations and calculations on those inputs, and send the game platforms data such as results from the operations and calculations, thereby transforming the input received from the players into data used by the game platforms for visual representation of the input and/or the visual representation of an effect caused by the player such as those shown in the figures.


The invention has been described in terms of particular embodiments. The alternatives described herein are examples for illustration only and not to limit the alternatives in any way. The steps of the invention can be performed in a different order and still achieve desirable results. Other embodiments are within the scope of the following claims.

Claims
  • 1. A method executed on a game server in signal communication with a game platform, the method comprising: providing, by the game server to the game platform, a gameplay challenge, wherein the gameplay challenge includes one or more songs to be completed by a first band comprising a first group of players;receiving, by the game server, first musical game input data associated with the gameplay challenge, representing a musical performance of the first group of players at the game platform;calculating, by the game server, a first composite score associated with the first musical game input data associated with the gameplay challenge;comparing, by the game server, the first composite score to a stored second composite score associated with a second band comprising a second group of players, the stored second composite score associated with second musical input data representing a musical performance of the second group of players for the gameplay challenge;causing the display of, on a display in signal communication with the game platform, the comparison using a graphical indicator; andwherein the graphical indicator appears as a tug of war between the first group and the second group.
  • 2. The method of claim 1, further comprising determining, by the game server, a performance ranking associated with the gameplay challenge for the first group upon completion of the challenge, the ranking based on the first composite score.
  • 3. The method of claim 1, further comprising producing, by a speaker in signal communication with the game platform, the comparison using an audible indicator.
  • 4. The method of claim 3, wherein the audible indicator is at least one of crowd noise, a distortion effect, and a volume increase.
  • 5. The method of claim 1 wherein the graphical indicator further includes at least one of a score comparison, a performance meter, crowd animation, venue animation, venue lighting, a graphical depiction of the second group of players, changes in mood of player avatars, and status messages.
  • 6. The method of claim 1, wherein the graphical indicator indicates a score momentum for the first group and second groups.
  • 7. The method of claim 1, wherein the comparison is updated in real time based on a change to the first composite score.
  • 8. The method of claim 1, further comprising storing, by the game server, gameplay aspects of the performance represented by the first musical game input data.
  • 9. The method of claim 1, further comprising storing, by the game server, the composite score for the first group of players in a storage device.
  • 10. The method of claim 1, further comprising matching, by the game server, the first group of players and the second group of players for the comparison.
  • 11. The method of claim 10, the matching comprising selecting the second group of players based on a performance ranking associated with the gameplay challenge for the second group.
  • 12. The method of claim 10, the matching comprising selecting the second group of players based on an association between at least one player in the first group of players and at least one player in the second group of players.
  • 13. The method of claim 10, the matching comprising selecting the second group of players based on input from the first group of players.
  • 14. The method of claim 10, the matching comprising randomly selecting the second group of players.
  • 15. The method of claim 10, the matching comprising selecting the second group of players as the group of players to most recently complete the challenge.
  • 16. The method of claim 10, the matching comprising selecting the second group of players based on a performance ranking associated with performance unrelated to the gameplay challenge.
  • 17. The method of claim 1 wherein the gameplay challenge comprises one or more songs corresponding to a theme.
  • 18. The method of claim 1, wherein the gameplay challenge includes one or more constraints which affect performance of the gameplay challenge.
  • 19. The method of claim 18, wherein the constraints include at least one of difficulty level, completion during a particular time period, number of players, maximum number of attempts, type of instrument or instruments to be used, minimum qualifying score, completion of other gameplay, and completion of another gameplay challenge.
  • 20. The method of claim 1, wherein the gameplay challenge includes one or more objectives associated with completion of the gameplay challenge.
  • 21. The method of claim 20, wherein the objectives include at least one of achieving a particular score, achieving a highest score, achieving a lowest score, a particular number of consecutive notes played, a number of bonuses received, and a high level of audience enthusiasm.
  • 22. The method of claim 1, wherein all of the first group of players provide musical game input data to the same game platform.
  • 23. The method of claim 1, wherein at least one player from the first group of players provides musical game input data to a game platform different than the game platform of the other players of the first group.
  • 24. The method of claim 1, wherein the second group of players provides musical game input data to the same game platform as the first group.
  • 25. The method of claim 1, wherein the second group of players provides input data to a game platform different than the game platform of the first group.
  • 26. The method of claim 1, wherein the first composite score and the second composite score are based in part on a performance level of each player in the respective groups of players.
  • 27. The method of claim 1, further comprising determining a winner of the gameplay challenge based on the comparison.
  • 28. The method of claim 1, further comprising providing, by the game server, an interface for the game platform to access information associated with the gameplay challenge.
  • 29. The method of claim 1, wherein the second group of players is the same as the first group of players.
  • 30. The method of claim 1, further comprising determining that the game platform has downloaded content.
  • 31. The method of claim 30, wherein determining the game platform has downloaded content is performed by the game platform.
  • 32. The method of claim 30, wherein determining the game platform has downloaded content is performed by the game server.
  • 33. The method of claim 30, further comprising, in response to determining the game platform has downloaded content, making an additional gameplay challenge available to the first group of players.
  • 34. The method of claim 33, wherein the downloaded content comprises one or more songs of an album and the additional gameplay challenge comprises playing one or more songs of the album.
  • 35. The method of claim 33, wherein the downloaded content comprises one or more songs from an artist and the additional gameplay challenge comprises playing one or more songs of the artist.
  • 36. The method of claim 33, wherein the downloaded content comprises one or more songs of a designated collection and the additional gameplay challenge comprises playing one or more songs of the designated collection.
  • 37. The method of claim 33, wherein the additional gameplay challenge comprises one or more songs of the downloaded content and one or more songs provided by the game platform.
  • 38. The method of claim 30, further comprising, in response to determining the game platform has downloaded content, modifying the gameplay challenge to include the downloaded content.
  • 39. The method of claim 38, wherein the gameplay challenge is modified to include the downloaded content based on information contained within the downloaded content.
  • 40. The method of claim 1, further comprising, in response to the musical game input data provided by the first group of players, making an additional gameplay challenge available to the first group of players.
  • 41. The method of claim 40, further comprising sorting the gameplay challenge and the additional gameplay challenge into tiers.
  • 42. The method of claim 41, further comprising assigning a challenge to a tier based on the difficulty of one or more songs in the gameplay challenge.
  • 43. The method of claim 1, wherein the gameplay challenge is created by either the first or second group of players or an administrator of a battle-of-the-bands server.
  • 44. The method of claim 1, wherein a gameplay mechanic is altered for a session during the gameplay challenge.
  • 45. The method of claim 44 wherein altering the game mechanic comprises making a bonus or reward available during the gameplay challenge that is not available during nonchallenge gameplay, removing a bonus or reward during the gameplay challenge that is available during non-challenge gameplay, and penalizing the first or second group of players for failing.
  • 46. A method executed on a game server in signal communication with a game platform, the method comprising: providing, by the game server to the game platform, a gameplay challenge, wherein the gameplay challenge includes one or more songs to be completed by a first band comprising a first group of players;receiving, by the game server, first musical game input data associated with the gameplay challenge, representing a musical performance of the first group of players at the game platform;calculating, by the game server, a first composite score associated with the first musical game input data associated with the gameplay challenge;comparing, by the game server, the first composite score to a stored second composite score associated with a second band comprising a second group of players, the stored second composite score associated with second musical input data representing a musical performance of the second group of players for the gameplay challenge; andmatching, by the game server, the first group of players and the second group of players for the comparison, the matching comprising selecting the second group of players as the group of players to most recently complete the challenge.
  • 47. A method executed on a game server in signal communication with a game platform, the method comprising: receiving, by the game server, first musical game input data representing a musical performance of a first group of players;calculating, by the game server, a first composite score associated with the first musical game input data, and based on a gameplay challenge;comparing, by the game server, the first composite score to a stored second composite score associated with a second group of players, the stored second composite score associated with second musical input data representing a musical performance of the second group and based on the gameplay challenge;causing the display of, on a display in signal communication with the game platform, the comparison using a graphical indicator; andwherein the graphical indicator appears as a tug of war between the first group and the second group.
  • 48. A method executed on a game server in signal communication with a game platform, the method comprising: receiving, by the game server, first musical game input data representing a musical performance of a first group of players;calculating, by the game server, a first composite score associated with the first musical game input data, and based on a gameplay challenge;comparing, by the game server, the first composite score to a stored second composite score associated with a second group of players, the stored second composite score associated with second musical input data representing a musical performance of the second group and based on the gameplay challenge; andmatching, by the game server, the first group of players and the second group of players for the comparison, the matching comprises selecting the second group of players as the group of players to most recently complete the challenge.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims benefit of priority to application Ser. No. 61/079,094, filed Jul. 8, 2008 and entitled “Systems and Methods for Simulating a Rock Band Experience” by Egozy et al., the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (619)
Number Name Date Kind
D211666 MacGillavry Jul 1968 S
3430530 Grind et al. Mar 1969 A
D245038 Ebata et al. Jul 1977 S
D247795 Darrell Apr 1978 S
D259785 Kushida et al. Jul 1981 S
4295406 Smith Oct 1981 A
D262017 Frakes, Jr. Nov 1981 S
D265821 Okada et al. Aug 1982 S
D266664 Hoshino et al. Oct 1982 S
D287521 Obara Dec 1986 S
4644495 Crane Feb 1987 A
D310668 Takada Sep 1990 S
5074182 Capps et al. Dec 1991 A
5107743 Decker Apr 1992 A
D345554 Dones Mar 1994 S
5393926 Johnson Feb 1995 A
5398585 Starr Mar 1995 A
5399799 Gabriel Mar 1995 A
5464946 Lewis Nov 1995 A
5482087 Overbergh et al. Jan 1996 A
5491297 Johnson et al. Feb 1996 A
5513129 Bolas et al. Apr 1996 A
5524637 Erickson Jun 1996 A
5537528 Takahashi et al. Jul 1996 A
5568275 Norton et al. Oct 1996 A
5574238 Mencher Nov 1996 A
5613909 Stelovsky Mar 1997 A
5616078 Oh Apr 1997 A
5627335 Rigopulos et al. May 1997 A
5670729 Miller et al. Sep 1997 A
D389216 Isetani et al. Jan 1998 S
5704836 Norton et al. Jan 1998 A
5723802 Johnson et al. Mar 1998 A
5734961 Castille Mar 1998 A
5763804 Rigopulos et al. Jun 1998 A
D398916 Bernardi Sep 1998 S
D399887 Schultz et al. Oct 1998 S
D400196 Cameron et al. Oct 1998 S
5824933 Gabriel Oct 1998 A
5825427 MacLeod Oct 1998 A
5833469 Ito et al. Nov 1998 A
D403024 Muraki et al. Dec 1998 S
5861881 Freeman et al. Jan 1999 A
5880788 Bregler Mar 1999 A
5886275 Kato et al. Mar 1999 A
D411258 Isetani et al. Jun 1999 S
5915288 Gabriel Jun 1999 A
5925843 Miller et al. Jul 1999 A
5953005 Liu Sep 1999 A
5953485 Abecassis Sep 1999 A
5969716 Davis et al. Oct 1999 A
5990405 Auten et al. Nov 1999 A
5999173 Ubillos Dec 1999 A
6011212 Rigopulos et al. Jan 2000 A
6016380 Norton Jan 2000 A
6032156 Marcus Feb 2000 A
6065042 Reimer et al. May 2000 A
6067126 Alexander May 2000 A
6072480 Gorbet et al. Jun 2000 A
6073489 French et al. Jun 2000 A
6074215 Tsurumi Jun 2000 A
6083009 Kim et al. Jul 2000 A
6091408 Treibitz et al. Jul 2000 A
6098458 French et al. Aug 2000 A
6118444 Garmon et al. Sep 2000 A
6142870 Wada et al. Nov 2000 A
6150947 Shima Nov 2000 A
6177623 Ooseki Jan 2001 B1
6184899 Akemann Feb 2001 B1
6191350 Okulov et al. Feb 2001 B1
6215411 Gothard Apr 2001 B1
6224486 Walker et al. May 2001 B1
6225547 Toyama et al. May 2001 B1
6227968 Suzuki et al. May 2001 B1
6243087 Davis et al. Jun 2001 B1
6243092 Okita et al. Jun 2001 B1
6252153 Toyama Jun 2001 B1
6262724 Crow et al. Jul 2001 B1
6263392 McCauley Jul 2001 B1
6283860 Lyons et al. Sep 2001 B1
6287198 McCauley Sep 2001 B1
6288727 Akemann Sep 2001 B1
6292620 Ohmori et al. Sep 2001 B1
6307576 Rosenfeld Oct 2001 B1
6308565 French et al. Oct 2001 B1
6309301 Sano Oct 2001 B1
6319129 Igarashi et al. Nov 2001 B1
6319130 Ooseki et al. Nov 2001 B1
6320110 Ishikawa et al. Nov 2001 B1
6329620 Oishi et al. Dec 2001 B1
6337433 Nishimoto Jan 2002 B1
6342665 Okita et al. Jan 2002 B1
6347998 Yoshitomi et al. Feb 2002 B1
6350942 Thomson Feb 2002 B1
6353174 Schmidt et al. Mar 2002 B1
D455792 Isetani et al. Apr 2002 S
6379244 Sagawa et al. Apr 2002 B1
6380950 Montgomery et al. Apr 2002 B1
6384736 Gothard May 2002 B1
6390923 Yoshitomi et al. May 2002 B1
6392133 Georges May 2002 B1
6407324 Hulcher Jun 2002 B1
6410835 Suzuki et al. Jun 2002 B2
6425822 Hayashida et al. Jul 2002 B1
6425827 Nimura Jul 2002 B1
6425828 Walker et al. Jul 2002 B2
6429863 LoPiccolo et al. Aug 2002 B1
6430997 French et al. Aug 2002 B1
D462698 Sturm Sep 2002 S
6444887 Hiraoka et al. Sep 2002 B1
6450886 Oishi et al. Sep 2002 B1
6450888 Takase et al. Sep 2002 B1
6461239 Sagawa et al. Oct 2002 B1
6463205 Aschbrenner et al. Oct 2002 B1
6464585 Miyamoto et al. Oct 2002 B1
6468161 Shimomura Oct 2002 B1
6471584 Wada et al. Oct 2002 B1
6482087 Egozy et al. Nov 2002 B1
6504990 Abecassis Jan 2003 B1
6514083 Kumar et al. Feb 2003 B1
6527639 Suzuki Mar 2003 B2
6530834 Kondo Mar 2003 B2
6530839 Horio Mar 2003 B2
6535269 Sherman et al. Mar 2003 B2
6540613 Okubo et al. Apr 2003 B2
6542168 Negishi et al. Apr 2003 B2
6544119 Kubo et al. Apr 2003 B2
6544122 Araki et al. Apr 2003 B2
6544125 Horigami et al. Apr 2003 B2
6554706 Kim et al. Apr 2003 B2
6554711 Kawasaki et al. Apr 2003 B1
6570078 Ludwig May 2003 B2
6577330 Tsuda et al. Jun 2003 B1
6582309 Higurashi et al. Jun 2003 B2
6589120 Takahashi Jul 2003 B1
6599195 Araki et al. Jul 2003 B1
6607446 Shimomura et al. Aug 2003 B1
6608249 Georges Aug 2003 B2
6609979 Wada Aug 2003 B1
6611278 Rosenfeld Aug 2003 B2
6612931 Kojima et al. Sep 2003 B2
6613100 Miller Sep 2003 B2
6618053 Tanner Sep 2003 B1
6621503 Ubillos Sep 2003 B1
6623358 Harima Sep 2003 B2
6629892 Oe et al. Oct 2003 B2
6634886 Oyama et al. Oct 2003 B2
6638160 Yoshitomi Oct 2003 B2
6645067 Okita et al. Nov 2003 B1
6645076 Sugai Nov 2003 B1
6645784 Tayebati et al. Nov 2003 B2
6659873 Kitano et al. Dec 2003 B1
6661496 Sherman et al. Dec 2003 B2
6666764 Kudo Dec 2003 B1
6669563 Kitami et al. Dec 2003 B1
6676523 Kasai et al. Jan 2004 B1
6682424 Yamauchi et al. Jan 2004 B2
6684480 Conrad Feb 2004 B2
6695694 Ishikawa et al. Feb 2004 B2
6712692 Basson et al. Mar 2004 B2
6733382 Oe et al. May 2004 B2
6738052 Manke et al. May 2004 B1
6743099 Yabe et al. Jun 2004 B2
6749432 French et al. Jun 2004 B2
6749508 Kohira et al. Jun 2004 B2
6750848 Pryor Jun 2004 B1
6758753 Nagata et al. Jul 2004 B1
6758756 Horigami et al. Jul 2004 B1
6764399 Nagata et al. Jul 2004 B2
6765590 Watahiki et al. Jul 2004 B1
6765726 French et al. Jul 2004 B2
6767282 Matsuyama et al. Jul 2004 B2
6769689 Shimomura et al. Aug 2004 B1
6786821 Nobe et al. Sep 2004 B2
6801930 Dionne et al. Oct 2004 B1
6811491 Levenberg et al. Nov 2004 B1
6821203 Suga et al. Nov 2004 B2
6831220 Varme Dec 2004 B2
6831656 Kitao Dec 2004 B2
6835136 Kitao Dec 2004 B2
6843726 Nomi et al. Jan 2005 B1
6852034 Nagata et al. Feb 2005 B2
6857960 Okubo et al. Feb 2005 B2
D503407 Kaku Mar 2005 S
6876496 French et al. Apr 2005 B2
6881148 Yotsugi et al. Apr 2005 B2
6881887 Berens Apr 2005 B2
6890262 Oishi et al. May 2005 B2
6893343 Suda et al. May 2005 B2
6894693 Nash May 2005 B1
6905413 Terao et al. Jun 2005 B1
6915488 Omori et al. Jul 2005 B2
6921332 Fukunaga et al. Jul 2005 B2
6936758 Itoh Aug 2005 B2
6949023 Okubo et al. Sep 2005 B1
6964610 Yamauchi et al. Nov 2005 B2
6976918 Hosokawa Dec 2005 B2
6991542 Asami et al. Jan 2006 B2
6995765 Boudier Feb 2006 B2
6995869 Onodera Feb 2006 B2
6998527 Agnihotri Feb 2006 B2
7000200 Martins Feb 2006 B1
7001272 Yamashita et al. Feb 2006 B2
7010291 Iwanaga Mar 2006 B2
D519569 Kiyono et al. Apr 2006 S
7027046 Zhang Apr 2006 B2
7027124 Foote et al. Apr 2006 B2
7037197 Watanabe May 2006 B2
7038855 French et al. May 2006 B2
7044856 Suzuki May 2006 B2
7044857 Klitsner et al. May 2006 B1
7064672 Gothard Jun 2006 B2
7066818 Ikeda Jun 2006 B2
7070500 Nomi et al. Jul 2006 B1
7071914 Marks Jul 2006 B1
7074999 Sitrick et al. Jul 2006 B2
7076052 Yoshimura Jul 2006 B2
7079026 Smith Jul 2006 B2
7079114 Smith et al. Jul 2006 B1
7084855 Kaku et al. Aug 2006 B2
7084888 Takahama et al. Aug 2006 B2
7098392 Sitrick et al. Aug 2006 B2
7098921 Nash et al. Aug 2006 B2
7103873 Tanner et al. Sep 2006 B2
7119268 Futamase et al. Oct 2006 B2
7122751 Anderson et al. Oct 2006 B1
7123272 Moriyama Oct 2006 B2
7126607 Emerson Oct 2006 B2
7128649 Nobe et al. Oct 2006 B2
7142807 Lee Nov 2006 B2
7143353 McGee et al. Nov 2006 B2
7145070 Barry Dec 2006 B2
D535659 Hally et al. Jan 2007 S
7164076 McHale et al. Jan 2007 B2
7170510 Kawahara et al. Jan 2007 B2
7192353 Okubo Mar 2007 B2
7194676 Fayan et al. Mar 2007 B2
7199801 Tsunashima et al. Apr 2007 B2
7201659 Nakayama et al. Apr 2007 B2
7221852 Iizuka et al. May 2007 B2
7227526 Hildreth et al. Jun 2007 B2
7259971 Allen et al. Aug 2007 B1
7263668 Lentz Aug 2007 B1
7272780 Abbott et al. Sep 2007 B2
7274803 Sharma et al. Sep 2007 B1
7304232 Nicholes Dec 2007 B1
7317812 Krahnstoever et al. Jan 2008 B1
7320643 Brosius et al. Jan 2008 B1
7324165 Shan et al. Jan 2008 B2
7336890 Lu et al. Feb 2008 B2
7346472 Moskowitz et al. Mar 2008 B1
7352359 Zalewski et al. Apr 2008 B2
7352952 Herberger et al. Apr 2008 B2
7359121 French et al. Apr 2008 B2
7359617 Ma Apr 2008 B2
D568659 Ophardt et al. May 2008 S
D568892 Stabb et al. May 2008 S
7367887 Watabe et al. May 2008 B2
7383508 Toyama et al. Jun 2008 B2
7391409 Zalewski et al. Jun 2008 B2
7391874 Semmes, Jr. et al. Jun 2008 B1
D572265 Guimaraes et al. Jul 2008 S
7398002 Hsiao et al. Jul 2008 B2
7408106 Weiner et al. Aug 2008 B2
7430360 Abecassis Sep 2008 B2
7432810 Menache et al. Oct 2008 B2
7435178 Tam et al. Oct 2008 B1
7458025 Crow et al. Nov 2008 B2
7459624 Schmidt et al. Dec 2008 B2
7462772 Salter Dec 2008 B2
7480446 Bhadkamkar et al. Jan 2009 B2
7480873 Kawahara Jan 2009 B2
D590407 Watanabe et al. Apr 2009 S
7536654 Anthony et al. May 2009 B2
7546130 Vance Jun 2009 B2
7559841 Hashimoto Jul 2009 B2
D599812 Hirsch Sep 2009 S
D599819 Lew Sep 2009 S
7582015 Onoda et al. Sep 2009 B2
7593618 Xu et al. Sep 2009 B2
7599554 Agnihotri et al. Oct 2009 B2
7625284 Kay et al. Dec 2009 B2
7628699 Onoda et al. Dec 2009 B2
7640069 Johnston Dec 2009 B1
D607892 Murchie et al. Jan 2010 S
D609715 Chaudhri Feb 2010 S
7660510 Kawahara et al. Feb 2010 B2
7660700 Moskowitz et al. Feb 2010 B2
7690017 Stecyk et al. Mar 2010 B2
7692630 Natsume et al. Apr 2010 B2
7714849 Pryor May 2010 B2
7716572 Beauregard et al. May 2010 B2
7722450 Onoda et al. May 2010 B2
7747348 Shim et al. Jun 2010 B2
D619598 Maitlen et al. Jul 2010 S
D619609 Meziere Jul 2010 S
7754961 Yang et al. Jul 2010 B1
7758427 Egozy Jul 2010 B2
7760908 Curtner et al. Jul 2010 B2
7774706 Sakai Aug 2010 B2
7791808 French et al. Sep 2010 B2
7797641 Karukka et al. Sep 2010 B2
D624932 Chaudhri Oct 2010 S
7806759 McHale et al. Oct 2010 B2
7814436 Schrag et al. Oct 2010 B2
7823070 Nelson et al. Oct 2010 B2
7840288 Graepel et al. Nov 2010 B2
7840907 Kikuchi et al. Nov 2010 B2
D628582 Kurozumi et al. Dec 2010 S
7853896 Ok et al. Dec 2010 B2
7853897 Ogawa et al. Dec 2010 B2
7865834 van Os et al. Jan 2011 B1
7877690 Margulis Jan 2011 B2
7881702 Heyworth et al. Feb 2011 B2
7890867 Margulis Feb 2011 B1
7895617 Pedlow, Jr. Feb 2011 B2
7899389 Mangum Mar 2011 B2
7904814 Errico et al. Mar 2011 B2
7917644 Vedantham et al. Mar 2011 B2
7920931 Van de Sluis et al. Apr 2011 B2
7923620 Foster Apr 2011 B2
7928307 Hetherington et al. Apr 2011 B2
7935880 Stoddard et al. May 2011 B2
7949494 Moskowitz et al. May 2011 B2
7973230 Mahowald Jul 2011 B2
7980997 Thukral et al. Jul 2011 B2
7982114 Applewhite et al. Jul 2011 B2
8003872 Lopiccolo et al. Aug 2011 B2
8010088 Cheng Aug 2011 B2
8026435 Stoddard et al. Sep 2011 B2
8057290 Vance et al. Nov 2011 B2
D650802 Jang et al. Dec 2011 S
8076564 Applewhite Dec 2011 B2
8076574 Irmer et al. Dec 2011 B2
8079901 Brosius et al. Dec 2011 B2
8079907 Egozy Dec 2011 B2
8080722 Applewhite et al. Dec 2011 B2
D651608 Allen et al. Jan 2012 S
D651609 Pearson et al. Jan 2012 S
8176439 Kamen et al. May 2012 B2
8198526 Izen et al. Jun 2012 B2
8202161 Leake et al. Jun 2012 B2
8205172 Wong et al. Jun 2012 B2
8209606 Ording Jun 2012 B2
8214175 Moskowitz et al. Jul 2012 B2
8225227 Headrick et al. Jul 2012 B2
8230360 Ma et al. Jul 2012 B2
D664975 Arnold Aug 2012 S
20010004861 Suzuki et al. Jun 2001 A1
20010007824 Fukuda Jul 2001 A1
20010007829 Suzuki Jul 2001 A1
20010008844 Yamauchi et al. Jul 2001 A1
20010008846 Yamauchi et al. Jul 2001 A1
20010012795 Asami et al. Aug 2001 A1
20010014440 Oyama et al. Aug 2001 A1
20010014621 Okubo et al. Aug 2001 A1
20010016510 Ishikawa et al. Aug 2001 A1
20010023202 Okubo Sep 2001 A1
20010024972 Kitao Sep 2001 A1
20010030652 Kitao Oct 2001 A1
20010031653 Oe et al. Oct 2001 A1
20010035868 Uehara et al. Nov 2001 A1
20010036861 Uehara et al. Nov 2001 A1
20010039207 Horigami et al. Nov 2001 A1
20010041615 Kondo Nov 2001 A1
20020002411 Higurashi et al. Jan 2002 A1
20020004420 Suga et al. Jan 2002 A1
20020005109 Miller Jan 2002 A1
20020006819 Kubo et al. Jan 2002 A1
20020006823 Horio Jan 2002 A1
20020013166 Yoshitomi Jan 2002 A1
20020016203 Nagata et al. Feb 2002 A1
20020022520 Oe et al. Feb 2002 A1
20020022522 Yamada Feb 2002 A1
20020025841 Nobe et al. Feb 2002 A1
20020025842 Nobe et al. Feb 2002 A1
20020025853 Kojima et al. Feb 2002 A1
20020027899 Ikeda Mar 2002 A1
20020041385 Onodera Apr 2002 A1
20020052236 Kohira et al. May 2002 A1
20020054127 Omori et al. May 2002 A1
20020055383 Onda et al. May 2002 A1
20020055386 Yotsugi et al. May 2002 A1
20020061776 Wada et al. May 2002 A1
20020065121 Fukunaga et al. May 2002 A1
20020085833 Miyauchi Jul 2002 A1
20020094865 Araki et al. Jul 2002 A1
20020105229 Makoto Aug 2002 A1
20020119811 Yabe et al. Aug 2002 A1
20020142824 Kazaoka et al. Oct 2002 A1
20020142827 Aida et al. Oct 2002 A1
20020142834 Sobue Oct 2002 A1
20020151337 Yamashita et al. Oct 2002 A1
20020160824 Goto et al. Oct 2002 A1
20020169014 Egozy et al. Nov 2002 A1
20020187835 Nakayama et al. Dec 2002 A1
20020198045 Okubo Dec 2002 A1
20030000364 Deverich Jan 2003 A1
20030003431 Maeda Jan 2003 A1
20030003991 Kuraishi Jan 2003 A1
20030003992 Furuya Jan 2003 A1
20030011620 Moriyama Jan 2003 A1
20030017872 Oishi et al. Jan 2003 A1
20030032478 Takahama et al. Feb 2003 A1
20030045334 Hosokawa Mar 2003 A1
20030069071 Britt et al. Apr 2003 A1
20030070159 Webb Apr 2003 A1
20030078086 Matsuyama et al. Apr 2003 A1
20030078102 Okita et al. Apr 2003 A1
20030099461 Johnson May 2003 A1
20030104868 Okita et al. Jun 2003 A1
20030109298 Oishi et al. Jun 2003 A1
20030151628 Salter Aug 2003 A1
20030195041 McCauley Oct 2003 A1
20030199317 McCauley Oct 2003 A1
20030214498 Gothard Nov 2003 A1
20030218626 Greene Nov 2003 A1
20030232644 Takahashi et al. Dec 2003 A1
20030232645 Suda et al. Dec 2003 A1
20040012540 Treibitz et al. Jan 2004 A1
20040021684 Millner Feb 2004 A1
20040063479 Kimura Apr 2004 A1
20040063480 Wang Apr 2004 A1
20040072620 Nagata et al. Apr 2004 A1
20040077405 Watanabe Apr 2004 A1
20040082380 George et al. Apr 2004 A1
20040082386 George et al. Apr 2004 A1
20040092303 George et al. May 2004 A1
20040092304 George et al. May 2004 A1
20040092305 George et al. May 2004 A1
20040092306 George et al. May 2004 A1
20040092307 George et al. May 2004 A1
20040092313 Saito et al. May 2004 A1
20040092314 George et al. May 2004 A1
20040098582 Mori May 2004 A1
20040109000 Chosokabe Jun 2004 A1
20040113360 George et al. Jun 2004 A1
20040116069 Fadavi-Ardekani et al. Jun 2004 A1
20040116184 George et al. Jun 2004 A1
20040116185 George et al. Jun 2004 A1
20040127282 Naobayashi Jul 2004 A1
20040127291 George et al. Jul 2004 A1
20040132531 George et al. Jul 2004 A1
20040137984 Salter Jul 2004 A1
20040152514 Kasai et al. Aug 2004 A1
20040204211 Suzuki Oct 2004 A1
20040204238 Aoki Oct 2004 A1
20040207774 Gothard Oct 2004 A1
20040209673 Shiraishi Oct 2004 A1
20040236543 Stephens Nov 2004 A1
20040239678 Tsunashima et al. Dec 2004 A1
20040243482 Laut Dec 2004 A1
20040254016 Shimazaki Dec 2004 A1
20040259632 Crittenden et al. Dec 2004 A1
20040259644 McCauley Dec 2004 A1
20050027381 George et al. Feb 2005 A1
20050027383 Nagata et al. Feb 2005 A1
20050049047 Kitao Mar 2005 A1
20050059480 Soukup et al. Mar 2005 A1
20050060231 Soukup et al. Mar 2005 A1
20050070349 Kimura Mar 2005 A1
20050073427 Gothard Apr 2005 A1
20050075165 George et al. Apr 2005 A1
20050082559 Hasan Zaidi et al. Apr 2005 A1
20050106546 Strom May 2005 A1
20050181864 Britt et al. Aug 2005 A1
20050215319 Rigopulos et al. Sep 2005 A1
20050221892 Takase Oct 2005 A1
20050227767 Shimomura et al. Oct 2005 A1
20050235809 Kageyama Oct 2005 A1
20050250565 Nojiri et al. Nov 2005 A1
20050252362 McHale et al. Nov 2005 A1
20050255923 Aoki Nov 2005 A1
20060009282 George et al. Jan 2006 A1
20060009979 McHale et al. Jan 2006 A1
20060030382 Okamura et al. Feb 2006 A1
20060052161 Soukup et al. Mar 2006 A1
20060052162 Soukup et al. Mar 2006 A1
20060052163 Aida Mar 2006 A1
20060052167 Boddicker et al. Mar 2006 A1
20060052169 Britt et al. Mar 2006 A1
20060058099 Soukup et al. Mar 2006 A1
20060063573 Ishikawa et al. Mar 2006 A1
20060107819 Salter May 2006 A1
20060135253 George et al. Jun 2006 A1
20060152622 Tan et al. Jul 2006 A1
20060166744 Igarashi et al. Jul 2006 A1
20060180008 Negoescu et al. Aug 2006 A1
20060189879 Miyajima et al. Aug 2006 A1
20060204214 Shah et al. Sep 2006 A1
20060247046 Choi et al. Nov 2006 A1
20060252503 Salter Nov 2006 A1
20060288842 Sitrick et al. Dec 2006 A1
20070026943 Yoshimura Feb 2007 A1
20070060312 Dempsey et al. Mar 2007 A1
20070088812 Clark Apr 2007 A1
20070155494 Wells et al. Jul 2007 A1
20070175317 Salter Aug 2007 A1
20070178973 Camhi Aug 2007 A1
20070201815 Griffin Aug 2007 A1
20070218444 Konetski et al. Sep 2007 A1
20070234284 Tanner et al. Oct 2007 A1
20070234881 Takehisa Oct 2007 A1
20070256541 McCauley Nov 2007 A1
20070260984 Marks et al. Nov 2007 A1
20070265095 Jonishi Nov 2007 A1
20070270223 Nonaka et al. Nov 2007 A1
20070273700 Nash et al. Nov 2007 A1
20070297755 Holt et al. Dec 2007 A1
20080026355 Petef Jan 2008 A1
20080096654 Mondesir et al. Apr 2008 A1
20080101762 Kellock et al. May 2008 A1
20080102958 Kitamura et al. May 2008 A1
20080125229 Jonishi May 2008 A1
20080146342 Harvey et al. Jun 2008 A1
20080155421 Ubillos et al. Jun 2008 A1
20080184870 Toivola Aug 2008 A1
20080222685 McCarthy et al. Sep 2008 A1
20080273755 Hildreth Nov 2008 A1
20080276175 Kim et al. Nov 2008 A1
20080288866 Spencer et al. Nov 2008 A1
20080311970 Kay et al. Dec 2008 A1
20090010335 Harrison et al. Jan 2009 A1
20090013253 Laefer et al. Jan 2009 A1
20090015653 Baek Jan 2009 A1
20090069096 Nishimoto Mar 2009 A1
20090073117 Tsurumi et al. Mar 2009 A1
20090082078 Schmidt et al. Mar 2009 A1
20090083281 Sarig et al. Mar 2009 A1
20090088249 Kay et al. Apr 2009 A1
20090098918 Teasdale et al. Apr 2009 A1
20090100992 Elion Apr 2009 A1
20090104956 Kay et al. Apr 2009 A1
20090122146 Zalewski et al. May 2009 A1
20090135135 Tsurumi May 2009 A1
20090158220 Zalewski et al. Jun 2009 A1
20090165632 Rigopulos et al. Jul 2009 A1
20090177742 Rhoads et al. Jul 2009 A1
20090186698 Ludden Jul 2009 A1
20090188371 Chiu et al. Jul 2009 A1
20090189775 Lashina et al. Jul 2009 A1
20090191932 Chiu et al. Jul 2009 A1
20090215533 Zalewski et al. Aug 2009 A1
20090222392 Martin et al. Sep 2009 A1
20090228544 Demers et al. Sep 2009 A1
20090231425 Zalewski Sep 2009 A1
20090233714 Toro Sep 2009 A1
20090258700 Bright et al. Oct 2009 A1
20090258703 Brunstetter Oct 2009 A1
20090260508 Elion Oct 2009 A1
20090265668 Esser et al. Oct 2009 A1
20090282335 Alexandersson Nov 2009 A1
20090300676 Harter, Jr. Dec 2009 A1
20090310027 Fleming Dec 2009 A1
20090318228 Hughes Dec 2009 A1
20100009749 Chrzanowski, Jr. et al. Jan 2010 A1
20100009750 Egozy et al. Jan 2010 A1
20100029386 Pitsch et al. Feb 2010 A1
20100035688 Picunko Feb 2010 A1
20100041477 Kay et al. Feb 2010 A1
20100062405 Zboray et al. Mar 2010 A1
20100064238 Ludwig Mar 2010 A1
20100080528 Yen et al. Apr 2010 A1
20100087240 Egozy et al. Apr 2010 A1
20100100848 Ananian et al. Apr 2010 A1
20100113117 Ku et al. May 2010 A1
20100120470 Kim et al. May 2010 A1
20100137049 Epstein Jun 2010 A1
20100144436 Marks et al. Jun 2010 A1
20100151948 Vance et al. Jun 2010 A1
20100160038 Youm et al. Jun 2010 A1
20100161432 Kumanov et al. Jun 2010 A1
20100186579 Schnitman Jul 2010 A1
20100192106 Watanabe et al. Jul 2010 A1
20100209003 Toebes et al. Aug 2010 A1
20100216598 Nicolas et al. Aug 2010 A1
20100228740 Cannistraro et al. Sep 2010 A1
20100245241 Kim et al. Sep 2010 A1
20100247081 Victoria Pons Sep 2010 A1
20100255827 Jordan et al. Oct 2010 A1
20100261146 Kim Oct 2010 A1
20100265398 Johnson et al. Oct 2010 A1
20100299405 Socher et al. Nov 2010 A1
20100300265 Foster et al. Dec 2010 A1
20100300272 Scherf Dec 2010 A1
20100304812 Stoddard et al. Dec 2010 A1
20100304863 Applewhite et al. Dec 2010 A1
20100304865 Picunko et al. Dec 2010 A1
20100306655 Mattingly et al. Dec 2010 A1
20110010667 Sakai et al. Jan 2011 A1
20110021273 Buckley et al. Jan 2011 A1
20110039659 Kim et al. Feb 2011 A1
20110047471 Lord et al. Feb 2011 A1
20110066940 Asghari Kamrani et al. Mar 2011 A1
20110118621 Chu May 2011 A1
20110140931 Geurts et al. Jun 2011 A1
20110151975 Mori Jun 2011 A1
20110159938 Umeda Jun 2011 A1
20110185309 Challinor et al. Jul 2011 A1
20110197740 Chang et al. Aug 2011 A1
20110237324 Clavin et al. Sep 2011 A1
20110238676 Liu et al. Sep 2011 A1
20110251840 Cook et al. Oct 2011 A1
20110256929 Dubrofsky et al. Oct 2011 A1
20110257771 Bennett et al. Oct 2011 A1
20110283236 Beaumier et al. Nov 2011 A1
20110306396 Flury et al. Dec 2011 A1
20110306397 Fleming et al. Dec 2011 A1
20110306398 Boch et al. Dec 2011 A1
20110312397 Applewhite et al. Dec 2011 A1
20110312415 Booth et al. Dec 2011 A1
20120021833 Boch et al. Jan 2012 A1
20120052947 Yun Mar 2012 A1
20120063617 Ramos Mar 2012 A1
20120069131 Abelow Mar 2012 A1
20120094730 Egozy Apr 2012 A1
20120108305 Akiyama et al. May 2012 A1
20120108334 Tarama et al. May 2012 A1
20120143358 Adams et al. Jun 2012 A1
Foreign Referenced Citations (287)
Number Date Country
741239 Nov 2001 AU
69726507 Nov 2004 DE
69832379 Aug 2006 DE
919267 Jun 1999 EP
972550 Jan 2000 EP
974382 Jan 2000 EP
974954 Jan 2000 EP
978301 Feb 2000 EP
982055 Mar 2000 EP
992928 Apr 2000 EP
992929 Apr 2000 EP
993847 Apr 2000 EP
0997870 May 2000 EP
1003130 May 2000 EP
1022672 Jul 2000 EP
1029565 Aug 2000 EP
1029571 Aug 2000 EP
1031363 Aug 2000 EP
1031904 Aug 2000 EP
1033157 Sep 2000 EP
1033158 Sep 2000 EP
1043745 Oct 2000 EP
1043746 Oct 2000 EP
1048330 Nov 2000 EP
1061501 Dec 2000 EP
1064974 Jan 2001 EP
1064975 Jan 2001 EP
1066866 Jan 2001 EP
1079368 Feb 2001 EP
1 081 680 Mar 2001 EP
1081679 Mar 2001 EP
1082981 Mar 2001 EP
1082982 Mar 2001 EP
1082983 Mar 2001 EP
1088573 Apr 2001 EP
1114659 Jul 2001 EP
1122703 Aug 2001 EP
1125607 Aug 2001 EP
1125613 Aug 2001 EP
1127599 Aug 2001 EP
1130569 Sep 2001 EP
1132889 Sep 2001 EP
1134723 Sep 2001 EP
1136107 Sep 2001 EP
1138357 Oct 2001 EP
1139293 Oct 2001 EP
1145744 Oct 2001 EP
1145745 Oct 2001 EP
1145748 Oct 2001 EP
1145749 Oct 2001 EP
1150276 Oct 2001 EP
1151770 Nov 2001 EP
1151773 Nov 2001 EP
1157723 Nov 2001 EP
1159992 Dec 2001 EP
1160762 Dec 2001 EP
1161974 Dec 2001 EP
1170041 Jan 2002 EP
1178427 Feb 2002 EP
1184061 Mar 2002 EP
1187427 Mar 2002 EP
1192976 Apr 2002 EP
1195721 Apr 2002 EP
1197947 Apr 2002 EP
1199702 Apr 2002 EP
1199703 Apr 2002 EP
1206950 May 2002 EP
1208885 May 2002 EP
1214959 Jun 2002 EP
1220539 Jul 2002 EP
1228794 Aug 2002 EP
1245255 Oct 2002 EP
1249260 Oct 2002 EP
1258274 Nov 2002 EP
1264622 Dec 2002 EP
1270049 Jan 2003 EP
1270050 Jan 2003 EP
1271294 Jan 2003 EP
1279425 Jan 2003 EP
1287864 Mar 2003 EP
1306112 May 2003 EP
1413340 Apr 2004 EP
1503365 Feb 2005 EP
1533010 May 2005 EP
1542132 Jun 2005 EP
1552864 Jul 2005 EP
1552865 Jul 2005 EP
1569171 Aug 2005 EP
1604711 Dec 2005 EP
1609513 Dec 2005 EP
1630746 Mar 2006 EP
1666109 Jun 2006 EP
1696385 Aug 2006 EP
1699017 Sep 2006 EP
1731204 Dec 2006 EP
1743680 Jan 2007 EP
1 825 896 Aug 2007 EP
2000190 Dec 2008 EP
2206539 Jul 2010 EP
2206540 Jul 2010 EP
2118809 Nov 1983 GB
2425730 Nov 2006 GB
2465918 Jun 2010 GB
2471871 Jan 2011 GB
7185131 Jul 1995 JP
11151380 Jun 1999 JP
11156054 Jun 1999 JP
11219443 Aug 1999 JP
11313979 Nov 1999 JP
2000014931 Jan 2000 JP
2000037490 Feb 2000 JP
2000107447 Apr 2000 JP
2000107458 Apr 2000 JP
2000112485 Apr 2000 JP
2000116938 Apr 2000 JP
2000157723 Jun 2000 JP
2000218046 Aug 2000 JP
2000237454 Sep 2000 JP
2000237455 Sep 2000 JP
2000245957 Sep 2000 JP
2000245964 Sep 2000 JP
2000250534 Sep 2000 JP
2000293292 Oct 2000 JP
2000293294 Oct 2000 JP
2000300838 Oct 2000 JP
2000308759 Nov 2000 JP
2000325665 Nov 2000 JP
2000350861 Dec 2000 JP
2001000610 Jan 2001 JP
2001009149 Jan 2001 JP
2001009152 Jan 2001 JP
2001009157 Jan 2001 JP
2001062144 Mar 2001 JP
2001070637 Mar 2001 JP
2001070640 Mar 2001 JP
2001070652 Mar 2001 JP
2001075579 Mar 2001 JP
2001096059 Apr 2001 JP
2001096061 Apr 2001 JP
2001129244 May 2001 JP
2001145777 May 2001 JP
2001145778 May 2001 JP
2001190834 Jul 2001 JP
2001190835 Jul 2001 JP
2001190844 Jul 2001 JP
2001198351 Jul 2001 JP
2001198354 Jul 2001 JP
2001212369 Aug 2001 JP
2001218980 Aug 2001 JP
2001222280 Aug 2001 JP
2001224850 Aug 2001 JP
2001231904 Aug 2001 JP
2001252467 Sep 2001 JP
2001252470 Sep 2001 JP
2001259224 Sep 2001 JP
2001273517 Oct 2001 JP
2001293246 Oct 2001 JP
2001293254 Oct 2001 JP
2001293256 Oct 2001 JP
2001312260 Nov 2001 JP
2001312740 Nov 2001 JP
2001314645 Nov 2001 JP
2001321565 Nov 2001 JP
2001344049 Dec 2001 JP
2001353374 Dec 2001 JP
2002000936 Jan 2002 JP
2002018123 Jan 2002 JP
2002018134 Jan 2002 JP
2002028368 Jan 2002 JP
2002045567 Feb 2002 JP
2002056340 Feb 2002 JP
2002066127 Mar 2002 JP
2002066128 Mar 2002 JP
2002084292 Mar 2002 JP
2002116752 Apr 2002 JP
2002140727 May 2002 JP
2002143567 May 2002 JP
2002153673 May 2002 JP
2002204426 Jul 2002 JP
2002204426 Jul 2002 JP
2002224435 Aug 2002 JP
2002239223 Aug 2002 JP
2002239233 Aug 2002 JP
2002282417 Oct 2002 JP
2002282418 Oct 2002 JP
2002292123 Oct 2002 JP
2002292139 Oct 2002 JP
2002301263 Oct 2002 JP
2002325975 Nov 2002 JP
2002360937 Dec 2002 JP
2003000951 Jan 2003 JP
2003010541 Jan 2003 JP
2003010542 Jan 2003 JP
2003019346 Jan 2003 JP
2003030686 Jan 2003 JP
2003058317 Feb 2003 JP
2003126548 May 2003 JP
2003175279 Jun 2003 JP
2003236244 Aug 2003 JP
2003334387 Nov 2003 JP
2004016315 Jan 2004 JP
2004016388 Jan 2004 JP
2004033266 Feb 2004 JP
2004097610 Apr 2004 JP
2004105309 Apr 2004 JP
2004121397 Apr 2004 JP
2004141261 May 2004 JP
2004164519 Jun 2004 JP
3545983 Jul 2004 JP
3546206 Jul 2004 JP
3547374 Jul 2004 JP
2004192069 Jul 2004 JP
2004201937 Jul 2004 JP
3561456 Sep 2004 JP
3566195 Sep 2004 JP
3573288 Oct 2004 JP
3576994 Oct 2004 JP
3582716 Oct 2004 JP
2004283249 Oct 2004 JP
2004321245 Nov 2004 JP
3597465 Dec 2004 JP
2004337256 Dec 2004 JP
3611807 Jan 2005 JP
2005046445 Feb 2005 JP
2005049913 Feb 2005 JP
3626711 Mar 2005 JP
3634273 Mar 2005 JP
2005095440 Apr 2005 JP
3656118 Jun 2005 JP
3686906 Aug 2005 JP
3699660 Sep 2005 JP
3702269 Oct 2005 JP
2005287830 Oct 2005 JP
2005301578 Oct 2005 JP
3715513 Nov 2005 JP
2005319025 Nov 2005 JP
3727275 Dec 2005 JP
2006020758 Jan 2006 JP
3751968 Mar 2006 JP
3751969 Mar 2006 JP
3753425 Mar 2006 JP
3804939 Aug 2006 JP
3816931 Aug 2006 JP
3822887 Sep 2006 JP
3831695 Oct 2006 JP
3869175 Jan 2007 JP
3890445 Mar 2007 JP
340049 Mar 2009 TW
201006526 Feb 2010 TW
322023 Mar 2010 TW
201116318 May 2011 TW
WO-9717598 May 1997 WO
WO-9938588 Aug 1999 WO
WO-0163592 Aug 2001 WO
WO-0230535 Apr 2002 WO
WO-2004002590 Jan 2004 WO
WO-2004002594 Jan 2004 WO
WO-2004024256 Mar 2004 WO
WO-2004024263 Mar 2004 WO
WO-2004027631 Apr 2004 WO
WO-2004030779 Apr 2004 WO
WO-2004039055 May 2004 WO
WO-2004053800 Jun 2004 WO
WO-2004082786 Sep 2004 WO
WO-2004087272 Oct 2004 WO
WO-2004101093 Nov 2004 WO
WO-2004107270 Dec 2004 WO
WO-2005027062 Mar 2005 WO
WO-2005027063 Mar 2005 WO
WO-2005030354 Apr 2005 WO
WO-2005099842 Oct 2005 WO
WO-2005107902 Nov 2005 WO
WO-2005114648 Dec 2005 WO
WO-2006006274 Jan 2006 WO
WO-2006075494 Jul 2006 WO
WO-2007070738 Jun 2007 WO
WO-2007078639 Jul 2007 WO
WO 2007115299 Oct 2007 WO
WO-2007111247 Oct 2007 WO
WO-2007130582 Nov 2007 WO
WO-2008001088 Jan 2008 WO
WO-2008145952 Dec 2008 WO
WO-2009021124 Feb 2009 WO
WO-2010018485 Feb 2010 WO
WO-2010036989 Apr 2010 WO
WO-2011067469 Jun 2011 WO
WO-2011155958 Dec 2011 WO
Non-Patent Literature Citations (109)
Entry
The International Search Report for International Application No. PCT/US2009/049943, Date of Mailing Nov. 17, 2009 (5 pages).
“Guitar Hero,” in Wikipedia Online Encyclopedia. Wikipedia, 2007, Retrieved from the Internet: <URL: http://en.wikipedia.org/w/index.php?title=Guitar—Hero&oldid=137778068>, 4 pages (retrieved on Jul. 3, 2009).
“Rock Band,” in Wikipedia Online Encyclopedia. Wikipedia, 2007, Retrieved from the Internet: <URL: http://en.wikipedia.org/w/index.php?title=Rock—Band—(video—game)&oldid=137406581>, 2 pages (retrieved on Jul. 3, 2009).
International Search Report issued for PCT/US2010/054300, dated May 31, 2011 (5 pages).
Kuwayama, Y. Trademarks & Symbols, vol. 2: Symbolical Designs, Van Nostrand Reinhold Company, (Nov. 4, 1980). 4 pages.
Microsoft Office Online Clip Art, http://office.microsoft.com/en-us/clipart/results.aspx?Scope=MC,MM,MP,MS&PoleAssetID=MCJ04316180000&Querty=Icons&CTT=6&Origin=EC01017435m (Feb. 21, 2007) (1 page).
Microsoft PowerPoint Handbook, (1 page) (1992).
Thalmann, “L'animation par ordinateur” http://web.archive.org/web/20060421045510/http://vrlab.epfl.ch/{thalmann/CG/infogr.4.pdf>, Apr. 21, 2006 (52 pages).
Amplitude for Playstation. Retrieved from the Internet: www.target.com/gp/detail.html/601-0682676-9911341?asin=B0000859TM&AFID. Retrieved on Feb. 22, 2005. 1 page.
Amplitude Review by Ryan Davis. Retrieved from the Internet: www.gamespot.com/ps2/puzzle/amplitude/reviews/amplitude-review-6023980.html. Retrieved on Jun. 11, 2012. 10 pages.
Amplitude. Retrieved from the Internet: www.gamesquestdirect.com/71171972582.html. Retrieved on Jun. 8, 2012. 2 pages.
Amplitude: Sony's Rocking Rhythm Game Outdoes Itself on All Fronts by Douglass C. Perry. Retrieved from the Internet: http://ps2.ign.com/articles/390/390620pl.html. Retrieved on Jun. 8, 2012. 6 pages.
Association of British Scrabble Players. “Rolling System” ABSP, http://www.absp.org.uk/results/ratings—details.html. Retrieved May 25, 2011 (4 pages).
Beat Planet Music (Import) Review by Christian Nutt. Retrieved from the Internet: www.gamespot.com/gamespot/stories/reviews/0,10867,2546762,00.html. Retrieved on Jun. 11, 2012. 3 pages.
Beatmania IIDX 9 Style. Retrieved from the Internet: www.play-asia.com/paOS-13-71-8g-70-giu.html Retrieved on Feb. 22 2005. 2 pages.
Beatmania PlayStation Review from www.GamePro.com/sony/psx/games/reviews/89.html. Retrieved on Feb. 22, 2005. 1 page.
Beatmania Review. Retrieved from the Internet: www.gamesarefun.com/gamesdb/review. h?reviewid=294. Retrieved on Jun. 11, 2012. 1 page.
Beatmanla IIDX 7 Style. Retrieved from the Internet: www.lik-sang.com/Info.php?category=27&products id=4061. Retrieved on Feb. 22, 2005. 1 page.
Bishop, Sam; Frequency: If you decide to pick up this game, you better give up ont he idea of getting a full night of sleep. via www.ign.com [online], Nov. 26, 2001 [retrieved on Mar. 1, 2006]. Retrieved from the Internet <URL: http://ps2.ign.com/articles/166/166450p1.html>. Retrieved on Jun. 8, 2012. 8 pages.
Boombox Icons, http://findicons.com/search/boombox, viewed on Jul. 31, 2012 copyright 2010 (1 page).
Bust a Groove Review by Jeff Gerstmann. Retrieved from the Internet: www.gamespot.com/ps/puzzlelbusta groove/printable—2546923.html. Retrieved on Jun. 11, 2012. 9 pages.
Bust a Groove. Retrieved from the Internet: www.buyritegames.com/product—information.asp?rc=frgl&number=PS-BUSTA2. Retrieved on Feb. 22, 2005. 1 page.
Bust a Groove. Retrieved from the Internet: www.estarland.com/index.asp?page=Playstation.com/playstation.cat.F.product.6257.html Retrieved on Jun. 11, 2012. 2 pages.
Bust a Groove: 989 Studios Best Game of the Year is a Funky Dance Sim That's Got the Fever by Doug Peny. Retrieved from the Internet http://psx.ign.com/articles/152/152308pl.html. Retrieved on Jun. 8, 2012. 5 pages.
BVH File Specification, Character Studio, http://web.archive.org/web/20060321075406/http:/lcharacterstudio. net/bvh file specification.htm, Mar. 21, 2006 (16 pages).
Dance Dance Revolution Review by Andy Chien. Retrieved from the Internet www.gaming-age. com/reviews /archive/old reviews/psx/ddr. Retrieved on Feb. 22, 2005. 3 pages.
Dance Dance Revolution Review by Ryan Davis. Retrieved from the Internet www.gamespot.com/ps/puzzle /dancedancerevolutionfprintable—2699724.html. Retrieved on Jun. 11, 2012. 9 pages.
Dance Dance Revolution, Konami via www.ign.com [online], Apr. 4, 2001 [retrieved on Mar. 1, 2006]. Retrieved from the Internet <URL: http://psx.ign.com/articles/161/161525p1.html>. Retrieved on Jun. 14, 2012. 7 pages.
Dance Dance Revolution. Retrieved from the Internet: www.ebgames.com/ebx/product/224 789.asp. Retrieved on Feb. 22, 2005. 2 pages.
Dancing with the Stars Game Manual (1 page). Date not available.
Dave H, et al. StepMania Tutorial. Nov. 3, 2004. <http://web.archive.org/web/200411031145/www.stepmania.com/stepmania/wiki.php?pagename=Tutorial>. Retrieved on Jun. 19, 2012. 7 pages.
Def Jam Vendetta Review by Alex Navarro. Retrieved from the Internet www.gamespot.com/ps2/actionf actionfdefjamvendetta/prlntable— 6024297 .html. Retrieved on Jun. 11, 2012. 10 pages.
Def Jam Vendetta. Retrieved from the Internet www.ebgames.com/ebx/product/232378.asp. Retrieved on Feb. 22, 2005. 2 pages.
Def Jam Vendetta: Rapper's Delight or Fight-Night Fright? Smash Sumthin' and Find Out by Jon Robinson. Mar. 31, 2003. Retrieved from the Internet http://m.ign.com/articles/2003/03/31/def-jam-vendetta-4. Retrieved on Jun. 8, 2012. 6 pages.
Digital Play: Reloaded. Opening Reception. Museum of the Moving Image. Mar. 19, 2005. <http://web.archive.Org/web/20050319060247/ http://www.movingimage.us/site/screenings/contenV2005/digital—play—reloaded.ht ml>. 1 page.
Donkey Konga Review by Ryan Davis. Retrieved from the Internet: www.gamespot.com/gamecube/puzzle/ donkeykonga/printable—6108977.html. Retrieved on Jun. 11, 2012. 11 pages.
Donkey Konga. Retrieved from the Internet: www.ebgames.com/ebx/product/244024.asp. Retrieved on Jun. 11, 2012. 2 pages.
Donkey Konga: Could a Game Featuring Donkey Kong and Mini-Bongos ever Fail? Our Full Review by Juan Castro. Retrieved from the Internet: cube.ign.com/articles/550/550723pl.html. Retrieved on Jun. 8, 2012. 6 pages.
DrumMania w/ Drum Set. Retrieved from the Internet www.estarland.com/product18126.html Retrieved on Jun. 11, 2012. 2 pages.
DrumMania (Import) Review by Jeff Gerstmann. Retrieved from the Internet: www.gamespot.com/ps2/actionf drummania/printable—2546356.html. Retrieved on Jun. 11, 2012. 9 pages.
DrumMania OST. Retrieved from the Internet www.lik-sang.com/info/php?category=264& products id=4793. Retrieved on Feb. 22, 2005. 2 pages.
DrumMania Review by Wyrdwade. Retrieved from the Internet www.gamefaqs.com/ps2/197168-drummania/reviews/review-56573 Retrieved on Jun. 11, 2012. 2 pages.
ESRB Game Ratings: Game Rating & Descriptor Guide via www.esrb.org[online], Retrieved from the Internet: <URL: http://www.esrb.org/ratings/ratings-guide.jsp Retrieved on Jun. 14, 2012. 3 pages.
Eye Toy Groove with Camera (Playstation 2). Retrieved from the Internet www.jr.com/JRProductPage.process?Product Code=PS2+97400&JRSource=google. Retrieved on Feb. 22, 2005. 1 page.
Eye Toy Groove with Eye Toy Camera PS2. Retrieved from the Internet: www.walmart.com/catalog/product.gsp?dest=9999999997&product id-2607013&s. Retrieved on Feb. 22, 2005. 1 page.
Eye Toy: Groove—The Little Camera That Could comes Back with a Few New Tricks by Ed Lewis. Retrieved from the Internet: http:/ps2.ign.corn/articles/507/507854pl.html. Retrieved on Jun. 8, 2012. 8 pages.
Eye Toy: Groove Review by Ryan Davis. Retrieved from the Internet: www.gamespot.com/ps2/puzzle/ eyetoygroove/printable—6094754.html. Retrieved on Jun. 11, 2012. 10 pages.
Frequency—Pre-Played. Retrieved from the Internet www.ebgames.com/ebx/product/203370.asp. Retrieved on Feb. 22, 2005. 2 pages.
Frequency PS2 Review from GamePro.com, written by Dan Electro on Nov. 26, 2001. Retrieved from the Internet: www.gamepro.com/ sony/ps2/games/reviews/18464.shtml. Retrieved on Jun. 11, 2012. 2 pages.
Frequency PS2. Retrieved from the Internet: www.walmart.com/catalog/producLgsp7dests9999999997&product id=1635738&s. Retrieved on Feb. 22, 2005. 2 pages.
Frequency Review by Ryan Davis. Retrieved from the Internet:www.gamespot.com/ps2/puzzle/frequency/ printable 2827476.html. Retrieved on Jun. 19, 2012. 9 pages.
Get on Da Mic Overview by Matt Gonzales. Retrieved from the Internet www.gamechronicles.com/reviews/ ps2/getondamic/body.htm. Retrieved on Jun. 11, 2012. 3 pages.
Get on Da Mic Review by Jeff Gerstmann. Retrieved from the Internet www.gamespot.comrri/ps2/puzzle/getondamic/printable 6110242.html. Retrieved on Jun. 11, 2012. 10 pages.
Get on Da Mic. Retrieved from the Internet: www.ebgames.com/ebx/product/245102.asp. Retrieved on Jun. 11, 2012. 2 pages.
Gitaroo Man. Retrieved from the Internet www.estarland.com/playstation2.cat.product.676.html Retrieved on Jun. 14, 2012. 2 pages.
Gitaroo-Man Review by David Smith. Retrieved from the Internet http://p2.ign.com/articles/135/135184p1.html; retrived Jun. 11, 2012. 4 pages.
Gitaroo-Man Review by Ryan Davis. Retrieved from the Internet: www.gamesrx)t.coiTi/ps2/puzzle/gitaroomart/printable 2847915.html. Retrieved on Jun. 19, 2012. 9 pages.
Gitaroo-Man. Retrieved from the Internet www.buyritegames.com/productjnformation.asp?re=frgl&number=PS2-GITARO. Retrieved on Feb. 22, 2005. 1 page.
Guitar Freaks (Import) Review by Sam Kennedy. Retrieved from the Internet: www.gamespot.com/pslaction/ guitarfreaks/printable—2545966.html. Retrieved on Jun. 11, 2012. 10 pages.
Guitar Freaks Review by Wade Monnig. Retrieved from the Internet: www.gamesarefun.com/gamesdb/review. php? .reviewid=301. Retrieved on Jun. 11, 2012. 3 pages.
Guitar Freaks Sony. Retrieved from the Internet www.gameexpress.com/product—detail.cfm.?UPC=SCPS45422. Retrieved on Feb. 22, 2005. 1 page.
Guitar Freaks with Guitar. Retrieved from the Internet: www.buyritegames.com/product—information.asp?rc=frgl&number=PSJ-GUilWG. Retrieved on Feb. 22, 2005. 1 page.
Guitar Hero (video game)—Wikipedia, the free encyclopedia—(Publisher—RedOctane) Release Date Nov. 2005. 25 pages.
Guitar Hero—Wikipedia, the free encyclopedia—Nov. 2005. http://en.wikipedia.org/w/index.php?title=guitaryhero&oldid=137778068. Retrieved on May 22, 2012. 5 pages.
GuitarFreaks—Wikipedia, the free encyclopedia—(Publisher—Konami, Konami Digital Entertainment) Release Date 1998. Accessed on Mar. 19, 2009. 5 pages.
International Search Report, PCT/US2006/062287, Mailed on May 10, 2007. 2 pages.
Ipodgames.com Tips. Dec. 4, 2004. <http://web.archive.org/web/20041204032612Awww.ipodgames.com/tips.html > 1 page.
Karaoke Revolution Review by Jeff Gerstmann. Retrieved from the Internet www.gamespot.com/ps2/puzzle/ karaokerevolution/printable ... 6081709.html. Retrieved on Jun. 14, 2012. 10 pages.
Karaoke Revolution. Retrieved from the Internet: www.ebgames.com/ebx/product/24806.asp. Retrieved on Feb. 22, 2005. 2 pages.
Karaoke Revolution: The Revolution will be Televised by Ed Lewis. Retrieved from the Internet: http://ps2.ign.com/articles/458/458064p1.html. Retrieved on Jun. 8, 2012. 7 pages.
Lohman, “Rockstar vs. Guitar Hero,” (The Rebel Yell). Nov. 13, 2008, accessed on Mar. 19, 2009. 5 pages.
Mad Maestro!—Pre-Played. Retrieved from the Internet: www.ebgames.com/ebx/product/217604.asp. Retrieved on Feb. 22, 2005. 2 pages.
Mad Maestro! by Ryan Davis. Retrieved from the Internet: www.gamespot.com/ps2/puzzle.madmaestro/ printable—2856821.html. Retrieved on Jun. 19, 2012. 9 pages.
Mad Maestro: The First Orchestra-conducting Sim on US Soil—Is It All It Could Have Been? By David Smith. Retrieved from the Internet http://ps2.ign.com/articles/3551355561 p1.html. Retrieved on Jun. 8, 2012. 6 pages.
Mojib Ribbon Playtest by Anoop Gantayat. Retrieved from the Internet: http://ie.ign.com/articles/442/442204p1.html. Retrieved on Jun. 8, 2012. 4 pages.
Mojib Ribbon—Review. Retrieved from the Internet: www.ntsc-uk.com/review.php?platform=ps2&game=MoiibRibbon. Retrieved on Jun. 14, 2012. 2 pages.
Mojib Ribbon. Retrieved from the Internet: www.lik-sang.com/info.php?category=27&productsid=3805&PHPSESSID=b9eQca. Retrieved on Feb. 22, 2005. 1 page.
Mojib Ribbon. Retrieved from the Internet: www.ncsxshop.com/cgi-bin/shop/SCPS.11033.html. Retrieved on Jun. 14, 2012. 2 pages.
NCSX.com; Game Synpopsys of Guitar Freaks and DrumMania Masterpiece Gold, with a date of Mar. 8, 2007, and with an Archive.org Wayback Machine Verified date of May 17, 2007, downloaded from http://web.archiv.org/web/20070517210234/http://www.ncsx.com/2007/030507/guitarfreaks—gold.htm (4 pages).
Non-Final Office Action as issued by the United States Patent and Trademark Office for U.S. Appl. No. 12/474,899, dated Jan. 19, 2011, 7 pages.
PaRappa the Rapper 2. Retrieved from the Internet: www.amazon.com/exec/obidos Retrieved on Feb. 22, 2005. 2 pages.
PaRappa the Rapper Review by Jer Horwitz. Retrieved from the Internet: www.gamespot.com/pslpuzzlel parappatherapper/printable—2548866.html. Retrieved on Jun. 14, 2012. 9 pages.
Parappa the Rapper. Retrieved from the Internet: www.estarland.com/index.asp?page=Playstation&cat=F&product=6871&q. Retrieved on Jun. 11, 2012. 2 pages.
Parappa the Rapper: PaRapper the Rapper Is finally here, but does it live up to the hype? by Adam Douglas. Retrieved from the Internet http://m.ign.com/articles/1997/11/19/parappa-the-rapper Retrieved on Jun. 8, 2012. 2 pages.
PopCap Games Site Review via www.download-free-games.com, retrieved on Mar. 3, 2006]. Retrieved from the Internet <URL:http://www.download-free-games.com/reviews/popcap—games.htm>. 2 pages.
Ramsey, A. Guitar Freaks and Drum Mania Masterpiece Gold FAQ v. 1.04, Apr. 2, 2007, downloaded from http://www.gamefaqs.com/console/ps2/file/937670/47326. 3 pages.
RedOctane. “Guitar Hero 2 Manual” Activision Publishing, Inc. (2006) (13 pages).
Rez PlayStationκ. Retrieved from the internet: http://www.yesasia.com/us/rez-playstation2-the-best-japan-version/1002847668-0-0-cssid. Retrieved on Jun. 14, 2012. 1 page.
Rez Review by Jeff Gerstmann. Retrieved from the Internet:www.qamespot.com/ps2/action/rez/printable 2838815.html. Retrieved on Jun. 11, 2012. 9 pages.
Rez. Retrieved from the Internet: www.estarland.com/playstation2.product.5426.html. Retrieved on Jun. 14, 2012. 2 pages.
Rez: You May Not Understand This Review. We May Not Either. But you should certainly play this game by.David Smith. Retrieved from the Internet: http://m.ign.com/articles/2002/01/09/rez. Retrieved on Jun. 11, 2012. 3 pages.
SingStar Party (SingStar2) Bundle. Retrieved from the Internet: www.gameswarehouse.com.Au/longpage.asp?gameid=10329. Retrieved on Feb. 22, 2005. 2 pages.
SingStar Party. Retrieved from the Internet: www.argos.co.uk/Webapp/wcs/stores/servlet/ProductDisplay?storeId=10001&langld. Retrieved on Feb. 22, 2005. 1 page.
SingStar Review (PS2) by James Hamer-Mortonl. Retrieved from the Internet http://ps2.twomtown.net/en uk/articles/ art.print.php?id=5279. Retrieved on Jun. 11, 2012. 5 pages.
SingStar Review by Luke Van Leuveren. Retrieved from the Internet http://palgn.com.aii/article.php7id-1282. Retrieved on Jun. 11, 2012. 5 pages.
Space Channel 5 Special Edition Review by Brad Shoemaker. Retrieved from the Internet: www.gamespot.corn/ps2/puzzle/spacecriannel5pait2/printeble—6085137.h Retrieved on Jun. 11, 2012. 10 pages.
Space Channel 5. Retrieved from the Internet: www.lik-sang.com/info.php?products—is=2050 &likref=fro—gle4. Retrieved on Feb. 22, 2005. 1 page.
Space Channel 5: Description. Retrieved from the Internet: www.buyritegames.com/product—information.asp?rc=frgl&number=DC-SPACEC5. Retrieved on Feb. 22, 2005. 1 page.
Space Channel 5: Special Edition by Jason Thompson. Retrieved from the Internet www.popmatters.com/multimedia/reviews/s/space-channel-5.shtml. Retrieved on Jun. 8, 2012. 2 pages.
Taiko Drum Master Review by Justin Calvert. Retrieved from the Internet: www.gamespot.com/ps2 puzzie/taikodrummaster/printable—6111767.html. Retrieved on Jun. 14, 2012. 10 pages.
Taiko Drum Master w/ Drum. Retrieved from the Internet: www.ebgames.com/ebx/product/244015.asp. Retrieved on Jun. 14, 2012. 2 pages.
Taiko no Tatsujin. Retrieved from the Internet http://games.channel.aol.com/review.adp?qameID-7569. Retrieved on Feb. 22, 2005. 3 pages.
Vib Ribbon (PSX): Homepage, Screenshots by James Anthony. http://www.vib-ribbon.com/vibhtml/english/index.html. Retrieved on Jun. 14, 2012. 1 page.
Vib-Ribbon (Import) Review by Jeff Gerstmann. Retrieved from the Internet: www.gamespot.com/ps /puzzle/vibribbon/printabte 2550100.html. Retrieved on Jun. 14, 2012. 9 pages.
Vib-Ribbon. Retrieved from the Internet: www.ncsxshop.com/cgi-bin/shop/SCPS-45469.html. Retrieved on Feb. 22, 2005. 1 page.
Virginia Tech Multimedia Music Dictionary, dated May 25, 2011 (7 pages).
Beatnik Patent Sale Offering, Nov. 2008 (81 pp).
Konami Corporation, The computer game “Dance Dance Revolution Max”, released in the US by Konami Corporation on Oct. 29, 2002, as evidenced by the game manual. 2 pgs.
Taiko Drum Master Game Manual, Namco Ltd. for PlayStation 2. Oct. 25, 2004. 18 pgs.
Related Publications (1)
Number Date Country
20100009750 A1 Jan 2010 US
Provisional Applications (1)
Number Date Country
61079094 Jul 2008 US