1. Field of the Invention
The invention generally relates to systems and methods for sizing a cardiac assist device to fit over portions of a heart. More specifically, the invention relates to systems and methods for sizing a chronic heart failure passive restraint device to fit over portions of a heart, while permitting subsequent adjustments of the device in order to accommodate changes in the size of the heart.
2. Prior Art
Heart failure syndrome is a highly debilitating and degenerative disorder resulting from damage to the heart muscle. The damage to the heart muscle may be caused by a number of conditions, including coronary artery disease, long standing hypertension, leaky heart valve(s), and infections.
Heart failure typically occurs when a weakened heart cannot pump an adequate amount of blood to meet the demands of the body's other organs and tissues. The defining characteristic in the progression of heart failure is that there is eventually a reduction of the heart's ability to meet the metabolic needs of the body.
Whatever the cause or source of damage, the heart's ability to pump adequate amounts of blood to support the body's needs is diminished, and the progressive deterioration of cardiac physiology and function occurs. The inadequate supply of oxygen-rich blood often causes people with heart failure to experience shortness of breath and fatigue during even routine daily activities. As the condition progresses, the contraction rate of the heart increases in response to the decreasing cardiac output. As a result, the chambers of the heart, particularly the ventricles of the heart, become increasingly enlarged as the heart tries to compensate for its inefficiencies.
The disease of heart failure is common, lethal, and expensive to treat. An estimated 5.1 million Americans have heart failure with approximately 500,000 new cases diagnosed each year. In 1999, an estimated $20.3 billion in directs costs were spent for the care of heart failure patients. Heart failure is also the most common cause of hospitalization for patients 65 years and older in the United States. The mortality rate is 50% at five years for patients diagnosed with heart failure, and to date, there are limited treatment alternatives available.
Certain cardiac disease treatment devices have been proposed to help alleviate the disease of heart failure. For example, U.S. Pat. No. 6,425,856 provides a cardiac constraint device comprised of a jacket made of biologically compatible material.
The jacket 20 thus works on a passive, mechanical level to reduce periodic myocardial over-stretch and wall stress, and serves as a constant “reminder” to the heart of how the heart should perform. The jacket thus encourages down-regulation of increased local neurohormonal activity, and reduces or eliminates cardiomyocyte maladaptive gene expression. As a result, the jacket may slow or halt the progressive deterioration of the heart and may stimulate reverse remodeling of the heart.
Suturing the jacket to the heart is a cumbersome procedure however, and the stays are prone to loosening from their receptacles. Even where U-clips or staples have been used in place of sutures, the procedures of fitting the jacket around the heart and placing the U-clips to secure the jacket to the heart the procedure are time-consuming and cumbersome. Further, subsequent adjustments to the jacket, where provided for, may accommodate for decreases in the size of the heart but may not account for increases in the heart size. As a result, precise positioning of the jacket around the heart has proved time consuming and maintaining the jacket closely over the heart over time has been problematic. Further still, positioning and securing the jacket about the heart using endoscopic tools and techniques as the heart is beating has proved challenging.
An alternative procedure for surrounding a heart with a cardiac assist device endoscopically places and manipulates a bio-compatible mesh sheet wrapping means around the heart as described in co-pending U.S. patent application Ser. No. ______, filed ______, 2004, (Attorney Docket No. 17386) of common assignment herewith, the entire disclosure of which is incorporated herein by reference. The wrapping means is secured directly to the heart by sutures or to anchoring devices separately secured to the heart. This co-pending application however, does not provide the various sizing or subsequent adjustment systems and methods of the present invention as described further hereinbelow.
In view of the above, a need exists for systems and methods that provide more reliable sizing of a cardiac assist device to fit closely about a heart. A further need exists for systems and methods that permit subsequent adjustments to maintain the cardiac assist device in a close-fitting position around the heart.
The systems and methods of the invention provide for sizing a cardiac assist device to fit closely adjacent portions of a heart. The cardiac assist device may help reduce distention of chambers of the heart and may encourage remodeling of a damaged or diseased heart. The cardiac assist device is comprised of a bio-compatible material having an open first end with a seam about its periphery and a second end opposite the first end. In some embodiments of the invention, the second end is closed to form a sack-like cardiac assist device into which the heart is placed. In other embodiments of the invention, the second end is open to form a tubular-like cardiac assist device into which the heart is placed.
According to the systems and methods of the invention, one or more openings, are provided through the chest wall of a being. The cardiac assist device, instruments, and visualization means are inserted into a chest cavity of the being through the one or more openings in order to place, fit and secure the cardiac assist device to the heart. The visualization means may be an endoscope, a fiber optic cable or a camera on an elongate member, for example, permitting a medical professional to view the various procedures performed as they occur according to the invention.
In practice, once the cardiac assist device is in the chest cavity of the being, the heart is received through the open first end of the cardiac assist device until an apical region of the heart approaches the second end thereof. The first end is then sutured, or otherwise secured, to a base of the heart or to anchoring devices that are secured to the heart, such as those described in co-pending U.S. patent application Serial No. ______, (Attorney Docket No. 17386) the entire disclosure of which has been incorporated herein by reference.
After securing the first end to the heart, excess material of the cardiac assist device is then gathered to conform the cardiac assist device to the heart. The gathered material is then secured, thereby fitting the cardiac assist device more closely to the heart. When desired, subsequent adjustments to the cardiac assist device may be performed to increase or decrease the size of the cardiac assist device by gathering or releasing the excess material, as appropriate, thereby promoting an ongoing close fit of the cardiac assist device with the heart.
According to the systems and methods of the invention a material gathering device is used to gather the excess material of the cardiac assist device. One embodiment of the material gathering device comprises drawstrings incorporated into and weaved throughout the bio-compatible material. The drawstrings are endoscopically drawn or released, as needed, and then secured, in order to fit the cardiac assist device closely to the heart. Paired ends of each drawstring are manipulated to secure the drawstrings and cardiac assist device in a desired position around the heart. Each drawstring may be secured, for example, by one of tying, snapping, clipping, zipping, twisting or cable-tying a respective set of paired ends to one another. Subsequent adjustments to the cardiac assist device in order to fit an increased or decreased heart size are readily achieved by unsecuring the drawstrings, re-drawing or releasing the drawstrings to accommodate the changed heart size, and then re-securing the paired ends of each drawstring to fit the cardiac assist device closely to the heart.
According to another embodiment of the systems and methods described herein, the material gathering device is a separately provided reduction ring. The reduction ring is slid over the material at the second end of the cardiac assist device to gather excess material extending therefrom. The gathered material is then secured to maintain the cardiac assist device closely to the heart. The reduction ring is then removed. Subsequent adjustments to the cardiac assist device in order to accommodate changing heart sizes are readily accomplished by un-securing the gathered material, re-performing the reduction ring procedure, and re-securing the gathered material in a desired position so that the cardiac assist device again fits closely to the heart. In some embodiments the ring at the distal end of a rod is positioned over one end of the cardiac assist device to loosely gather the excess material. In other embodiments, the ring is positioned over on end of the cardiac assist device and a slidable rod is maneuvered to close the ring more snugly around the excess material.
In yet another embodiment of the systems and methods described herein, an anterior seam is provided on the material of the cardiac assist device. The anterior seam is located between the first end and the second end of the material. The anterior seam is provided with closure devices on either side of the anterior seam. The closure devices are endoscopically aligned with and connected to one another to close the anterior seam of the cardiac assist device. A separately provided adjustment roller attaches to the closed anterior seam and closure devices to gather excess material of the cardiac assist device and fit the device more closely to the heart. The excess material is gathered by rotating the roller in one direction and then securing the gathered material. The adjustment roller is then removed from the chest cavity, or the roller remains in place and a handle of the adjustment roller is detached from the roller and removed from the chest cavity. In either case, the adjustment roller readily provides subsequent adjustments to the cardiac assist device by un-securing the gathered material, re-performing the adjustment roller procedure to gather excess material to accommodate the changed heart size, and re-securing the gathered material.
Of course, the artisan should readily appreciate that the various material gathering devices and techniques described herein may also be used in combination in order to fit the cardiac assist device even more precisely to the heart.
The various embodiments of the system and methods of the invention described herein provide several advantages over and solve many of the problems posed by prior known devices and methods of sizing a cardiac assist device to a heart. The various exemplary embodiments of the invention minimize the time and cumbersome efforts previously required to fit and suture a cardiac assist device to the heart. The various exemplary embodiments of the invention also provide increased flexibility in terms of adjusting the cardiac assist device to accommodate increased or decreased sizes in the heart after initial placement of the device over the heart. Further, the various embodiments of the invention simplify the endoscopic placing and securing of the cardiac assist device about the heart even during beating heart procedures and may be used in non-endoscopic, i.e. open chest, or hybrid procedures. Moreover, the various embodiments of the invention described herein promote a more precise fit of the cardiac assist device to the heart, even as remodeling of the heart may occur.
The above and other features of the invention, including various novel details of construction and combinations of parts, will now be more particularly described with reference to the accompanying drawings and claims. It will be understood that the various exemplary embodiments of the invention described herein are shown by way of illustration only and not as a limitation thereof. The principles and features of this invention may be employed in various alternative embodiments without departing from the scope of the invention.
These and other features, aspects, and advantages of the apparatus and methods of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
a-c illustrate progressive states of deterioration of a heart representative of heart failure conditions.
d illustrates a prior art mesh jacket placed around a heart.
a-3f illustrate various securing means at paired ends of a drawstring according to the cardiac assist device shown in
a and 5b illustrate alternative cardiac assist devices without drawstrings according to a second embodiment of the invention.
a-9c illustrate another embodiment of a reduction ring according to the invention.
a illustrates one embodiment of a reduction roller according to the invention.
b illustrates an alternative embodiment of a reduction roller having a detachable shaft according to the invention.
a-16c illustrate various stages of fitting the cardiac assist device of
The drawstrings 104 can be comprised of suture-like material, such as, for example, Merselene, Prolene, stainless steel, c-flex, or other suitable material known in the art. The skilled artisan should appreciate that any number of drawstrings may be used, although three drawstrings are shown in
a-3e illustrate various alternatives for the pair of ends 105, 106 used for securing the drawstrings 104 to one another. For example,
In practice, as illustrated in
The cardiac assist device 100 is placed in the chest cavity through one of the openings or ports, and preferably through one of upper ports 201, 202. In this manner, conventional instruments 400, such as graspers, inserted through a respective upper port 201, 202 are able to grasp and manipulate the cardiac assist device to a desired position about the heart. Each of instruments 400 can have grasping elements 401 at a distal end thereof, whereas proximal ends of each instrument 400 extend external to the chest cavity for manipulation of the instrument 400 and activation of the grasping elements 401 by the medical professional. The manipulation and activation of the instruments and grasping elements is done under observation using the endoscope 300, or other visualizing means, according to the invention.
After the cardiac assist device 100 is placed in the chest cavity, the instruments 400 grasp the first end 101 of the cardiac assist device and pull the device over the heart until the apex, or apical region, A of the heart approaches the second end 102 of the device. Thereafter, the cardiac assist device is conformed to the shape of the heart and secured to the heart by tensioning the drawstrings 104 and securing the paired ends 105, 106 of each drawstring, respectively, to one another. The manipulation of the drawstrings and paired ends thereof are also done using the instruments 400, or other grasping device known in the art.
If desired, the cardiac assist device may be further secured directly or indirectly to the heart by sutures, U-clips, staples, adhesives or other securing means, including the anchoring devices of co-pending U.S. patent application Ser. No. ______, (Attorney Docket No. 17386) referenced above. The instruments 400 may be used to perform the suturing, for example, or to otherwise secure the cardiac assist device to the heart or anchoring device. Where anchoring devices, such as those in co-pending U.S. patent application Ser. No. ______, (Attorney Docket No. 17386) are used, and the cardiac assist device is secured to the anchoring devices, it may be preferable to place the anchoring devices on the heart, using instruments 400, prior to placing the cardiac assist device over the heart. In this manner, the cardiac assist device can be simply and quickly secured to the anchoring devices once the cardiac assist device is positioned as desired adjacent the heart.
Once the cardiac assist device is in place about the heart as desired, the proximal ends of the instruments 400 are manipulated by the medical professional to grasp and pull, or release, the drawstrings 104 in order to conform the material of the cardiac assist device closely to the heart. The instruments 400 are then further manipulated to tie, or otherwise secure, the drawstrings in order to maintain the cardiac assist device in close conformity with the heart.
The relatively simple securing devices and methods used according to this embodiment of the invention, permits subsequent adjustments of the cardiac assist device 100 to be readily achieved in a minimally invasive manner after cardiac function has been evaluated. Such adjustments could be done endoscopically, for example, or non-endoscopically, after the patient has stabilized from the initial surgery and placement of the cardiac assist device. Such adjustments could be achieved, for example, using similar openings and instruments as discussed above with respect to the initial placement of the device. The subsequent adjustment would be achieved, for example, using instruments 400 to un-secure the drawstrings and pull, or release, the drawstrings to accommodate the adjusted heart size. Instruments 400 would then be manipulated, as before, to secure the drawstrings to accommodate the changed heart size. Such subsequent adjustments may help eliminate the plateau effect some patients experience after initial placement of the cardiac assist device.
Because relatively few surgical instruments are required to place and secure the exemplary cardiac assist device of
a-10 illustrate another embodiment of systems and methods for sizing a cardiac assist device to a heart, wherein like numerals are used to refer to like components. The cardiac assist device 100 in
The ring 501 is comprised of soft compliant material, such as C-Flex, for example, or other material rendering the open loop 501a of the ring 501 adjustable to tighten around excess material of the cardiac assist device. The shaft 502 is comprised of a malleable material, such as a malleable 316 stainless steel permitting the ring 501 to be placed at various angles as desired, and the rod 503 is comprised of a rigid material. The shaft 502 should be sufficiently malleable to allow re-shaping or re-orienting of the ring during endoscopic procedures.
Referring now to
The instruments 400 are used to grasp and manipulate the cardiac assist device 100 over the heart H until an apical region A of the heart approaches the second end 102 of the cardiac assist device. Thereafter, the first end 101 of the cardiac assist device is secured directly or indirectly to the base of the heart using sutures, u-clips, staples, adhesives or other securing devices such as anchoring device as disclosed in co-pending U.S. patent application Ser. No. ______, (Attorney Docket No. 17386) referenced above.
The endoscope 300, or other visualizing means, is then preferably transferred to one of upper ports 201, 202 and the reduction ring instrument 500 is inserted into the port 200 vacated by the endoscope. The instruments 400 may remain in the openings or ports 201, 202 even as the endoscope is inserted therein. Of course, either or both of the instruments 400 may be removed from the openings or ports 201, 202 at the discretion of the medical professional until needed again. The reduction ring instrument 500 is then manipulated to gather excess material within an opening 501a at the closed end 102 of the cardiac assist device near the apical region of the heart.
a-c shows another embodiment of the reduction ring 1500 comprised of a ring 1501 protruding from a distal end of a hollow slidable rod 1503. The ring 1501 is comprised of a bio-compatible, suture-like material, for example, as known in the art. Free ends 1502 of the material extend through a proximal end of the slidable rod 1503. The ring 1501 is placed around excess material at one end of the cardiac assist device as described with reference to
As shown in
Subsequent adjustments to the cardiac assist device using the reduction ring techniques and devices described above are readily available to accommodate changing heart sizes. Where a decreased heart size occurs, for example, the reduction ring 501 or 1501 is simply re-applied to gather any additional excess material. The securing means, or clips 510, are then re-positioned to accommodate the new heart size. Where an increased heart size occurs, then the clips 510 are removed to free the excess material, the reduction ring is re-applied to gather any new amount of excess material, and the clips 510 are re-applied to accommodate the increased heart size. If the securing means is re-usable, i.e., can be opened and closed, then the same securing means can simply be slid towards or away from the heart in order to adjust for decreased or increased heart sizes, respectively.
As in the exemplary embodiments described above with reference to
c illustrate a third exemplary embodiment of the cardiac assist device according to the systems and methods of the invention. Similar to the earlier described cardiac assist devices, the cardiac assist device 1000 shown in
As shown in
Referring still to
In practice, with reference first to
Conventional instruments 1400 are inserted into the chest cavity through the openings or ports 1201, 1202. Similar to the instruments 400 in earlier embodiments, each instrument 1400 has grasping elements 1401 at a distal end thereof. Each instrument 1401 also has a proximal end extending external to the chest cavity. The visualizing means 1300 likewise has a proximal end extending externally from the chest wall. In this manner, the proximal ends of visualizing means 1300 and instruments 1400 are available for manipulation by a medical professional. At the same time, the visualizing means 1300 permits the medical professional to observe the various devices, instruments and procedures within the chest cavity as they occur.
After initially placing the cardiac assist device 1000 into the chest cavity through one of the openings or ports, the anterior seam 1010 of the cardiac assist device is open, as shown in
a shows a reduction roller 1020, as a material management means, that releasably attaches to the closed anterior seam and closure devices. The roller 1020 in
b shows an alternative reduction roller 1020, as a material management means, having a handle 1024 that detaches from the distal end 1021 of the roller via coupling 1025.
In practice, the reduction roller 1020 is inserted into the chest cavity of a being through any one of the openings or ports 1200-1202 as described above with reference to
a-16c, wherein the chest wall, ports, instruments and visualizing means are omitted from illustration but understood to exist as shown and described earlier with respect to
If necessary, additional sizing of the cardiac assist device at the apical region of the heart may be accomplished using the reduction ring technique described above. Alternatively, if additional sizing of the device at the apical region of the heart is necessary, the drawstring technique described above can be used to tighten and more precisely fit the device to the apex of the heart. In this latter case, the pouch shaped cardiac assist device would be provided with at least one drawstring near the apical region of the heart.
Subsequent adjustments to the cardiac assist device using the roller technique are readily available to accommodate changing heart sizes. Where either a decreased or increased heart size occurs, the gathered material is unsecured and unraveled, the roller with the handle is re-applied to the closed anterior seam, and the roller is rotated to gather any additional excess material. The gathered material is then re-secured at the new position in order to accommodate the new heart size. As before, the roller is then either removed, or the handle only is removed, and the gathered material is secured in a desired position about the heart. If desired, the reduction ring or drawstring techniques may also be used to even more precisely fit the apical region of the heart to the cardiac assist device, as discussed above.
As in the exemplary embodiments described above with reference to
The various exemplary embodiments of the invention as described hereinabove do not limit different embodiments of the present invention. The bio-compatible material, described herein as an exemplary cardiac assist device, is not limited to the materials, designs, or shapes referenced herein for illustrative purposes only, and may comprise various other materials, designs or shapes suitable for the procedures described herein as should be appreciated by one of ordinary skill in the art. For example, the material may be a fabric like that described in U.S. Pat. No. 6,682,476 or materials such as those described in U.S. Pat. No. 6,595,912, which are incorporated herein by reference.
While there has been shown and described what is considered to be preferred embodiments of the invention, it will, of course, be understood that various modifications and changes in form or detail could readily be made without departing from the spirit or scope of the invention. For example, while the invention has been described with reference to an endoscopic procedure, the system described herein can also be used in non-endoscopic, open chest or hybrid procedures that would not rely solely upon openings in a patient's chest. It is therefore intended that the invention be not limited to the exact forms described and illustrated herein, but should be constructed to cover all modifications that may fall within the scope of the appended claims.