In general, all publications, patent applications, and patents mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual document was specifically individually indicated to be incorporated by reference.
This disclosure relates generally to methods and devices (including systems) for increasing the strength and/or maximum inspiratory force and/or endurance of a respiratory muscle. In some examples, the present disclosure describes methods for increasing the force of a respiratory muscle until a living being (e.g., a patient) is able to breathe without the need for invasive or non-invasive mechanical ventilation, or without the need for other external respiratory support.
In certain examples, the present disclosure describes systems and methods for delivering energy at intervals, or at a low duty cycle, over a period of several days or weeks to respiratory muscles to increase their maximum strength, and/or improve the fatigue threshold until a living being can breathe with reduced, or without, external respiratory support.
In addition, the present disclosure describes systems and methods to mitigate the loss of maximum inspiratory strength of a respiratory muscle in a living being, and more specifically to reduce the degree of such strength loss while a patient is receiving external respiratory support.
Critical care patients, particularly those requiring invasive mechanical ventilation (MV), are known to experience higher levels of diaphragm, lung, brain, heart, and other organ injury. The respiratory muscles (e.g., diaphragm, sternocleidomastoid, scalenes, pectoralis minor, external intercostals, internal intercostals, abdominals, quadratus, etc.) are known to rapidly lose mass and strength during MV. The lungs suffer from ventilator-induced trauma; including both high and low pressure injuries. Cognitive effects of MV are believed to be caused by several factors, including aberrant neuro-signaling and inflammatory responses. The heart needs to work harder as: a) respiratory devices such as mechanical ventilators increase blood flow resistance, b) reduced respiratory muscle contraction provides less venous blood flow support, and c) prolonged positive end-expiratory pressure creates blood flow resistance. Each of these is exacerbated the longer that a patient is on MV. To prevent these negative side effects, it is important to keep patients on MV for as short a time as possible. However, rapid respiratory muscle atrophy in MV patients makes it challenging to transition many patients away from a dependency on MV. Today, there are no commercially available options to strengthen the respiratory muscles of critical care patients, particularly for those that are on MV, so that they can quickly regain the ability to breathe without external respiratory support.
In many cases, a patient who is sedated and connected to a mechanical ventilator cannot breathe normally because the central neural drive to the diaphragm and accessory respiratory muscles is often suppressed. Although MV can be a life-saving intervention for patients suffering from respiratory failure, prolonged MV can promote respiratory muscle atrophy. Of particular focus has been the atrophy and contractile dysfunction of the diaphragm resulting from extended periods of time on mechanical ventilation, called ventilator-induced diaphragm atrophy (VIDD). This type of diaphragm injury and accompanying diaphragm weakness are recognized as likely contributors to difficulty in weaning from MV. In a landmark study in brain-dead ICU patients who were kept on MV for just 18 to 69 hours until their donated organs were harvested, the diaphragm muscle fibers had shrunk to less than half of their normal sizes (Levine et al., New England Journal of Medicine, 358: 1327-1335, 2008). Such profound atrophy, when allowed to progress for days or weeks, is considered to be a primary cause for failure to wean from MV in large numbers of MV patients (Demoule et al., Relevance of Ventilator-induced Diaphragm Dysfunction in ICU patients, Clinical Pulmonary Medicine, Volume 19, Number 6 (November 2012)).
It has been demonstrated that even short periods of time on mechanical ventilation can lead to lung injury (e.g., barotrauma, atelectrauma, etc.), lung infection (e.g., pneumonia), brain injury (e.g., cognitive dysfunction, dementia, etc.) and heart injury.
It has been estimated that over 600,000 U.S. patients will be ventilator-dependent and require prolonged mechanical ventilation by the year 2020, at a cost to the US healthcare system of over $60 billion (Zilberberg et al., “Growth in adult prolonged acute mechanical ventilation: implications for healthcare delivery,” Crit Care Med., 2008 May, 36(5): 1451-55).
As such, both short and extended time on a mechanical ventilator increases health care costs and greatly increases patient morbidity and mortality. An international, prospective, observational study of MV practices that included 5,183 patients from 20 countries who received MV for greater than 12 hours revealed that patients spend, on average, 40% of their duration of MV in the process of weaning (Esteban et al., Evolution of mechanical ventilation in response to clinical research, Am. J. Respir. Crit. Care Med., 2008 Jan. 15; 177(2):170-7).
The majority of patients treated with MV are readily liberated from ventilator support upon resolution of respiratory failure or recovery from surgery, but approximately one-third encounter challenges with regaining the ability to breathe spontaneously. The prognosis is good for patients who wean successfully at the first attempt (simple wean-ICU mortality ˜5%), but is less so for the remaining patients (difficult or prolonged wean-ICU mortality ˜25%) (Boles et al., Weaning from mechanical ventilation, Eur. Respir. J., 2007 May; 29(5):1033-56).
Difficulty in weaning from MV is the subject of numerous research efforts around the world, because in many cases patients are able to recover from the condition that originally required them to have MV, but due to the effects of MV they are unable to regain full health.
Some researchers have looked at ways to reduce diaphragm muscle atrophy. Reynolds et al. demonstrated that frequent phrenic nerve stimulation can help mitigate diaphragm muscle atrophy in animal models (Reynolds et al., Mitigation of Ventilator-induced Diaphragm Atrophy by Transvenous Phrenic Nerve Stimulation, Am. J. Respir. Crit. Care Med., 2017 Feb. 1; 195(3):339-348). Lungpacer Medical has disclosed several devices, systems, and methods to prevent diaphragm muscle atrophy.
The literature related to weaning patients from mechanical ventilation has focused on the need for patients to regain diaphragm muscle endurance. One theory has been that a patient needs respiratory muscle endurance to support independent respiration for long periods of time.
Embodiments of the present disclosure relate to, among other things, systems, devices, and methods for stimulating a respiratory muscle for a small portion of the breaths delivered to or required by a patient in order to strengthen the muscle and/or increase the endurance of the muscle. Each of the embodiments disclosed herein may include one or more of the features described in connection with any of the other disclosed embodiments.
This disclosure includes methods for stimulating a respiratory muscle of a patient. In some aspects, the methods may include: (a) positioning a stimulator adjacent a nerve capable of activating the respiratory muscle; (b) activating the stimulator to cause the respiratory muscle to contract only 100 times or less; (c) ceasing the activation of the stimulator for one or more hours; and (d) repeating steps (b) and (c) at least once. The patient may initiate at least one respiratory muscle contraction of step (b).
In some examples, the methods may further include selecting a pre-determined value of a maximum inspiratory pressure of the patient, and repeating steps (b) and (c) until the maximum inspiratory pressure of the patient increases to the pre-determined value. The pre-determined value may be at least 30 cm H2O. The nerve may be a first nerve, and the respiratory muscle may be a first respiratory muscle, and the method may further include carrying out steps (a) through (d) relative to a second nerve and a second respiratory muscle. The stimulator may include one or more of transvascular electrodes, transdermal electrodes, subcutaneous electrodes, or electrodes configured to be positioned in contact with the nerve.
In some examples, the methods may further include determining a stimulation threshold. The step of determining may include palpating the respiratory muscle. Alternatively or additionally, the step of determining may include observing at least one of a pressure data or a volume data from an external respiratory support system. The methods may further include using a mechanical ventilator to provide respiratory support to the patient during at least a portion of step (b).
In some aspects, the methods for stimulating a respiratory muscle of a patient may include (a) positioning a stimulator adjacent a nerve capable of activating the respiratory muscle; (b) first activating the stimulator to cause the respiratory muscle to contract only 100 times or less; (c) ceasing the first activation of the stimulator for at least 30 seconds; (d) after step (c), second activating the stimulator to cause the respiratory muscle to contract only 100 times or less; (e) ceasing the second activation of the stimulator for one or more hours; and (f) repeating steps (b) through (e) at least once. The nerve may be at least one of a phrenic nerve or a vagus nerve. In one example, step (b) may include 100 or less stimulations corresponding to the 100 or less contractions of the respiratory muscle, and step (b) may include adjusting at least one stimulation parameter between a first stimulation of the 100 or less stimulations and a second stimulation of the 100 or less stimulations.
In some examples, the nerve may be a first nerve, the respiratory muscle may be a first respiratory muscle, and the stimulator may include a first set of electrodes positioned adjacent the first nerve and a second set of electrodes positioned adjacent a second nerve capable of activating either the first respiratory muscle or a second respiratory muscle, and the method may further include: (g) first activating the second set of electrodes to cause the first or second respiratory muscle to contract only 100 times or less; (h) ceasing the first activation of the second set of electrodes for at least 30 seconds; (i) after step (h), second activating the second set of electrodes to cause the first or second respiratory muscle to contract only 100 times or less; (j) ceasing the second activation of the second set of electrodes for one or more hours; and (k) repeating steps (g)-(j) at least once. Steps (b) and (g) may occur at the same time.
In some examples, the methods may further include sensing a contraction of the respiratory muscle; and adjusting at least one stimulation parameter to achieve a desired contraction of the respiratory muscle. The steps of sensing and adjusting may be carried out automatically by a controller. The controller may be implanted in the patient.
In some aspects, the methods for stimulating a respiratory muscle of a patient may include (a) positioning a stimulator adjacent a nerve capable of activating a respiratory muscle; and (b) activating the stimulator to cause the respiratory muscle to contract for no more than 20% of the breaths taken by, or delivered to, the patient in a 24-hour period. Step (b) may include activating the stimulator to cause the respiratory muscle to contract for no more than 10% of the breaths taken by, or delivered to, the patient in the 24-hour period.
In some examples, the methods may further include providing external respiratory support for at least 60% of the patient's breaths in the 24-hour period; and subsequent to step (b), at least one of reducing a pressure provided by the external respiratory support or reducing a percentage of breaths assisted by the external respiratory support. The external respiratory support may include at least one of mechanical ventilation, BiPAP, CPAP, or nasal cannula oxygenation. In some examples, the stimulator may include a plurality of electrodes, and the method may further include using a controller to automatically select an electrode combination from the plurality of electrodes for stimulating the nerve and causing the respiratory muscle to contract. In some examples, the methods may further include using a sensor to measure a physiological parameter of the patient, wherein the physiological parameter may include at least one of a breath rate, a heart rate, an ECG, a temperature, a motion, a blood oxygen level, a blood CO2 level, or an air flow.
In some aspects, the methods for stimulating a respiratory muscle of a patient may include (a) positioning a stimulator adjacent a nerve capable of activating the respiratory muscle; (b) providing external respiratory support to the patient; (c) providing extracorporeal membrane oxygenation to the patient to at least one of remove CO2 or add oxygen to the patient's blood; and (d) activating the stimulator to cause the respiratory muscle to contract for no more than five cumulative hours in a 24-hour period. At least some stimulations during the activation of the stimulator in step (d) may occur during inspiration periods of the external respiratory support provided in step (b).
In some examples, a first time period between a first pair of consecutive stimulations during the activation of the stimulator in step (d) may be different than a second time period between a second pair of consecutive stimulations during the activation of the stimulator in step (d). A plurality of electrodes of the stimulator may be positioned within the patient through a percutaneous incision. A plurality of electrodes of the stimulator may be positioned external to the patient.
In some examples, the methods may alternatively or additionally include: delivering at least one drug to the patient prior to step (d); or using a sensor to detect an inflammatory agent.
In some aspects, methods for stimulating a respiratory muscle of a patient may include (a) positioning a stimulator adjacent a nerve capable of activating the respiratory muscle; (b) providing external respiratory support for at least 90% of the patient's breaths in a 24-hour period; (c) activating the stimulator to cause the respiratory muscle to contract for no more than five cumulative hours in a 24-hour period; (d) repeating steps (b) and (c) for 48 hours; and (e) removing the external respiratory support from the patient. The methods may further include repeating step (c) for at least one day after removing the external respiratory support from the patient.
In some aspects, the methods for stimulating a respiratory muscle of a patient may include: (a) positioning a stimulator adjacent a nerve capable of activating the respiratory muscle; and (b) activating the stimulator to cause the respiratory muscle to contract for a cumulative duration of 2 hours or less per day while the patient is breathing.
In some aspects, the methods for stimulating a respiratory muscle of a patient may include: (a) positioning a stimulator adjacent a nerve or muscle capable of activating a respiratory muscle; (b) providing external respiratory support for at least 90% of a patient's breaths in a 24-hour period (c) activating the stimulator to cause the respiratory muscle to contract; (d) varying at least one of a stimulation intensity or a stimulation rate; and (e) removing the external respiratory support from the patient.
This disclosure further includes systems for stimulating a respiratory muscle of a patient. In some examples, the systems may include: a stimulator for positioning adjacent a nerve capable of activating the respiratory muscle; a signal generator for providing stimulation energy to the stimulator; a sensor for detecting a response of the respiratory muscle to the stimulation energy; and a controller programmed to: (i) cause the signal generator to provide stimulation energy to the stimulator to cause only 100 or less contractions of the respiratory muscle; and (ii) cause the signal generator to provide a period of one hour or more after causing the 100 or less contractions. The stimulator may include one or more of: nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, electromagnetic beam electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, tape-type electrodes, suction-type electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes, or probe electrodes. The stimulation energy may be delivered by an energy form that includes at least one of mechanical, electrical, ultrasonic, photonic, or electromagnetic energy. In some examples, the systems may further include a switch communicably coupled to the controller, wherein the switch includes one of a hand switch, a foot switch, a touch screen, a voice-activated switch, or a remote switch
It may be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements, but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. The term “exemplary” is used in the sense of “example,” rather than “ideal.”
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate non-limiting embodiments of the present disclosure and together with the description, serve to explain the principles of the disclosure.
Throughout the following description, specific details are set forth to provide a more thorough understanding to persons skilled in the art. The following description of examples of the technology is not intended to be exhaustive or to limit the system to the precise forms of any example embodiment. Accordingly, the description and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
As described above in the Background section, endurance of respiratory muscles has been a focus of previous research. This disclosure relates in part to increasing the maximum respiratory muscle strength, which also is useful for achieving successful independent respiration. To date, there remains an unmet need for an easy-to-use device, system, and method to rapidly and efficiently build, or maintain, respiratory muscle strength and/or endurance to reverse, or to limit, the muscle injury often experienced when patients are dependent on external respiratory support such as mechanical ventilation.
This disclosure includes systems and methods that may provide a rapid increase in the maximum inspiratory strength and/or endurance of patients with weakened respiratory muscles, and help wean them from external respiratory support. The systems may involve the delivery of energy-based therapy to the patients to activate respiratory muscle(s) for a relatively small percentage of the breaths taken by, or delivered by external means to, the patient each day. Therapy can be delivered as intermittently as 25% of the breaths taken per day, or in some cases less than 10%, less than 1%, or less than 0.2% of the breaths taken by, or delivered by external means to, the patient each day. The systems and methods can automatically stimulate the desired muscles, either directly or indirectly (e.g., via nerves), at a determined interval, frequency, or duty cycle. The therapy can be activated automatically at predetermined intervals or conditions, activated by a healthcare professional, or activated by the patients themselves, as needed. The therapy may be designed to increase, or preserve, the respiratory muscle strength and/or endurance for patients dependent on external respiratory support.
In general, embodiments of this disclosure relate to medical devices and methods for electrically stimulating a patient's nerves to activate a respiratory muscle at infrequent intervals. In some cases, the muscles may be strengthened until the patient can breathe without external respiratory support.
Referring to
In some examples, the stimulator devices (e.g., catheter 12) are readily applied to, or inserted into, the patient, temporary, and easily removed from the patient without the need for surgery at a later time. The stimulator, such as catheter 12 or other stimulation array, may be positioned internal to the patient via a percutaneous incision in the patient's neck. In some cases, the stimulator may be inserted proximate subclavian, femoral, or radial regions of the patient. In other examples, as described herein, the stimulator may be positioned external to the patient.
The various system components described herein may be combined and used together in any logical arrangement. Furthermore, individual features or elements of any described example may be combined with or used in connection with the individual features or elements of other embodiments. The various examples may further be used in different contexts than those specifically described herein. For example, the disclosed electrode structures may be combined or used in combination with various deployment systems known in the art for various diagnostic and/or therapeutic applications.
The remote controller 20 may include buttons 17, 19 that can be pressed by a patient or other user to control breathing patterns. In one example, pressing one of buttons 17, 19 can initiate a “sigh” breath, which may cause a greater volume of air to enter the patient's lungs than in a previous breath. A sigh breath may result when electrodes 34 of catheter 12 are directed to stimulate one or more of the phrenic nerves 26, 28 at a higher level than a normal breath (e.g., a stimulation train having a longer duration of stimulation or having pulses with a higher amplitude, pulse width, or frequency). Higher amplitude stimulation pulses can recruit additional nerve fibers, which in turn can engage additional muscle fibers to cause stronger and/or deeper muscle contractions. Extended pulse widths or extended durations of the stimulation train can deliver stimulation over longer periods of time to extend the duration of the muscle contractions. In the case of diaphragm muscle stimulation, longer pulse widths or extended duration of stimulation (train of pulses) have the potential to help expand the lower lung lobes by providing greater or extended negative pressure around the outside of the lungs. Such negative pressure has the potential to help prevent or mitigate a form of low pressure lung injury known as atelectasis. The increase in stimulation frequency can result in a more forceful contraction of the diaphragm 30. The increased stimulation (e.g., higher amplitude, pulse width, stimulation duration, or frequency) of the one or more phrenic nerves 26, 28 may result in a more forceful contraction of the diaphragm 30, causing the patient to inhale a greater volume of air, thereby providing a greater amount of oxygen to the patient. Sigh breaths may increase patient comfort.
In other examples, buttons 17, 19 may allow the patient or other user to start and stop stimulation therapy, or to increase or decrease stimulation parameters, including stimulation charge (amplitude×pulse width), frequency of pulses in a stimulation train, or breath rate. LED indicators or a small LCD screen (not shown) on the remote controller 20 or control unit 18 may provide other information to guide or inform the operator regarding the stimulation parameters, the feedback from the system sensors, or the condition of the patient.
Alternatively, a control unit having the functionality of control unit 18 can be implanted in the patient, along with catheter 12. In this example, remote controller 20 and a programmer (not shown) may communicate with the implanted control unit wirelessly. Each of the programmer, the implanted control unit, and remote controller 20 may include a wireless transceiver so that each of the three components can communicate wirelessly with each other. The implanted control unit may include all of the electronics, software, and functioning logic necessary to perform the functions described herein. Implanting the control unit may allow catheter 12 to function as a permanent breathing pacemaker. A programmer may allow the patient or health professional to modify or otherwise program the nerve stimulation or sensing parameters. In some examples, remote controller 20 may be used as described in connection with
In yet another additional or alternative example, the control unit of system 100 may be portable. The portable control unit may include all of the functionality of control unit 18 of
The distal tip of catheter 12 may be a tapered distal end portion of catheter 12 and may have a smaller circumference than the body of catheter 12. The distal tip may be open at the distal end to allow a guide wire to pass through and distally beyond catheter 12. And, the distal tip may be softer than other portions of catheter 12, be atraumatic, and have rounded edges. Catheter 12 also may have two ports or openings in the sidewall of the catheter. A first opening may be located at a mid-portion of catheter 12 and a second opening may be located near a proximal end of catheter 12. Each opening may be in fluid communication with respective lumens in catheter 12, through which fluid can be infused. The fluid may exit the ports to be delivered into a blood vessel.
During use, a proximal portion of catheter 12 may be positioned in left subclavian vein 22, and a distal portion of catheter 12 may be positioned in superior vena cava 24. Positioned in this manner, electrodes 34 on the proximal portion of catheter 12 may be positioned proximate left phrenic nerve 26, and electrodes 34 on the distal portion of catheter 12 may be positioned proximate right phrenic nerve 28. As an alternative insertion site, catheter 12 may be inserted into left jugular vein 32 and superior vena cava 24, such that the proximal electrodes are positioned to stimulate left phrenic nerve 26 and the distal electrodes are positioned to stimulate right phrenic nerve 28.
Left and right phrenic nerves 26, 28 may innervate diaphragm 30. Accordingly, catheter 12 may be positioned to electrically stimulate one or both of the left and right phrenic nerves 26, 28 to cause contraction of the diaphragm muscle 30 to initiate or support a patient breath.
In further examples, catheter 12 can be placed into and advanced through other vessels providing access to the locations adjacent the target nerve(s) (e.g., phrenic nerves), such as: the jugular, axillary, cephalic, cardiophrenic, brachial, or radial veins. In addition, the stimulator (e.g., catheter 12 or array 13) may use other forms of stimulation energy, such as ultrasound, to activate the target nerves. In some examples, the system 100 can target other respiratory muscles (e.g., intercostal) either in addition to, or alternatively to, the diaphragm 30. The energy can be delivered via one or more types of electrodes/methods including transvascular electrodes, subcutaneous electrodes, electrodes configured to be positioned in contact with the nerve (e.g., nerve cuffs), transdermal electrodes/stimulation, or other techniques known in the field.
The nerve stimulation systems and methods described herein may reduce or eliminate the need for a patient to receive external respiratory support. External respiratory support 88 in
Mechanical ventilation may refer to use of a ventilator to assist or replace spontaneous breathing. Mechanical ventilation is termed “invasive” if it involves any instrument penetrating through the mouth (such as an endotracheal tube) or the skin (such as a tracheostomy tube). There are two main types of mechanical ventilation: positive pressure ventilation, where air (or another gas mix) is forced into the trachea via positive pressure, and negative pressure ventilation, where air is drawn into (e.g., sucked into) the lungs (e.g., iron lung, etc.). There are many modes of mechanical ventilation. Mechanical ventilation may be indicated when the patient's spontaneous ventilation is unable to provide effective gas exchange in the lungs.
Ventilation also can be provided via a laryngeal mask airway (e.g., laryngeal mask), which is designed to keep a patient's airway open during anesthesia or unconsciousness. It is often referred to as a type of supraglottic airway. A laryngeal mask may include an airway tube that connects to an elliptical mask with a cuff, which is inserted through the patient's mouth and down the windpipe. Once deployed, the device forms an airtight seal on top of the glottis (unlike tracheal tubes, which pass through the glottis) to provide a secure or stable airway.
Non-invasive ventilation (NIV) is the use of airway support administered through a face (e.g., oral, nasal, nasal-oral) mask/cannula instead of an endotracheal tube. Inhaled gases are given with positive end-expiratory pressure, often with pressure support or with assist control ventilation at a set tidal volume and rate. This type of treatment is termed “non-invasive” because it is delivered with a mask that is tightly fitted to the face, but without a need for tracheal intubation.
Continuous positive airway pressure (CPAP) is a form of positive airway pressure ventilation, which applies mild air pressure on a continuous basis to keep the airways continuously open. CPAP may be used for patients who are able to breathe spontaneously on their own but may require a level of pressure support. It is an alternative to positive end-expiratory pressure (PEEP). Both modalities stent the lungs' alveoli open and therefore help recruit more of the lung's surface area for ventilation. PEEP generally refers to devices that impose positive pressure only at the end of an exhalation. CPAP devices apply continuous positive airway pressure throughout the breathing cycle. Thus, the ventilator itself does not cycle during CPAP, no additional pressure above the level of CPAP is provided, and patients must initiate each breath on their own.
Bilevel Positive Airway Pressure (BiPAP) therapy is very similar in function and design to CPAP. BiPAPs can also be set to include a breath timing feature that measures the amount of breaths per minute a person should be taking. If the time between breaths exceeds the set limit, the machine can force the person to breath by temporarily increasing the air pressure. The main difference between BiPAP and CPAP machines is that BiPAP machines generally have two pressure settings: the prescribed pressure for inhalation (ipap), and a lower pressure for exhalation (epap). The dual settings allow the patient to move more air in and out of their lungs.
Extracorporeal membrane oxygenation (ECMO), which is also known as extracorporeal life support (ECLS), is an extracorporeal technique to provide prolonged cardiac and respiratory support to patients whose heart and lungs are unable to provide an adequate amount of gas exchange. The technology for ECMO is similar to that used during cardiopulmonary bypass, which is typically used to provide shorter-term support. During ECMO, blood is removed from the person's body and passed through a device which removes carbon dioxide and provides oxygen to red blood cells. Long term ECMO patients can often develop respiratory muscle weakness because of muscle inactivity and other causes. Certain therapy methods described herein may include delivering stimulation therapy to a patient receiving both ECMO and another form of external respiratory support. Certain therapy methods in this disclosure may utilize ECMO devices, which may include a stimulation array, to deliver the described therapy.
Referring still to
Electrodes 34 may extend partially around the circumference of catheter 12. This “partial” electrode configuration may allow electrodes 34 to target a desired nerve for stimulation, while minimizing application of electrical charge to undesired areas of the patient's anatomy (e.g., other nerves or the heart). As shown in
Furthermore, the catheters described herein may include any features of the nerve stimulation devices and sensing devices described in the following documents, which are all incorporated by reference herein in their entireties: U.S. Pat. No. 8,571,662 (titled “Transvascular Nerve Stimulation Apparatus and Methods,” issued Oct. 29, 2013); U.S. Pat. No. 9,242,088 (titled “Apparatus and Methods for Assisted Breathing by Transvascular Nerve Stimulation,” issued Jan. 26, 2016); U.S. Pat. No. 9,333,363 (titled “Systems and Related Methods for Optimization of Multi-Electrode Nerve Pacing,” issued May 10, 2016); U.S. application Ser. No. 14/383,285 (titled “Transvascular Nerve Stimulation Apparatus and Methods,” filed Sep. 5, 2014); U.S. application Ser. No. 14/410,022 (titled “Transvascular Diaphragm Pacing Systems and Methods of Use,” filed Dec. 19, 2014); U.S. application Ser. No. 15/606,867 (titled “Apparatus And Methods For Assisted Breathing By Transvascular Nerve Stimulation,” filed May 26, 2017); or U.S. application Ser. No. 15/666,989 (titled “Systems And Methods For Intravascular Catheter Positioning and/or Nerve Stimulation,” filed Aug. 2, 2017). In addition, the control units described herein can have any of the functionality of the control units described in the above-referenced patent documents (e.g., the control units described herein can implement the methods of nerve stimulation described in the incorporated documents).
During nerve stimulation, one or more electrodes 34 may be selected from the proximal set 35 for stimulation of left phrenic nerve 26, and one or more electrodes 34 may be selected from the distal set 37 for stimulation of right phrenic nerve 28. Catheter 12 may stimulate nerves using monopolar, bipolar, or tripolar electrode combinations, or using any other suitable combination of electrodes 34. In some examples, a second or third group of electrodes can be used to stimulate other respiratory muscles. In general, a stimulator or a stimulation array may include multiple sets of electrodes, with each set being configured to stimulate either the same or different nerves or muscles. When multiple nerves or muscles are being stimulated, the controllers and sensors described herein may be used to coordinate stimulation to achieve the desired muscle activation, breath, or level of respiratory support.
Catheter 12 may further include one or more lumens. Each lumen may extend from a proximal end of catheter 12 to a distal end of catheter 12, or to a location proximate the distal end of catheter 12. In some examples, lumens may contain or be fluidly connected to sensors, such as blood gas sensors, electrical sensors, motion sensors, flow sensors, or pressure sensors. In some examples, catheter 12 may include three lumens (not shown) that may connect with extension lumens (not shown) that extend proximally from hub 36. Any lumens within catheter 12 may terminate in one or more distal ports (not shown) either at the distal end of catheter 12 or in a sidewall of catheter 12. In one example, the lumens may be used to transport fluid to and from the patient, such as to deliver medications or withdraw blood or other bodily fluids, to remove CO2, and/or to infuse oxygen. In other examples, these lumens may be used to hold a guidewire, stiffening wire, optical fiber camera, sensors, or other medical devices.
Catheter 12, or other stimulation devices of this disclosure, may incorporate markings or other indicators on its exterior to help guide the positioning and orientation of the device. Catheter 12, or other stimulation devices of this disclosure, may also include internal indicators (e.g., radiopaque markers, contrast material such as barium sulfate, echogenic markers, etc.) visible by x-ray, ultrasound or other imagining technique to assist with positioning the stimulator in the desired location. Catheter 12 may include any combination of the features described herein. Accordingly, the features of catheter 12 are not limited to the specific combination shown in
Referring still to
In one example, the distal or proximal portion of catheter 12 may be configured to assume a helical shape when positioned within the patient to help anchor catheter 12 to the vessel wall or to stabilize catheter 12 during nerve stimulation. The helical shape may position electrodes 34 at different radial positions within the vessel and relative to target nerves. Selecting electrodes 34 at different radial positions within the vessel (whether or not due to any helical shape), or at different distances from the target neve (whether or not due to any helical shape), may be useful for nerve stimulation. For example, in certain instances it may be desirable to stimulate the nerve with electrodes 34 that are closer to the nerve (e.g., to obtain a stronger respiratory muscle response), and in other instances it may be desirable to stimulate the nerve with electrodes 34 that are farther away from the nerve (e.g., to obtain a weaker respiratory muscle response, or prevent stimulation of unwanted nerves).
The electrodes 34 of catheter 12 may be formed by conductive inks (such as silver, gold, graphine or carbon flakes suspended in polymer or other media) printed on the surface of catheter 12, as described in U.S. Pat. No. 9,242,088, incorporated by reference herein (see above). These conductive inks may be deposited and adhered directly onto catheter 12 and sealed, except for the exposed electrodes 34, with an outer polyurethane or other flexible insulative film/material.
When electrical charge is delivered to the phrenic nerves, the diaphragm muscles may contract and generate negative pressure in the thoracic cavity. The lungs then expand to draw in a volume of air. This contraction of diaphragm muscles can be sensed manually by palpation or by placing a hand on the thoracic cavity, as shown in
In some examples, catheter 12 can be easily inserted into (or secured relative to) the patient. In many embodiments, catheter 12 can be readily removed from the patient's body when desired without the need for surgery. For example, catheter 12 of
Additionally or alternatively, system 200 of
System 300 may include a controller 64, which may be part of any of the control units described herein. Each of the components of system 300 may be operably coupled to the controller 64, and controller 64 may manage operation of electrodes 34 during nerve stimulation, control the gathering of information by various sensors and electrodes 34, and control fluid delivery or extraction for those embodiments with fluid lumens. It should be understood that the various modules described herein may be part of a computing system and are separated in
Electrodes 34a-34j may be electronically coupled to switching electronics 56, which may be communicably coupled to controller 64. As shown in
Electrodes 34a-34j may be used for both electrically stimulating nerves and for gathering physiological information. When being used for nerve stimulation, a first combination of electrodes (e.g., one, two, three, or more electrodes) may be electrically coupled to a first stimulation module channel 70 for stimulation of a first nerve (e.g., the right phrenic nerve) and a second combination of electrodes (e.g., one, two, three, or more electrodes) may be electrically coupled to a second stimulation module channel 72 for stimulation of a second nerve (e.g., the left phrenic nerve). Electrical signals may be sent from the first and second stimulation module channels 70, 72 to the electrode combinations to cause the electrodes to stimulate the nerves. In other examples, more than two electrode combinations (e.g., 3, 4, or more) may be used to stimulate one or more target nerves, and system 300 may include more than two stimulation module channels.
Electrodes 34a-34f may be further configured to sense physiological information from a patient, such as nerve activity, ECG, or electrical impedance, breathing, etc., as will be described further below. When being used for sensing, one or more of electrodes 34a-34f may be electronically coupled to a signal acquisition module 68. Signal acquisition module 68 may receive signals from electrodes 34.
Switching electronics 56 may selectively couple electrodes 34 to first stimulation module channel 70, second stimulation module channel 72, or signal acquisition module 68. For example, if an electrode 34 (e.g., electrode 34a) is being used to acquire a signal, such as an ECG signal, that electrode 34 may be coupled via switching electronics 56 to signal acquisition module 68. Similarly, if a pair of electrodes (e.g., electrodes 34b and 34d) is being used to stimulate right phrenic nerve 28, those electrodes may be coupled via switching electronics 56 to first stimulation module channel 70. Finally, if a pair of electrodes (e.g., electrodes 34g and 34h) is being used to stimulate left phrenic nerve 26, those electrodes may be coupled via switching electronics 56 to second stimulation module channel 72. Switching electronics 56 may change which electrodes 34 are used for stimulation and which are used for sensing at any given time. In one example, any electrode 34 can be used for nerve stimulation and any electrode 34 can be used for sensing functions described herein. In other words, each electrode 34 may be configured to stimulate nerves, and each electrode 34 may be configured to sense physiological information.
Signal acquisition module 68 may further be coupled to one or more sensors configured to gather physiological information from a patient. For example, system 300 may include one or more of blood gas sensor 62 or pressure sensor 90. These sensors may be located in lumens of catheter 12, outside of the patient in fluid communication with a lumen, on an outer surface of catheter 12, or in any other suitable location. In one example, blood gas sensor 62 may be housed in or fluidly connected to lumen 60, while pressure sensor 90 may be housed in or fluidly connected to lumen 58. Blood gas sensor 62 may measure the amount of O2 or CO2 in the patient's blood. Pressure sensor 90 may measure the central venous pressure (CVP) of the patient. System 300 may additionally or alternatively include other sensors configured to measure other physiological parameters of a patient, such as breath rate, heart rate, ECG, temperature, motion, or air flow.
Signal acquisition module 68 may transmit the signals received from one or more of electrodes 34, blood gas sensor 62, nerve sensor (not shown), and/or pressure sensor 90 to the appropriate processing/filtering module of system 300. For example, signals from pressure sensor 90 may be transmitted to a central venous pressure signal processing/filtering module 84, where the signals are processed and filtered to aid in interpretation of CVP information. Similarly, signals from blood gas sensor 62 may be transmitted to a blood gas signal processing/filtering module 86 for processing and filtering to determine blood gas levels. Signals from electrodes 34, when they are used for sensing, may be sent to nerve signal processing/filtering module 80, ECG signal processing/filtering module 82, or impedance signal processing/filtering module 88, as appropriate. Signals from electrodes 34 or other sensors may be sent to amplification module 78, if necessary, to amplify the signals prior to being sent to the appropriate processing/filtering module.
In one embodiment, sensors can detect information from nerve signals which can be used to help manage the delivery of the therapy for the patient. For example, the electrical activity of a respiratory muscle (e.g., diaphragm) as well as vagal signals from pulmonary stretch receptors, can be used to optimize parameters related to the delivery of the external respiratory support and/or the respiratory muscle stimulation.
For patients with a moderate to high level of consciousness, the electrical activity of the diaphragm can provide an accurate reflection of the patient's neural respiratory drive. In some examples, the electrical activity of the diaphragm may be measured by sensing activities of phrenic nerves. Such measurement may be performed using electrodes in proximity to phrenic nerves or by electromyography. In addition to this neural signal, there are vagally-mediated reflexes which sense lung stretch to limit the volume of inspiration thereby preventing over-distension (Hering-Breuer inflation reflex) and to prevent the de-recruitment of the lung during exhalation (Hering-Breuer deflation reflex).
The positive pressure provided by the external respiratory support, and the negative pressure provided by the stimulated respiratory muscle system can be adjusted and coordinated to respond to these neural signals. For example, increasing the work of breathing provided by electrically-stimulated respiratory muscles (e.g., negative pressure respiration) can allow for a reduction in the positive pressure required from a ventilator. The reduction in positive pressure may reduce the likelihood of barotrauma or lung stretch injury.
Mechanical ventilators often utilize positive end expiratory pressure (PEEP) to hold open portions of the lung at the end of inspiration to protect against decruitment and atelectasis. However, PEEP can increase pulmonary cardiovascular resistance (e.g., affect the cardiac index) and was shown to increase mortality and cause other complications is certain patients (Gavalcanti et al., Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial, JAMA, 2017 Oct. 10; 318(14):1335-1345). To protect against decruitment and atelectasis while avoiding the negative side effects of PEEP, the methods described herein may use a feedback system to precisely time the delivery of negative pressure to the lungs. In one example, sensors may be used to measure signals from a vagus nerve, a phrenic nerve, or other nerves, as well as from a patient monitoring system or external respiratory support device to provide “activity information”. The activity information (e.g., nerve activity information) can then be assessed to guide the timing and amplitude of muscle stimulation (e.g., electrical stimulation) throughout the respiratory cycle, i.e. during inspiration and expiration. In one example, to hold open portions of the lung at the end of inspiration, the stimulation can continue to be delivered to the diaphragm or other respiratory muscle, in some examples at a different magnitude, after the completion of the inspiration cycle from the external respiratory support (e.g., mechanical ventilator). The resulting negative end expiratory pressure (NEEP) may mitigate de-recruitment of the lung tissue and prevent atelectasis. In general, in the various therapies described herein, stimulation can be timed to occur during inspiration periods, during expiration periods, during pauses between inspiration/expiration, or during any desired portion of a patient's breath cycle, whether or not the patient is receiving external respiratory support. Devices such as Electrical Impedance Tomography (EIT) utilize electrodes on the patient's chest wall to measure changes in lung volume during ventilation which result in changes of thoracic impedance. EIT can be used to assess respiratory function and guide the application of NEEP, either alone or in combination with external respiratory support.
As non-limiting examples, the electrical activity of the diaphragm can be sensed by one of several devices/methods, such as by electrodes on the catheter 12 (as disclosed in U.S. patent application Ser. No. 15/666,989, filed Aug. 2, 2017, and incorporated by reference herein), by an esophageal probe, or by some other sensor. Separately, vagal electrical signals can be detected by the catheter 12 (as disclosed in U.S. Pat. Pub. No. 20050131485 A1) or by other sensors. The lung contains pulmonary stretch receptors that sense the expansion of the lungs. Overexpansion of the lungs can produce pain signaling which is transmitted via the vagus nerve to the brain. Detection of pain signaling can be an indicator that the magnitude of the pressure from an external respiratory support device (e.g., ventilator) should be reduced. In this situation, the systems and methods described herein may be used to “neurally optimize” breathing assistance to the patient by balancing ventilator support with stimulation to reduce deleterious effects of positive pressure ventilation systems. The combined external respiratory support and stimulation of nerves and/or muscles may provide adequate respiratory support (e.g., gas exchange) and direct respiratory muscle activation/exercise while minimizing the potential for overstretch lung injury and ensuring lower lung recruitment.
In some examples, the systems described herein may include a respiratory muscle stimulator (e.g., catheter 12, electrodes 44, and/or tube 46), a neural sensor (e.g., any electrode described herein, or another sensor configured to sense electrical activity of nerves or muscles), an external respiratory support device (e.g., external respiratory support 88), and a control system (e.g., controller 64, or any of the control units described herein) to manage the delivery of stimulation and ventilation assistance in proportion to and in synchrony with the patient's respiratory efforts and in consideration of pain receptor signaling, based on the measurement of one or more electrical neural signals. The timing and coordination between the external respiratory support device (e.g., ventilator) and muscle stimulator can be synchronized to optimize the support needed by the patient.
Controller 64 may further communicate with display 74, which may serve as a user interface and may have a 2 (see
Once the electrodes (e.g., as part of catheter 12 or array 13) are positioned on or within the patient, various electrodes or electrode combinations can be tested to locate nerves of interest and to determine which electrodes most effectively stimulate the nerves of interest. For example, testing may be done to locate the right phrenic nerve and to determine which group of distal electrodes (e.g., of catheter 12) in the distal electrode assemblies most effectively stimulate the right phrenic nerve. Similarly, testing may be done to locate the left phrenic nerve and to determine which group of proximal electrodes (e.g., of catheter 12) in the proximal electrode assemblies most effectively stimulate the left phrenic nerve. Similarly, testing may be done to locate the intercostal nerve(s) and to determine which group of electrodes (e.g., of the catheter 12, of transcutaneous electrode array 13, or of any other electrode array) most effectively stimulate the intercostal nerve(s).
This testing and nerve location may be controlled and/or monitored via controller 64/control unit 18, which may include testing programming and/or applications. For ease of reference, a “controller” may refer to controller 64, control unit 18, or any other control system/unit described herein. The controller may test the electrodes and electrode combinations to determine which combinations (bipolar, tripolar, quadrupolar, multipolar) of electrodes most effectively stimulate the right phrenic nerve, left phrenic nerve, vagus nerve, and/or intercostal muscles.
As a non-limiting example, testing could involve the use of a signal generator (e.g., signal generator 14 of
Alternatively, a transcutaneous noninvasive nerve stimulator device that uses electrical current from a small handheld device to stimulate a nerve for a respiratory muscle can be used to stimulate the target nerve through the skin. Alternatively, one or more other methods can be used to stimulate nerves, for example subcutaneous electrodes or nerve cuffs connected to the controller.
If a greater diaphragm response is desired, electrodes 34 that are closer to the nerve, as determined based on the sensed reaction of the targeted muscle, may be selected for nerve stimulation. In other cases, if less diaphragm response is desired, electrodes 34 that are farther from the nerve, as determined based on sensed muscle reaction, may be selected for nerve stimulation.
In one example, a method for selecting one or more electrodes for nerve stimulation may include inserting intravascular catheter 12 into: a) at least one of left subclavian vein 22 or left jugular vein 32, and b) superior vena cava 24, wherein catheter 12 includes a plurality of electrodes 34, and each electrode 34 of the plurality of electrodes 34 is configured to emit electrical signals to stimulate a nerve; using one or more electrodes 34 of the plurality of electrodes 34 to acquire an electrical signal emitted from the nerve; based on the acquired electrical signal, selecting an electrode 34 or an electrode combination for a nerve stimulation; and using the selected electrode 34 or electrode combination, stimulating the nerve.
Information from blood gas sensor 62 may be used by a health professional, or by controller 64, to adjust stimulation parameters. For example, if blood O2 levels are low (or blood CO2 levels are high) controller 64 may send a signal to electrodes 34 to emit stimulation signals having a higher charge (amplitude×pulse width) or frequency, and may stimulate a sigh breath. Conversely, if blood O2 levels are high (or blood CO2 levels are low), controller 64 may cause electrodes 34 to emit stimulation signals having a lower charge or frequency. Based on information from blood gas sensor 62, the following parameters can be adjusted: stimulation pulse amplitude, stimulation pulse width, stimulation pulse frequency, stimulation duration, and the interval between stimulations/pulse trains (e.g., stimulated breath rate).
For any of the parameter adjustments described herein, increasing stimulation pulse amplitude, width and/or frequency may increase lung volume during a stimulated breath. Increasing stimulation duration may increase lung volume and/or increase the amount of time air remains in the lungs during a stimulated breath, allowing for an extended gas exchange period. Increasing the stimulated breath rate may allow for additional gas exchange periods over a given period of time, which may increase the amount and/or speed of gas exchange.
The systems and catheter 12 described herein may include any combination of sensing features. For example, catheter 12 may be configured to sense ECG, impedance, nerve activity, blood gas levels, and CVP, and the systems may be configured to position catheter 12, select electrodes 34 for stimulation, and select stimulation parameters based on one or more types of information received by sensors or electrodes 34.
Exemplary Methods for Strengthening a Respiratory Muscle
As described previously, the systems and methods described herein may reduce or eliminate the need for a patient to receive external respiratory support (e.g., any device or methods to help correct or otherwise enhance blood gases and or reduce the work of breathing of a patient). As many patients receiving external respiratory support suffer from respiratory muscle atrophy, the systems and methods described herein can be used to build the strength for these muscles over time. As will be described, a relatively small number of stimulation cycles can greatly improve the strength of respiratory muscles until patients no longer need external respiratory support.
In various exemplary methods and systems for stimulating a respiratory muscle of a patient, a stimulator may be positioned adjacent a nerve capable of activating a respiratory muscle. The stimulator may be any stimulation device described herein and may include one or more sets of electrodes for stimulating one or more nerves or muscles.
Maximal inspiratory pressure (MIP or PIMax) is a widely used measure of respiratory muscle strength in patients with suspected respiratory muscle weakness. It is determined by measuring upper airway pressure (mouth for outpatients and trachea for intubated or tracheostomized patients) during a maximal voluntary inspiratory effort. The measured pressure is a composite of the pressure generated by the inspiratory muscles and the elastic recoil pressure of the lungs and chest wall. Often, patients with an absolute MIP value of approximately 30 cm H2O or less will require some level of external respiratory support. In various examples of this disclosure, stimulation therapy may be administered until the patient's MIP reaches a pre-determined value. In some cases, the pre-determined value may be at least 30 cm H2O. In other cases, the pre-determined value may be at least 35 cm H2O, at least 40 cm H2O, at least 45 cm H2O, or at least 50 cm H2O.
In some therapy methods, external respiratory support initially may be provided for a portion of the patient's breaths during a 24-hour period. In various examples, external respiratory support initially may be provided for at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% of the patient's breaths in a 24-hour period. Stimulation therapy, as described herein, may be administered while the patient is receiving external respiratory support. Subsequent to administering at least some stimulation therapy, the level of external respiratory support may be reduced, as the patient's respiratory muscle begins strengthening from the stimulation. In one example, at least one of a pressure provided by the external respiratory support or a percentage of breaths assisted by the external respiratory support may be reduced subsequent to administering at least some stimulation therapy. In some examples, the external respiratory support is removed from the patient after administering at least some stimulation therapy. Stimulation therapy may be continued after removal of the external respiratory support (e.g., for at least 1 day, for at least 2 days, for at least 3 days, etc.). In some examples, a drug may be delivered to the patient prior to, during, or after stimulation therapy.
The flowchart of
Steps 4030-4070 illustrate a mapping (e.g., electrode identification) process that may be used to select one or more electrodes for delivering therapy to one or more respiratory muscles. The mapping process may be carried out by an operator, who may select various electrodes or electrode combinations for testing, or automatically by a pre-programmed controller. Furthermore, either an operator or an automated system may determine stimulation thresholds, select electrodes for stimulation therapy, and/or determine the ideal stimulation levels for therapy.
In step 4030, a first electrode or electrode combination (e.g., an electrode pair) may be selected for testing to determine whether the selected electrode/electrodes are suitable for therapy. Referring to step 4040, the electrode or combination of electrodes may be activated/stimulated to emit an electrical signal. The electrical signal may stimulate a nerve or muscle, which may cause a contraction of a respiratory muscle. In the example of
The contraction of the respiratory muscle can be detected visually or via tactile feedback by an operator. Sensors such as a breath sensor, airflow sensor, motion sensor, EMG detector, etc. also or alternatively may be used to confirm that the stimulator is effectively activating the targeted respiratory muscle at the desired level. Data from a patient monitor, such as the pressure waveform on a mechanical ventilator, can be used to assess the level of muscle stimulation/contraction. Upon sensing the contraction of the respiratory muscle, the selection of the electrodes and/or the stimulation levels can be adjusted, by an operator or automatically by controller 64, to the desired level to provide the appropriate therapy. In one example, at least one stimulation parameter is adjusted to achieve a desired contraction of the respiratory muscle. Steps 4040-4070 can be repeated for each of multiple electrode sets to identify electrodes for delivering therapy to each respiratory muscle under consideration (e.g., left hemi-diaphragm, right hemi-diaphragm, and/or intercostal muscles).
In step 4080, the threshold for each selected electrode or electrode combination is identified. The threshold may be the level of one or more parameters (e.g., charge, amplitude, frequency, or pulse width) of stimulation necessary to elicit a muscle response. The stimulation threshold may be determined by palpating the respiratory muscle of the patient, as shown by the illustration of a hand in
In step 4100, therapy may be delivered to strengthen one or more respiratory muscles. Stimulations of the nerves/muscles may be initiated by an operator, automatically by a controller, or by the patient. For example, the patient may initiate the therapy session or may initiate one or more breaths (e.g., respiratory muscle contractions) of the therapy session. In one example, the therapy may include four therapy sets, each including 10 stimulations, with a rest period between each therapy set. Other specific therapies are described in more detail below and may be delivered in step 4100. In step 4110, the patient may rest prior to the next therapy session. In other words, electrical stimulation may be discontinued for a period of time until the next therapy session. In some examples, the rest period may be 1-3 hours. In other examples, the rest period may be 24-48 hours. In still other examples, the rest period may be 3-5 hours, 5-7 hours, 8-24 hours, or greater than 48 hours.
In step 4120, a determination may be made about whether more strength training is required or desired for the respiratory muscle. In some examples, additional therapy sessions may be performed until external respiratory support can be removed from the patient. If additional therapy is required, the process may begin again at step 4030, and electrodes may be selected and then used to deliver therapy to one or more respiratory muscles. If no additional therapy is required, the electrodes may be removed from the patient (step 4130). In step 4140, the method in which therapy was provided may be ended.
Referring back to steps 4090 and 4100, either before or during a therapy session, an operator or an automated controller can select and adjust one or more of the below inputs. In some cases, one or more parameters may be adjusted between consecutive stimulations of a therapy session.
In one embodiment, an operator may engage the system through an operator interface and select a desired number of stimulation pulse trains (stimulations) to deliver to the target nerve or muscle either for a therapy set or for a therapy session, typically ranging from 1 to 150 stimulations. Alternatively, the number of stimulations can be greater if desired. The operator can select the duration of each stimulation and the time between the deliveries of each stimulation, the stimulation period. In one example, the pulse width for each pulse in the stimulations may be between 50 and 300 micro seconds, but could alternatively be outside this range. The stimulation to stimulation rest period, the time between consecutive stimulations in a set or therapy session, may be between 0.5 and 60 seconds. In some examples, the operator can also select the amplitude and profile of the stimulation pulses including various ramp shapes and other characteristics. Profiles may vary depending on the way in which the stimulation energy is being delivered to the nerve, the location from the array to the nerve, the type of muscle being stimulated, and the level of stimulation desired for each patient at that phase of their therapy.
In one exemplary therapy session, catheter 12 may be positioned in the vasculature to extend adjacent or across the left and right phrenic nerves 26, 28. Appropriate distal and proximal electrode pairs may be selected to cause a therapeutic contraction of the respiratory muscle, in this case both the left and right hem i-diaphragm muscles. The operator may set the stimulation pulse train length at 1.2 seconds and pulse amplitude which is 100% of the threshold value and the initial pulse width which is 100% of the threshold value. The pulse width can be modulated between stimulation pulses in the stimulation pulse train. In some cases, the pulse amplitude can be modulated between stimulation pulses in the stimulation pulse train. Using the remote hand held controller 20, the operator may provide a therapy set of 10 stimulation pulse trains. In some examples, each of the stimulation pulse trains may be timed to coincide with a breath delivered by a mechanical ventilator or the patient's spontaneous breath.
In some embodiments, the therapy system can communicate directly with a mechanical ventilator, or other external respiratory support system (e.g., external respiratory support 88), to coordinate the therapy delivery with the support provided by the external device. As previously described, sensors detecting activity from diaphragm muscles, nerves (e.g. phrenic nerves, vagus nerves, etc.) or other patient monitors or respiratory support devices can be used to trigger stimulation and/or breath delivery from a mechanical ventilator. Also, as a non-limiting example, the systems described herein may be operably connected (e.g., hardwired, wireless, etc.) to receive a signal from the mechanical ventilator indicating the initiation of a breath to the patient, and the systems can synchronize the delivery of the stimulation pulse train to coordinate with a desired phase of the breath. In another example, an operator may set the stimulation parameters and ask the patient to activate their breathing muscles. The operator may then coordinate the trigger of electrical stimulation with the patient efforts to provide maximum exercise of the muscles. In another example, external respiratory support 88 can be reduced or even eliminated during a portion of or all of the delivery of a stimulation set or stimulation session.
In the example in which 10 stimulations pulse trains are provided, they can be timed to 10 sequential breaths, or the operator may skip one or more breaths to allow the patient to rest periodically between stimulations. After the 10 stimulation pulse trains are delivered, the patient may be allowed to rest for a period of time, for example 30 seconds to 5 minutes. After a suitable rest, the operator can initiate a second set, for example 10 breaths, again followed by a resting period. The operator can deliver several sets, in this example 4 sets, that each include 10 stimulations. Each stimulation may cause a muscle contraction, for a total of 40 muscle contractions over a 1 to 15-minute period. Of course, the desired number of stimulations for a session could be delivered in a single set, if desired. The patient may then be permitted to rest for 1 or more hours, and in some cases at least 3 hours, and potentially as long as 24 or 48 hours before beginning another therapy session. In some instances, two to three, or more, therapy sessions are delivered each day. Regardless, the number of stimulations provided to the respiratory muscles may be a small fraction of the breaths required by the patient each day. In the previously-described example of 40 stimulations/day, the number of stimulations delivered is approximately less than 0.2% of the breaths taken by or delivered to the patient per day.
In one example, the stimulation parameters may be kept the same from one stimulation that causes muscle contraction to the next stimulation, from one therapy set to the next therapy set, from one session to the next session, or from one day to the next day. In other examples, one of the parameters, such as the stimulation amplitude, the stimulation frequency, the stimulation hold time, or the resistance of the breathing circuit, may be increased or decreased between two stimulations that cause muscle contractions, between two sets, between two sessions, or between two days. The factors to consider while changing parameters may be patient tolerance, unintended stimulation of other structures, fatigue, or a desire for increased strength.
The flowchart of
Referring to step 5090, the first session of the day may include a first set, in which 10 to 60 high amplitude stimulation trains (e.g., stimulation with pulses in a train that have charges from 150% to 300% of a threshold value or frequencies from 20 Hz to 40 Hz) that contract the muscles are delivered at a low stimulation rate (e.g., 2 to 15 stimulations per minute) for 1 to 5 minutes, or for 1 to 3 minutes, followed by a short rest period of 60 seconds to 3 minutes. A second set of the first session may include low amplitude stimulation (e.g., stimulation with pulses in a train that have charges close to a threshold value or frequencies from 8 Hz to 15 Hz) at a high stimulation rate (e.g., between 10-40 stimulations per minute) for 5 to 10 minutes. The second session of the day may be exactly the same as the first session, or some of the stimulation parameters can be adjusted. Referring to step 5100, the third session may include delivering medium-high amplitude stimulations (e.g., stimulation with pulses in a train that have charges from 100% to 150% of a threshold value or frequencies from 15 Hz to 20 Hz) at a low stimulation rate (e.g., 2 to 12 stimulations per minute) for 5 to 10 minutes. The patient may be permitted to rest for 1 or more hours, in some cases at least 3 hours, and potentially as long as 24 to 48 hours between two therapy sessions. Steps 5120-5140 are analogous to steps 4120-4140 of
Referring back to step 4090 or to any other therapy session described herein, exemplary parameters for therapy sessions may fall within certain ranges. In the chart below, the first column titled “therapy parameter” lists various characteristics of a therapy session. The second column titled “exemplary parameter value” includes an exemplary number or time period corresponding to the listed therapy parameters. The remaining two columns list exemplary low and high ends of a range for the listed therapy parameters. In one example, a therapy session may include settings corresponding to the “exemplary parameter value” column. However, in other examples, a therapy session may include settings for each therapy parameter between the ranges described by the low and high end columns. In yet other examples, a therapy session may have parameters that mostly fall within the ranges listed in the below chart, but certain parameters may fall outside of the listed ranges.
In another example of a therapy session, up to 100 stimulations may be delivered during a first set of a therapy session to enable the respiratory muscle to contract up to 100 times. The stimulation may be paused for at least 30 seconds, and in some cases one or more minutes, after which a second set of up to 100 stimulations may be delivered. Then the stimulation may be paused for a session to session rest period of 1 or more hours until a second therapy session is delivered. In the next session, the stimulator may be activated again to cause the respiratory muscle to contract up to 100 times. The activations and ceasing of activations for any therapy described herein may be repeated one or more times.
Furthermore, any stimulation therapy or combinations of external respiration support and stimulation therapy may be repeated for a set number of hours or days, such as for 24 hours or for 48 hours.
In any example described herein, the stimulator may include multiple sets of electrodes. A first set of electrodes may be used to deliver therapy to a first nerve or directly to a respiratory muscle, and a second set of electrodes may be used to deliver the same therapy (e.g., the same stimulation patterns) to either the same or different nerve to activate the same or different muscle, or directly to a different muscle.
In another example of a therapy session, stimulation signals may be delivered over a total period of time of approximately 2 hours or less, during one or more therapy sessions during that total of 2 hours or less, during a 24-hour period. In another example, stimulation signals may be delivered over a total period of time of 5 hours or less during a 24-hour period.
In other examples of therapy sessions, stimulation signals may be delivered to contract one or more respiratory muscles for no more than: 20% of the breaths taken by or delivered to the patient in a 24-hour period; 10% of the breaths taken by or delivered to the patient in a 24-hour period; 2% of the breaths taken by or delivered to the patient in a 24-hour period; or 0.2% of the breaths taken by or delivered to the patient in a 24-hour period.
In another example, a brief stimulation therapy session lasting approximately 3 to 10 minutes may be delivered 12 to 24 times over a 24-hour period; 6 to 12 times over a 24 hour period; or once in a 24 hour period.
In another example, therapy sessions may be administered until the patient no longer requires external respiratory support; or up to 48 hours after the time at which the patient no longer requires, or is no longer receiving, external respiratory support.
Various examples of the subject disclosure may be implemented soon after the patient begins using external respiratory support (e.g., mechanical ventilation) to help reduce the loss of strength and or endurance of a respiratory muscle. Various examples of this disclosure can be used to help reduce the level of injury to a patient's lungs, heart, brain and/or other organs of the body.
The systems described herein can be programmed to vary the profile of the stimulation pulse trains from time to time. For example, every tenth stimulation pulse train can be programmed to be longer than the others to produce a deeper or longer breath (e.g., sigh breath). In this case the duration of the stimulation pulse train between two adjacent pulse trains will vary.
In some examples, therapy may be continued and steps related to activating the stimulator and ceasing activation of the stimulator may be repeated until MIP reaches a pre-determined value.
Furthermore, steps of any therapy treatment described herein may be carried out with respect to more than one nerve and more than one respiratory muscle. Stimulations of multiple nerves (and one or more respiratory muscles) may be synchronized so that the patient's muscle or muscles are stimulated at the same time. To achieve this synchronization, two or more combinations of selected electrodes may be activated at the same time during a therapy session. For example, if the first set of electrodes emits electrical signals up to 100 times, the second set of electrodes may emit electrical up to 100 times, with each emission of the second set corresponding to an emission of the first set of electrodes. In one example, the first and second sets of electrodes may be used to stimulate the left and right phrenic nerves to cause synchronized contractions of the left and right hem i-diaphragm. In another example, the first set may be used to stimulate the diaphragm, and the second set may be used to stimulate the intercostal muscles. Both stimulations may occur at the same time in the patient breath cycle. In yet another example, the patient's nerves/muscles may be stimulated during an inspiratory period of the patient's ventilator or other external respiratory support.
While most examples described herein consider that a therapy session will be delivered by a health care professional, other approaches of therapy delivery may be utilized that also deliver infrequent respiratory muscle stimulation to build strength. As a non-limiting example, a closed-loop automated example of the system of this disclosure can be designed to deliver a stimulation to a respiratory muscle at a specific duty cycle such as 1 stimulation for every X breaths, where X could range from 10 to 1000 when building strength for a respiratory muscle. This approach may provide for periodic muscle stimulation with a predetermined number of resting breaths in between. X may be as small as 2 and as large as 10,000 in various examples. When using the systems and methods described herein to prevent respiratory muscle atrophy as well as lung and brain injury, the stimulations can be provided more frequently, potentially as often as every breath.
Various electrodes may be used to stimulate nerves and/or muscles as described in this disclosure. As examples, the stimulators described herein may include one or more of: nerve stimulation electrodes, endotracheal electrodes, endoesophageal electrodes, intravascular electrodes, transcutaneous electrodes, intracutaneous electrodes, electromagnetic beam electrodes, balloon-type electrodes, basket-type electrodes, umbrella-type electrodes, tape-type electrodes, suction-type electrodes, screw-type electrodes, barb-type electrodes, bipolar electrodes, monopolar electrodes, metal electrodes, wire electrodes, patch electrodes, cuff electrodes, clip electrodes, needle electrodes, or probe electrodes. Furthermore, the stimulation energy may be delivered by an energy form that includes at least one of mechanical, electrical, ultrasonic, photonic, or electromagnetic energy.
While principles of the present disclosure are described herein with reference to illustrative embodiments for particular applications, it should be understood that the disclosure is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications, embodiments, and substitution of equivalents all fall within the scope of the embodiments described herein. Accordingly, the invention is not to be considered as limited by the foregoing description.
This application is a continuation of U.S. patent application Ser. No. 15/837,519, filed Dec. 11, 2017, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1693734 | Waggoner | Dec 1928 | A |
2532788 | Sarnoff | Dec 1950 | A |
2664880 | Wales, Jr. | Jan 1954 | A |
3348548 | Chardack | Oct 1967 | A |
3470876 | Barchilon | Oct 1969 | A |
3769984 | Muench | Nov 1973 | A |
3804098 | Friedman | Apr 1974 | A |
3817241 | Grausz | Jun 1974 | A |
3835864 | Rasor et al. | Sep 1974 | A |
3847157 | Caillouette et al. | Nov 1974 | A |
3851641 | Toole et al. | Dec 1974 | A |
3896373 | Zelby | Jul 1975 | A |
3938502 | Bom | Feb 1976 | A |
3983881 | Wickham | Oct 1976 | A |
4054881 | Raab | Oct 1977 | A |
4072146 | Howes | Feb 1978 | A |
4114601 | Abels | Sep 1978 | A |
4173228 | Childress et al. | Nov 1979 | A |
4249539 | Mezrich et al. | Feb 1981 | A |
4317078 | Weed et al. | Feb 1982 | A |
4380237 | Newbower | Apr 1983 | A |
4407294 | Vilkomerson | Oct 1983 | A |
4416289 | Bresler | Nov 1983 | A |
4431005 | Mccormick | Feb 1984 | A |
4431006 | Trimmer et al. | Feb 1984 | A |
4445501 | Bresler | May 1984 | A |
RE31873 | Howes | Apr 1985 | E |
4573481 | Bullara | Mar 1986 | A |
4586923 | Gould et al. | May 1986 | A |
4587975 | Salo et al. | May 1986 | A |
4643201 | Stokes | Feb 1987 | A |
4674518 | Salo | Jun 1987 | A |
4681117 | Brodman et al. | Jul 1987 | A |
4683890 | Hewson | Aug 1987 | A |
4697595 | Breyer et al. | Oct 1987 | A |
4706681 | Breyer et al. | Nov 1987 | A |
4771788 | Millar | Sep 1988 | A |
4819662 | Heil, Jr. et al. | Apr 1989 | A |
4827935 | Geddes et al. | May 1989 | A |
4830008 | Meer | May 1989 | A |
4840182 | Carlson | Jun 1989 | A |
4852580 | Wood | Aug 1989 | A |
4860769 | Fogarty et al. | Aug 1989 | A |
4905698 | Strohl, Jr. et al. | Mar 1990 | A |
4911174 | Pederson et al. | Mar 1990 | A |
4934049 | Kiekhafer et al. | Jun 1990 | A |
4944088 | Doan et al. | Jul 1990 | A |
4951682 | Petre | Aug 1990 | A |
4957110 | Vogel et al. | Sep 1990 | A |
4989617 | Memberg et al. | Feb 1991 | A |
5005587 | Scott | Apr 1991 | A |
5036848 | Hewson | Aug 1991 | A |
5042143 | Holleman et al. | Aug 1991 | A |
5056519 | Vince | Oct 1991 | A |
5115818 | Holleman et al. | May 1992 | A |
5146918 | Kallok et al. | Sep 1992 | A |
5170802 | Mehra | Dec 1992 | A |
5184621 | Vogel et al. | Feb 1993 | A |
5224491 | Mehra | Jul 1993 | A |
5243995 | Maier | Sep 1993 | A |
5265604 | Vince | Nov 1993 | A |
5267569 | Lienhard | Dec 1993 | A |
5314463 | Camps et al. | May 1994 | A |
5316009 | Yamada | May 1994 | A |
5324322 | Grill, Jr. et al. | Jun 1994 | A |
5330522 | Kreyenhagen | Jul 1994 | A |
5345936 | Pomeranz et al. | Sep 1994 | A |
5383923 | Webster, Jr. | Jan 1995 | A |
5411025 | Webster, Jr. | May 1995 | A |
5417208 | Winkler | May 1995 | A |
5451206 | Young | Sep 1995 | A |
5456254 | Pietroski et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5476498 | Ayers | Dec 1995 | A |
5486159 | Mahurkar | Jan 1996 | A |
5507725 | Savage et al. | Apr 1996 | A |
5524632 | Stein et al. | Jun 1996 | A |
5527358 | Mehmanesh et al. | Jun 1996 | A |
5531686 | Lundquist et al. | Jul 1996 | A |
5549655 | Erickson | Aug 1996 | A |
5555618 | Winkler | Sep 1996 | A |
5567724 | Kelleher et al. | Oct 1996 | A |
5584873 | Shoberg et al. | Dec 1996 | A |
5604231 | Smith et al. | Feb 1997 | A |
5665103 | Lafontaine et al. | Sep 1997 | A |
5678535 | Dimarco | Oct 1997 | A |
5683370 | Luther et al. | Nov 1997 | A |
5709853 | Iino et al. | Jan 1998 | A |
5716392 | Bourgeois et al. | Feb 1998 | A |
5733255 | Dinh et al. | Mar 1998 | A |
5755765 | Hyde et al. | May 1998 | A |
5776111 | Tesio | Jul 1998 | A |
5779732 | Amundson | Jul 1998 | A |
5782828 | Chen et al. | Jul 1998 | A |
5785706 | Bednarek | Jul 1998 | A |
5788681 | Weaver et al. | Aug 1998 | A |
5813399 | Isaza et al. | Sep 1998 | A |
5814086 | Hirschberg et al. | Sep 1998 | A |
RE35924 | Winkler | Oct 1998 | E |
5824027 | Hoffer et al. | Oct 1998 | A |
5827192 | Gopakumaran et al. | Oct 1998 | A |
5916163 | Panescu et al. | Jun 1999 | A |
5944022 | Nardella et al. | Aug 1999 | A |
5954761 | Machek et al. | Sep 1999 | A |
5967978 | Littmann et al. | Oct 1999 | A |
5971933 | Gopakumaran et al. | Oct 1999 | A |
5983126 | Wittkampf | Nov 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6024702 | Iversen | Feb 2000 | A |
6096728 | Collins et al. | Aug 2000 | A |
6120476 | Fung et al. | Sep 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6126649 | Vantassel et al. | Oct 2000 | A |
6136021 | Tockman et al. | Oct 2000 | A |
6157862 | Brownlee et al. | Dec 2000 | A |
6161029 | Spreigl et al. | Dec 2000 | A |
6166048 | Bencherif | Dec 2000 | A |
6171277 | Ponzi | Jan 2001 | B1 |
6183463 | Webster, Jr. | Feb 2001 | B1 |
6198970 | Freed et al. | Mar 2001 | B1 |
6198974 | Webster, Jr. | Mar 2001 | B1 |
6201994 | Warman et al. | Mar 2001 | B1 |
6208881 | Champeau | Mar 2001 | B1 |
6210339 | Kiepen et al. | Apr 2001 | B1 |
6212435 | Lattner et al. | Apr 2001 | B1 |
6216045 | Black et al. | Apr 2001 | B1 |
6236892 | Feler | May 2001 | B1 |
6240320 | Spehr et al. | May 2001 | B1 |
6251126 | Ottenhoff et al. | Jun 2001 | B1 |
6269269 | Ottenhoff et al. | Jul 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6295475 | Morgan | Sep 2001 | B1 |
6360740 | Ward et al. | Mar 2002 | B1 |
6397108 | Camps et al. | May 2002 | B1 |
6400976 | Champeau | Jun 2002 | B1 |
6415183 | Scheiner et al. | Jul 2002 | B1 |
6415187 | Kuzma et al. | Jul 2002 | B1 |
6438427 | Rexhausen et al. | Aug 2002 | B1 |
6445953 | Bulkes et al. | Sep 2002 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6463327 | Lurie et al. | Oct 2002 | B1 |
6493590 | Wessman et al. | Dec 2002 | B1 |
6508802 | Rosengart et al. | Jan 2003 | B1 |
6526321 | Spehr | Feb 2003 | B1 |
6569114 | Ponzi et al. | May 2003 | B2 |
6584362 | Scheiner et al. | Jun 2003 | B1 |
6585718 | Hayzelden et al. | Jul 2003 | B2 |
6587726 | Lurie et al. | Jul 2003 | B2 |
6602242 | Fung et al. | Aug 2003 | B1 |
6610713 | Tracey | Aug 2003 | B2 |
6630611 | Malowaniec | Oct 2003 | B1 |
6643552 | Edell et al. | Nov 2003 | B2 |
6651652 | Waard | Nov 2003 | B1 |
6682526 | Jones et al. | Jan 2004 | B1 |
6702780 | Gilboa et al. | Mar 2004 | B1 |
6718208 | Hill et al. | Apr 2004 | B2 |
6721603 | Zabara et al. | Apr 2004 | B2 |
6757970 | Kuzma et al. | Jul 2004 | B1 |
6778854 | Puskas | Aug 2004 | B2 |
6779257 | Kiepen et al. | Aug 2004 | B2 |
6844713 | Steber et al. | Jan 2005 | B2 |
RE38705 | Hill et al. | Feb 2005 | E |
6881211 | Schweikert et al. | Apr 2005 | B2 |
6885888 | Rezai | Apr 2005 | B2 |
6907285 | Denker et al. | Jun 2005 | B2 |
6934583 | Weinberg et al. | Aug 2005 | B2 |
6981314 | Black et al. | Jan 2006 | B2 |
6999820 | Jordan | Feb 2006 | B2 |
7018374 | Schon et al. | Mar 2006 | B2 |
7047627 | Black et al. | May 2006 | B2 |
7071194 | Teng | Jul 2006 | B2 |
7072720 | Puskas | Jul 2006 | B2 |
7077823 | Mcdaniel | Jul 2006 | B2 |
7082331 | Park et al. | Jul 2006 | B1 |
7130700 | Gardeski et al. | Oct 2006 | B2 |
7142903 | Rodriguez et al. | Nov 2006 | B2 |
7149585 | Wessman et al. | Dec 2006 | B2 |
7155278 | King et al. | Dec 2006 | B2 |
7167751 | Whitehurst et al. | Jan 2007 | B1 |
7168429 | Matthews et al. | Jan 2007 | B2 |
7184829 | Hill et al. | Feb 2007 | B2 |
7206636 | Turcott | Apr 2007 | B1 |
7212867 | Van et al. | May 2007 | B2 |
7225016 | Koh | May 2007 | B1 |
7225019 | Jahns et al. | May 2007 | B2 |
7229429 | Martin et al. | Jun 2007 | B2 |
7231260 | Wallace et al. | Jun 2007 | B2 |
7235070 | Vanney | Jun 2007 | B2 |
7269459 | Koh | Sep 2007 | B1 |
7277757 | Casavant et al. | Oct 2007 | B2 |
7283875 | Larsson et al. | Oct 2007 | B2 |
7340302 | Falkenberg et al. | Mar 2008 | B1 |
7363085 | Benser et al. | Apr 2008 | B1 |
7363086 | Koh et al. | Apr 2008 | B1 |
7371220 | Koh et al. | May 2008 | B1 |
7416552 | Paul et al. | Aug 2008 | B2 |
7421296 | Benser et al. | Sep 2008 | B1 |
7454244 | Kassab et al. | Nov 2008 | B2 |
7519425 | Benser et al. | Apr 2009 | B2 |
7519426 | Koh et al. | Apr 2009 | B1 |
7522953 | Gharib et al. | Apr 2009 | B2 |
7553305 | Honebrink et al. | Jun 2009 | B2 |
7555349 | Wessman et al. | Jun 2009 | B2 |
7569029 | Clark et al. | Aug 2009 | B2 |
7591265 | Lee et al. | Sep 2009 | B2 |
7593760 | Rodriguez et al. | Sep 2009 | B2 |
7613524 | Jordan | Nov 2009 | B2 |
7636600 | Koh | Dec 2009 | B1 |
7670284 | Padget et al. | Mar 2010 | B2 |
7672728 | Libbus et al. | Mar 2010 | B2 |
7672729 | Koh et al. | Mar 2010 | B2 |
7676275 | Farazi et al. | Mar 2010 | B1 |
7676910 | Kiepen et al. | Mar 2010 | B2 |
7697984 | Hill et al. | Apr 2010 | B2 |
7747323 | Libbus et al. | Jun 2010 | B2 |
7771388 | Olsen et al. | Aug 2010 | B2 |
7783362 | Whitehurst et al. | Aug 2010 | B2 |
7794407 | Rothenberg | Sep 2010 | B2 |
7797050 | Libbus et al. | Sep 2010 | B2 |
7813805 | Farazi | Oct 2010 | B1 |
7819883 | Westlund et al. | Oct 2010 | B2 |
7840270 | Ignagni et al. | Nov 2010 | B2 |
7853302 | Rodriguez et al. | Dec 2010 | B2 |
7869865 | Govari et al. | Jan 2011 | B2 |
7891085 | Kuzma et al. | Feb 2011 | B1 |
7925352 | Stack et al. | Apr 2011 | B2 |
7949409 | Bly et al. | May 2011 | B2 |
7949412 | Harrison et al. | May 2011 | B1 |
7962215 | Ignagni et al. | Jun 2011 | B2 |
7970475 | Tehrani et al. | Jun 2011 | B2 |
7972323 | Bencini et al. | Jul 2011 | B1 |
7974693 | David et al. | Jul 2011 | B2 |
7974705 | Zdeblick et al. | Jul 2011 | B2 |
7979128 | Tehrani et al. | Jul 2011 | B2 |
7994655 | Bauer et al. | Aug 2011 | B2 |
8000765 | Rodriguez et al. | Aug 2011 | B2 |
8019439 | Kuzma et al. | Sep 2011 | B2 |
8021327 | Selkee | Sep 2011 | B2 |
8036750 | Caparso et al. | Oct 2011 | B2 |
8050765 | Lee et al. | Nov 2011 | B2 |
8052607 | Byrd | Nov 2011 | B2 |
8104470 | Lee et al. | Jan 2012 | B2 |
8116872 | Tehrani et al. | Feb 2012 | B2 |
8121692 | Haefner et al. | Feb 2012 | B2 |
8135471 | Zhang et al. | Mar 2012 | B2 |
8140164 | Tehrani et al. | Mar 2012 | B2 |
8147486 | Honour et al. | Apr 2012 | B2 |
8160701 | Zhao et al. | Apr 2012 | B2 |
8160711 | Tehrani et al. | Apr 2012 | B2 |
8195297 | Penner | Jun 2012 | B2 |
8200336 | Tehrani et al. | Jun 2012 | B2 |
8206343 | Racz | Jun 2012 | B2 |
8224456 | Daglow et al. | Jul 2012 | B2 |
8233987 | Gelfand et al. | Jul 2012 | B2 |
8233993 | Jordan | Jul 2012 | B2 |
8239037 | Glenn et al. | Aug 2012 | B2 |
8244358 | Tehrani et al. | Aug 2012 | B2 |
8244359 | Gelfand et al. | Aug 2012 | B2 |
8244378 | Bly et al. | Aug 2012 | B2 |
8255056 | Tehrani | Aug 2012 | B2 |
8256419 | Sinderby et al. | Sep 2012 | B2 |
8265736 | Sathaye et al. | Sep 2012 | B2 |
8265759 | Tehrani et al. | Sep 2012 | B2 |
8275440 | Rodriguez et al. | Sep 2012 | B2 |
8280513 | Tehrani et al. | Oct 2012 | B2 |
8315713 | Burnes et al. | Nov 2012 | B2 |
8321808 | Goetz et al. | Nov 2012 | B2 |
8335567 | Tehrani et al. | Dec 2012 | B2 |
8340783 | Sommer et al. | Dec 2012 | B2 |
8348941 | Tehrani | Jan 2013 | B2 |
8369954 | Stack et al. | Feb 2013 | B2 |
8374704 | Desai et al. | Feb 2013 | B2 |
8388541 | Messerly et al. | Mar 2013 | B2 |
8388546 | Rothenberg | Mar 2013 | B2 |
8391956 | Zellers et al. | Mar 2013 | B2 |
8401640 | Zhao et al. | Mar 2013 | B2 |
8401651 | Caparso et al. | Mar 2013 | B2 |
8406883 | Barker | Mar 2013 | B1 |
8406885 | Ignagni et al. | Mar 2013 | B2 |
8412331 | Tehrani et al. | Apr 2013 | B2 |
8412350 | Bly | Apr 2013 | B2 |
8428711 | Lin et al. | Apr 2013 | B2 |
8428726 | Ignagni et al. | Apr 2013 | B2 |
8428730 | Stack et al. | Apr 2013 | B2 |
8433412 | Westlund et al. | Apr 2013 | B1 |
8442638 | Libbus et al. | May 2013 | B2 |
8457764 | Ramachandran et al. | Jun 2013 | B2 |
8467876 | Tehrani | Jun 2013 | B2 |
8473068 | Farazi | Jun 2013 | B2 |
8478412 | Ignagni et al. | Jul 2013 | B2 |
8478413 | Karamanoglu et al. | Jul 2013 | B2 |
8478426 | Barker | Jul 2013 | B2 |
8483834 | Lee et al. | Jul 2013 | B2 |
8504158 | Karamanoglu et al. | Aug 2013 | B2 |
8504161 | Kornet et al. | Aug 2013 | B1 |
8509901 | Tehrani | Aug 2013 | B2 |
8509902 | Cho et al. | Aug 2013 | B2 |
8509919 | Yoo et al. | Aug 2013 | B2 |
8512256 | Rothenberg | Aug 2013 | B2 |
8522779 | Lee et al. | Sep 2013 | B2 |
8527036 | Jalde et al. | Sep 2013 | B2 |
8532793 | Morris et al. | Sep 2013 | B2 |
8554323 | Haefner et al. | Oct 2013 | B2 |
8560072 | Caparso et al. | Oct 2013 | B2 |
8560086 | Just et al. | Oct 2013 | B2 |
8571662 | Hoffer | Oct 2013 | B2 |
8571685 | Daglow et al. | Oct 2013 | B2 |
8615297 | Sathaye et al. | Dec 2013 | B2 |
8617228 | Wittenberger et al. | Dec 2013 | B2 |
8620412 | Griffiths et al. | Dec 2013 | B2 |
8620450 | Tockman et al. | Dec 2013 | B2 |
8626292 | Mccabe et al. | Jan 2014 | B2 |
8630707 | Zhao et al. | Jan 2014 | B2 |
8644939 | Wilson et al. | Feb 2014 | B2 |
8644952 | Desai et al. | Feb 2014 | B2 |
8646172 | Kuzma et al. | Feb 2014 | B2 |
8650747 | Kuzma et al. | Feb 2014 | B2 |
8676323 | Ignagni et al. | Mar 2014 | B2 |
8676344 | Desai et al. | Mar 2014 | B2 |
8694123 | Wahlstrand et al. | Apr 2014 | B2 |
8696656 | Abboud et al. | Apr 2014 | B2 |
8706223 | Zhou et al. | Apr 2014 | B2 |
8706235 | Karamanoglu et al. | Apr 2014 | B2 |
8706236 | Ignagni et al. | Apr 2014 | B2 |
8718763 | Zhou et al. | May 2014 | B2 |
8725259 | Kornet et al. | May 2014 | B2 |
8738154 | Zdeblick et al. | May 2014 | B2 |
8755889 | Scheiner | Jun 2014 | B2 |
8774907 | Rothenberg | Jul 2014 | B2 |
8781578 | Mccabe et al. | Jul 2014 | B2 |
8781582 | Ziegler et al. | Jul 2014 | B2 |
8781583 | Cornelussen et al. | Jul 2014 | B2 |
8801693 | He et al. | Aug 2014 | B2 |
8805511 | Karamanoglu et al. | Aug 2014 | B2 |
8838245 | Lin et al. | Sep 2014 | B2 |
8858455 | Rothenberg | Oct 2014 | B2 |
8863742 | Blomquist et al. | Oct 2014 | B2 |
8886277 | Kim et al. | Nov 2014 | B2 |
8897879 | Karamanoglu et al. | Nov 2014 | B2 |
8903507 | Desai et al. | Dec 2014 | B2 |
8903509 | Tockman et al. | Dec 2014 | B2 |
8909341 | Gelfand et al. | Dec 2014 | B2 |
8914113 | Zhang et al. | Dec 2014 | B2 |
8918169 | Kassab et al. | Dec 2014 | B2 |
8918987 | Kuzma et al. | Dec 2014 | B2 |
8923971 | Haefner et al. | Dec 2014 | B2 |
8942823 | Desai et al. | Jan 2015 | B2 |
8942824 | Yoo et al. | Jan 2015 | B2 |
8948884 | Ramachandran et al. | Feb 2015 | B2 |
8968299 | Kauphusman et al. | Mar 2015 | B2 |
8972015 | Stack et al. | Mar 2015 | B2 |
8983602 | Sathaye et al. | Mar 2015 | B2 |
9008775 | Sathaye et al. | Apr 2015 | B2 |
9026231 | Hoffer | May 2015 | B2 |
9037264 | Just et al. | May 2015 | B2 |
9042981 | Yoo et al. | May 2015 | B2 |
9072864 | Putz | Jul 2015 | B2 |
9072899 | Nickloes | Jul 2015 | B1 |
9108058 | Hoffer | Aug 2015 | B2 |
9108059 | Hoffer | Aug 2015 | B2 |
9125578 | Grunwald | Sep 2015 | B2 |
9138580 | Ignagni et al. | Sep 2015 | B2 |
9138585 | Saha et al. | Sep 2015 | B2 |
9149642 | Mccabe et al. | Oct 2015 | B2 |
9168377 | Hoffer | Oct 2015 | B2 |
9205258 | Simon et al. | Dec 2015 | B2 |
9216291 | Lee et al. | Dec 2015 | B2 |
9220898 | Hoffer | Dec 2015 | B2 |
9226688 | Jacobsen et al. | Jan 2016 | B2 |
9226689 | Jacobsen et al. | Jan 2016 | B2 |
9242088 | Thakkar et al. | Jan 2016 | B2 |
9259573 | Tehrani et al. | Feb 2016 | B2 |
9295846 | Westlund et al. | Mar 2016 | B2 |
9314618 | Imran et al. | Apr 2016 | B2 |
9333363 | Hoffer et al. | May 2016 | B2 |
9345422 | Rothenberg | May 2016 | B2 |
9370657 | Tehrani et al. | Jun 2016 | B2 |
9398931 | Wittenberger et al. | Jul 2016 | B2 |
9415188 | He et al. | Aug 2016 | B2 |
9427566 | Reed et al. | Aug 2016 | B2 |
9427588 | Sathaye et al. | Aug 2016 | B2 |
9474894 | Mercanzini et al. | Oct 2016 | B2 |
9485873 | Shah et al. | Nov 2016 | B2 |
9498625 | Bauer et al. | Nov 2016 | B2 |
9498631 | Demmer et al. | Nov 2016 | B2 |
9504837 | Demmer et al. | Nov 2016 | B2 |
9532724 | Grunwald et al. | Jan 2017 | B2 |
9533160 | Brooke et al. | Jan 2017 | B2 |
9539429 | Brooke et al. | Jan 2017 | B2 |
9545511 | Thakkar et al. | Jan 2017 | B2 |
9561369 | Burnes et al. | Feb 2017 | B2 |
9566436 | Hoffer et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9597509 | Hoffer et al. | Mar 2017 | B2 |
9615759 | Hurezan et al. | Apr 2017 | B2 |
9623252 | Sathaye et al. | Apr 2017 | B2 |
9662494 | Young et al. | May 2017 | B2 |
9682235 | O'Mahony et al. | Jun 2017 | B1 |
9694185 | Bauer | Jul 2017 | B2 |
9717899 | Kuzma et al. | Aug 2017 | B2 |
9724018 | Cho et al. | Aug 2017 | B2 |
9744351 | Gelfand et al. | Aug 2017 | B1 |
9776005 | Meyyappan et al. | Oct 2017 | B2 |
9861817 | Cho et al. | Jan 2018 | B2 |
9872989 | Jung et al. | Jan 2018 | B2 |
9884178 | Bouton et al. | Feb 2018 | B2 |
9884179 | Bouton et al. | Feb 2018 | B2 |
9919149 | Imran et al. | Mar 2018 | B2 |
9931504 | Thakkar et al. | Apr 2018 | B2 |
9950167 | Hoffer et al. | Apr 2018 | B2 |
9956396 | Young et al. | May 2018 | B2 |
9968785 | Hoffer et al. | May 2018 | B2 |
9968786 | Bauer et al. | May 2018 | B2 |
10293164 | Nash et al. | May 2019 | B2 |
20010052345 | Niazi | Dec 2001 | A1 |
20020026228 | Schauerte | Feb 2002 | A1 |
20020056454 | Samzelius | May 2002 | A1 |
20020065544 | Smits et al. | May 2002 | A1 |
20020087156 | Maguire et al. | Jul 2002 | A1 |
20020128546 | Silver | Sep 2002 | A1 |
20020188325 | Hill et al. | Dec 2002 | A1 |
20030078623 | Weinberg et al. | Apr 2003 | A1 |
20030195571 | Burnes et al. | Oct 2003 | A1 |
20040003813 | Banner et al. | Jan 2004 | A1 |
20040010303 | Bolea et al. | Jan 2004 | A1 |
20040030362 | Hill et al. | Feb 2004 | A1 |
20040044377 | Larsson et al. | Mar 2004 | A1 |
20040064069 | Reynolds et al. | Apr 2004 | A1 |
20040077936 | Larsson et al. | Apr 2004 | A1 |
20040088015 | Casavant et al. | May 2004 | A1 |
20040111139 | Mccreery | Jun 2004 | A1 |
20040186543 | King et al. | Sep 2004 | A1 |
20040210261 | King et al. | Oct 2004 | A1 |
20050004565 | Vanney | Jan 2005 | A1 |
20050013879 | Lin et al. | Jan 2005 | A1 |
20050021102 | Ignagni et al. | Jan 2005 | A1 |
20050027338 | Hill | Feb 2005 | A1 |
20050033136 | Govari et al. | Feb 2005 | A1 |
20050033137 | Oral et al. | Feb 2005 | A1 |
20050043765 | Williams et al. | Feb 2005 | A1 |
20050065567 | Lee et al. | Mar 2005 | A1 |
20050070981 | Verma | Mar 2005 | A1 |
20050075578 | Gharib et al. | Apr 2005 | A1 |
20050085865 | Tehrani | Apr 2005 | A1 |
20050085867 | Tehrani et al. | Apr 2005 | A1 |
20050085868 | Tehrani et al. | Apr 2005 | A1 |
20050085869 | Tehrani et al. | Apr 2005 | A1 |
20050096710 | Kieval | May 2005 | A1 |
20050109340 | Tehrani | May 2005 | A1 |
20050113710 | Stahmann et al. | May 2005 | A1 |
20050115561 | Stahmann et al. | Jun 2005 | A1 |
20050131485 | Knudson et al. | Jun 2005 | A1 |
20050138791 | Black et al. | Jun 2005 | A1 |
20050138792 | Black et al. | Jun 2005 | A1 |
20050143787 | Boveja et al. | Jun 2005 | A1 |
20050165457 | Benser et al. | Jul 2005 | A1 |
20050182454 | Gharib et al. | Aug 2005 | A1 |
20050187584 | Denker et al. | Aug 2005 | A1 |
20050192655 | Black et al. | Sep 2005 | A1 |
20050251238 | Wallace et al. | Nov 2005 | A1 |
20050251239 | Wallace et al. | Nov 2005 | A1 |
20050288728 | Libbus et al. | Dec 2005 | A1 |
20050288730 | Deem et al. | Dec 2005 | A1 |
20060030894 | Tehrani | Feb 2006 | A1 |
20060035849 | Spiegelman et al. | Feb 2006 | A1 |
20060058852 | Koh et al. | Mar 2006 | A1 |
20060074449 | Denker et al. | Apr 2006 | A1 |
20060122661 | Mandell | Jun 2006 | A1 |
20060122662 | Tehrani et al. | Jun 2006 | A1 |
20060130833 | Younes | Jun 2006 | A1 |
20060142815 | Tehrani et al. | Jun 2006 | A1 |
20060149334 | Tehrani et al. | Jul 2006 | A1 |
20060155222 | Sherman et al. | Jul 2006 | A1 |
20060167523 | Tehrani et al. | Jul 2006 | A1 |
20060188325 | Dolan | Aug 2006 | A1 |
20060195159 | Bradley et al. | Aug 2006 | A1 |
20060217791 | Spinka et al. | Sep 2006 | A1 |
20060224209 | Meyer | Oct 2006 | A1 |
20060229677 | Moffitt et al. | Oct 2006 | A1 |
20060247729 | Tehrani et al. | Nov 2006 | A1 |
20060253161 | Libbus et al. | Nov 2006 | A1 |
20060253182 | King | Nov 2006 | A1 |
20060258667 | Teng | Nov 2006 | A1 |
20060259107 | Caparso et al. | Nov 2006 | A1 |
20060282131 | Caparso et al. | Dec 2006 | A1 |
20060287679 | Stone | Dec 2006 | A1 |
20070005053 | Dando | Jan 2007 | A1 |
20070021795 | Tehrani | Jan 2007 | A1 |
20070027448 | Paul et al. | Feb 2007 | A1 |
20070087314 | Gomo | Apr 2007 | A1 |
20070093875 | Chavan et al. | Apr 2007 | A1 |
20070106357 | Denker et al. | May 2007 | A1 |
20070112402 | Grill et al. | May 2007 | A1 |
20070112403 | Moffitt et al. | May 2007 | A1 |
20070118183 | Gelfand et al. | May 2007 | A1 |
20070150006 | Libbus et al. | Jun 2007 | A1 |
20070168007 | Kuzma et al. | Jul 2007 | A1 |
20070173900 | Siegel et al. | Jul 2007 | A1 |
20070191908 | Jacob et al. | Aug 2007 | A1 |
20070196780 | Ware et al. | Aug 2007 | A1 |
20070203549 | Demarais et al. | Aug 2007 | A1 |
20070208388 | Jahns et al. | Sep 2007 | A1 |
20070221224 | Pittman et al. | Sep 2007 | A1 |
20070240718 | Daly | Oct 2007 | A1 |
20070250056 | Vanney | Oct 2007 | A1 |
20070250162 | Royalty | Oct 2007 | A1 |
20070255379 | Williams et al. | Nov 2007 | A1 |
20070265611 | Ignagni et al. | Nov 2007 | A1 |
20070288076 | Bulkes et al. | Dec 2007 | A1 |
20080039916 | Colliou et al. | Feb 2008 | A1 |
20080065002 | Lobl et al. | Mar 2008 | A1 |
20080125828 | Ignagni et al. | May 2008 | A1 |
20080161878 | Tehrani et al. | Jul 2008 | A1 |
20080167695 | Tehrani et al. | Jul 2008 | A1 |
20080177347 | Tehrani et al. | Jul 2008 | A1 |
20080183186 | Bly et al. | Jul 2008 | A1 |
20080183187 | Bly | Jul 2008 | A1 |
20080183239 | Tehrani et al. | Jul 2008 | A1 |
20080183240 | Tehrani et al. | Jul 2008 | A1 |
20080183253 | Bly | Jul 2008 | A1 |
20080183254 | Bly et al. | Jul 2008 | A1 |
20080183255 | Bly et al. | Jul 2008 | A1 |
20080183259 | Bly et al. | Jul 2008 | A1 |
20080183264 | Bly et al. | Jul 2008 | A1 |
20080183265 | Bly et al. | Jul 2008 | A1 |
20080188903 | Tehrani et al. | Aug 2008 | A1 |
20080215106 | Lee et al. | Sep 2008 | A1 |
20080288010 | Tehrani et al. | Nov 2008 | A1 |
20080288015 | Tehrani et al. | Nov 2008 | A1 |
20080312712 | Penner | Dec 2008 | A1 |
20080312725 | Penner | Dec 2008 | A1 |
20090024047 | Shipley et al. | Jan 2009 | A1 |
20090036947 | Westlund et al. | Feb 2009 | A1 |
20090118785 | Ignagni et al. | May 2009 | A1 |
20090275956 | Burnes et al. | Nov 2009 | A1 |
20090275996 | Burnes et al. | Nov 2009 | A1 |
20090276022 | Burnes et al. | Nov 2009 | A1 |
20100022950 | Anderson et al. | Jan 2010 | A1 |
20100036451 | Hoffer | Feb 2010 | A1 |
20100077606 | Black et al. | Apr 2010 | A1 |
20100094376 | Penner | Apr 2010 | A1 |
20100114227 | Cholette | May 2010 | A1 |
20100114254 | Kornet | May 2010 | A1 |
20100198296 | Ignagni et al. | Aug 2010 | A1 |
20100204766 | Zdeblick et al. | Aug 2010 | A1 |
20100268311 | Cardinal et al. | Oct 2010 | A1 |
20100319691 | Lurie et al. | Dec 2010 | A1 |
20110060381 | Ignagni et al. | Mar 2011 | A1 |
20110077726 | Westlund et al. | Mar 2011 | A1 |
20110093032 | Boggs, II et al. | Apr 2011 | A1 |
20110118815 | Kuzma et al. | May 2011 | A1 |
20110230932 | Tehrani et al. | Sep 2011 | A1 |
20110230935 | Zdeblick | Sep 2011 | A1 |
20110230945 | Ohtaka et al. | Sep 2011 | A1 |
20110270358 | Davis et al. | Nov 2011 | A1 |
20110288609 | Tehrani et al. | Nov 2011 | A1 |
20120035684 | Thompson et al. | Feb 2012 | A1 |
20120053654 | Tehrani et al. | Mar 2012 | A1 |
20120078320 | Schotzko et al. | Mar 2012 | A1 |
20120130217 | Kauphusman et al. | May 2012 | A1 |
20120158091 | Tehrani et al. | Jun 2012 | A1 |
20120209284 | Westlund et al. | Aug 2012 | A1 |
20120215278 | Penner | Aug 2012 | A1 |
20120323293 | Tehrani et al. | Dec 2012 | A1 |
20130018247 | Glenn et al. | Jan 2013 | A1 |
20130018427 | Pham et al. | Jan 2013 | A1 |
20130023972 | Kuzma et al. | Jan 2013 | A1 |
20130030496 | Karamanoglu et al. | Jan 2013 | A1 |
20130030497 | Karamanoglu et al. | Jan 2013 | A1 |
20130030498 | Karamanoglu et al. | Jan 2013 | A1 |
20130060245 | Grunewald et al. | Mar 2013 | A1 |
20130116743 | Karamanoglu et al. | May 2013 | A1 |
20130123891 | Swanson | May 2013 | A1 |
20130131743 | Yamasaki et al. | May 2013 | A1 |
20130158625 | Gelfand et al. | Jun 2013 | A1 |
20130165989 | Gelfand et al. | Jun 2013 | A1 |
20130167372 | Black et al. | Jul 2013 | A1 |
20130197601 | Tehrani et al. | Aug 2013 | A1 |
20130237906 | Park et al. | Sep 2013 | A1 |
20130268018 | Brooke et al. | Oct 2013 | A1 |
20130276787 | Martin et al. | Oct 2013 | A1 |
20130289686 | Masson et al. | Oct 2013 | A1 |
20130296964 | Tehrani | Nov 2013 | A1 |
20130296973 | Tehrani et al. | Nov 2013 | A1 |
20130317587 | Barker | Nov 2013 | A1 |
20130333696 | Lee et al. | Dec 2013 | A1 |
20140067032 | Morris et al. | Mar 2014 | A1 |
20140088580 | Wittenberger et al. | Mar 2014 | A1 |
20140114371 | Westlund et al. | Apr 2014 | A1 |
20140121716 | Casavant et al. | May 2014 | A1 |
20140128953 | Zhao et al. | May 2014 | A1 |
20140148780 | Putz | May 2014 | A1 |
20140316486 | Zhou et al. | Oct 2014 | A1 |
20140324115 | Ziegler et al. | Oct 2014 | A1 |
20140378803 | Geistert et al. | Dec 2014 | A1 |
20150018839 | Morris et al. | Jan 2015 | A1 |
20150034081 | Tehrani et al. | Feb 2015 | A1 |
20150045810 | Hoffer et al. | Feb 2015 | A1 |
20150045848 | Cho et al. | Feb 2015 | A1 |
20150073232 | Ahmad et al. | Mar 2015 | A1 |
20150119950 | Demmer et al. | Apr 2015 | A1 |
20150165207 | Karamanoglu | Jun 2015 | A1 |
20150196354 | Haverkost et al. | Jul 2015 | A1 |
20150196356 | Kauphusman et al. | Jul 2015 | A1 |
20150231348 | Lee et al. | Aug 2015 | A1 |
20150250982 | Osypka | Sep 2015 | A1 |
20150265833 | Meyyappan et al. | Sep 2015 | A1 |
20150283340 | Zhang et al. | Oct 2015 | A1 |
20150290476 | Krocak et al. | Oct 2015 | A1 |
20150359487 | Coulombe | Dec 2015 | A1 |
20150374252 | De et al. | Dec 2015 | A1 |
20150374991 | Morris et al. | Dec 2015 | A1 |
20160001072 | Gelfand et al. | Jan 2016 | A1 |
20160144078 | Young et al. | May 2016 | A1 |
20160193460 | Xu et al. | Jul 2016 | A1 |
20160228696 | Imran et al. | Aug 2016 | A1 |
20160239627 | Cerny et al. | Aug 2016 | A1 |
20160256692 | Baru | Sep 2016 | A1 |
20160310730 | Martins et al. | Oct 2016 | A1 |
20160331326 | Xiang et al. | Nov 2016 | A1 |
20160367815 | Hoffer | Dec 2016 | A1 |
20170007825 | Thakkar et al. | Jan 2017 | A1 |
20170013713 | Shah et al. | Jan 2017 | A1 |
20170021166 | Bauer et al. | Jan 2017 | A1 |
20170028191 | Mercanzini et al. | Feb 2017 | A1 |
20170036017 | Tehrani et al. | Feb 2017 | A1 |
20170050033 | Wechter | Feb 2017 | A1 |
20170143973 | Tehrani | May 2017 | A1 |
20170143975 | Hoffer et al. | May 2017 | A1 |
20170196503 | Narayan et al. | Jul 2017 | A1 |
20170224993 | Sathaye et al. | Aug 2017 | A1 |
20170232250 | Kim et al. | Aug 2017 | A1 |
20170252558 | O'Mahony et al. | Sep 2017 | A1 |
20170291023 | Kuzma et al. | Oct 2017 | A1 |
20170296812 | O'Mahony et al. | Oct 2017 | A1 |
20170312006 | Mcfarlin et al. | Nov 2017 | A1 |
20170312507 | Bauer et al. | Nov 2017 | A1 |
20170312508 | Bauer et al. | Nov 2017 | A1 |
20170312509 | Bauer et al. | Nov 2017 | A1 |
20170326359 | Gelfand et al. | Nov 2017 | A1 |
20170347921 | Haber et al. | Dec 2017 | A1 |
20180001086 | Bartholomew et al. | Jan 2018 | A1 |
20180008821 | Gonzalez et al. | Jan 2018 | A1 |
20180110562 | Govari et al. | Apr 2018 | A1 |
20180117334 | Jung | May 2018 | A1 |
Number | Date | Country |
---|---|---|
1652839 | Aug 2005 | CN |
102143781 | Aug 2011 | CN |
0993840 | Apr 2000 | EP |
1304135 | Apr 2003 | EP |
0605796 | Aug 2003 | EP |
2489395 | Aug 2012 | EP |
2801509 | Jun 2001 | FR |
H08510677 | Nov 1996 | JP |
2003503119 | Jan 2003 | JP |
2010516353 | May 2010 | JP |
2011200571 | Oct 2011 | JP |
2012000195 | Jan 2012 | JP |
9407564 | Apr 1994 | WO |
9508357 | Mar 1995 | WO |
9964105 | Dec 1999 | WO |
9965561 | Dec 1999 | WO |
0100273 | Jan 2001 | WO |
02058785 | Aug 2002 | WO |
03094855 | Nov 2003 | WO |
2006110338 | Oct 2006 | WO |
2006115877 | Nov 2006 | WO |
2007053508 | May 2007 | WO |
2008092246 | Aug 2008 | WO |
2008094344 | Aug 2008 | WO |
2009006337 | Jan 2009 | WO |
2009134459 | Nov 2009 | WO |
2010029842 | Mar 2010 | WO |
2010148412 | Dec 2010 | WO |
2011158410 | Dec 2011 | WO |
2012106533 | Aug 2012 | WO |
2013131187 | Sep 2013 | WO |
2013188965 | Dec 2013 | WO |
Entry |
---|
Reynolds, S.C. et al., “Mitigation of Ventilator-induced Diaphragm Atrophy by Transvenous Phrenic Nerve Stimulation,” American Journal of Respiratory and Critical Care Medicine, vol. 195, pp. 339-348 (2017). |
International Search Report in PCT/US2018/063013, dated Mar. 28, 2019 (3 pages). |
Escher, Doris J.W. et al., “Clinical Control of Respiration by Transvenous Phrenic Pacing,” American Society for Artificial Internal Organs: Apr. 1968—vol. 14—Issue 1—pp. 192-197. |
Ishii, K. et al., “Effects of Bilateral Transvenous Diaphragm Pacing on Hemodynamic Function in Patients after Cardiac Operations,” J. Thorac. Cardiovasc. Surg., 1990. |
Ayas N.T., et al., “Prevention of Human Diaphragm Atrophy with Short periods of Electrical Stimulation,” American Journal of Respiratory and Critical Care Medicine, Jun. 1999, vol. 159(6), pp. 2018-2020. |
Borovikova, et al., “Role of the Vagus Nerve in the Anti-Inflammatory Effects of CNI-1493,” Proceedings of the Annual Meeting of Professional Research Scientists: Experimental Biology 2000, Abstract 97.9, Apr. 15-18, 2000. |
Chinese Search Report for Application No. CN2013/80023357.5, dated Jul. 24, 2015. |
Daggeti, W.M. et al., “Intracaval Electrophrenic Stimulation. I. Experimental Application during Barbiturate Intoxication Hemorrhage and Gang,” Journal of Thoracic and Cardiovascular Surgery, 1966, vol. 51 (5), pp. 676-884. |
Daggeti, W.M. et al., “Intracaval electrophrenic stimulation. II. Studies on Pulmonary Mechanics Surface Tension Urine Flow and Bilateral Ph,” Journal of Thoracic and Cardiovascular Surgery, 1970, vol. 60(1 ), pp. 98-107. |
De Gregorio, M.A. et al., “The Gunther Tulip Retrievable Filter: Prolonged Temporary Filtration by Repositioning within the Inferior Vena Cava,” Journal of Vascular and Interventional Radiology, 2003, vol. 14, pp. 1259-1265. |
Deng Y-J et al., “The Effect of Positive Pressure Ventilation Combined with Diaphragm Pacing on Respiratory Mechanics in Patients with Respiratory Failure; Respiratory Mechanics,” Chinese critical care medicine, Apr. 2011, vol. 23(4), pp. 213-215. |
European Search Report for Application No. 13758363, dated Nov. 12, 2015. |
European Search Report for Application No. EP17169051.4, dated Sep. 8, 2017, 7 pages. |
Extended European Search Report for Application No. 15740415.3, dated Jul. 7, 2017. |
Frisch S., “A Feasibility Study of a Novel Minimally Invasive Approach for Diaphragm Pacing,” Master of Science Thesis, Simon Fraser University, 2009, p. 148. |
Furman, S., “Transvenous Stimulation of the Phrenic Nerves,” Journal of Thoracic and Cardiovascular Surgery, 1971, vol. 62 (5), pp. 743-751. |
Hoffer J.A. et al., “Diaphragm Pacing with Endovascular Electrodes”, IFESS 2010—International Functional Electrical Stimulation Society, 15th Anniversary Conference, Vienna, Austria, Sep. 2010. |
Japanese Office Action in corresponding Japanese Application No. 2014-560202, dated Oct. 17, 2017, 5 pages. |
Evine S., et al., “Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans,” New England Journal of Medicine, 2008, vol. 358, pp. 1327-1335. |
Lungpacer: Therapy, News . . . Accessed Dec. 27, 2016. |
Martin, A.D. et al., “Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial,” Critical Care, 2011, vol. 15:R84. |
Marcy, T.W. et al., “Diaphragm Pacing for Ventilatory Insufficiency,” Journal of Intensive Care Medicine, 1987, vol. 2 (6), pp. 345-353. |
Meyyappan R., “Diaphragm Pacing during Controlled Mechanical Ventilation: Pre-Clinical Observations Reveal a Substantial Improvement In Respiratory Mechanics”, 17th Biennial Canadian Biomechanics Society Meeting, Burnaby, BC, Jun. 6-9, 2012. |
Notification of Reasons for Rejection and English language translation issued in corresponding Japanese Patent Application No. 2015-517565, dated Mar. 28, 2017, 6 pages. |
Onders R.,, “A Diaphragm Pacing as a Short-Term Assist to Positive Pressure Mechanical Ventilation in Critical Care Patients,” Chest, Oct. 24, 2007, vol. 132(4), pp. 5715-5728. |
Onders R.,, “Diaphragm Pacing for Acute Respiratory Failure,” Difficult Decisions in Thoracic Surgery, Chapter 37, Springer-Verlag, 2011, M.K. Ferguson (ed.), pp. 329-335. |
Onders R, et al., “Diaphragm Pacing with Natural Orifice Transluminal Endoscopic Surgery: Potential for Difficult-To-Wean Intensive Care Unit Patients,” Surgical Endoscopy, 2007, vol. 21, pp. 475-479. |
Sandoval R., “A Catch/Ike Property-Based Stimulation Protocol for Diaphragm Pacing”, Master of Science Coursework project, Simon Fraser University, Mar. 2013. |
Sarnoff, S.J. et al., “Electrophrenic Respiration,” Science, 1948, vol. 108, p. 482. |
Wanner, A. et al., “Trasvenous Phrenic Nerve Stimulation in Anesthetized Dogs,” Journal of Applied Physiology, 1973, vol. 34 (4), pp. 489-494. |
Antonica A., et al., “Vagal Control of Lymphocyte Release from Rat Thymus,” Journal of the Autonomic Nervous System, Elsevier, vol. 48(3), Aug. 1994, pp. 187-197. |
Whaley K., et al., “C2 Synthesis by Human Monocytes is Modulated by a Nicotinic Cholinergic Receptor,” Nature, vol. 293, Oct. 15, 1981, pp. 580-582 (and reference page). |
Borovikovaa L.V., et al., “Role of Vagus Nerve Signaling in CNI-1493-Mediated Suppression of Acute Inflammation,” Autonomic Neuroscience: Basic and Clinical, vol. 85 (1-3), Dec. 20, 2000, pp. 141-147. |
Borovikovaa L.V., et al., “Vagus Nerve Stimulation Attenuates the Systemic Inflammatory Response to Endotoxin,” Nature, Macmillan Magazines Ltd, vol. 405, May 25, 2000, pp. 458-462. |
Extended European Search Report for Application No. 14864542.7, dated Jun. 2, 2017, 8 pages. |
Fleshner M., et al., “Thermogenic and Corticosterone Responses to Intravenous Cytokines (IL-1β and TNF-α) are Attenuated by Subdiaphragmatic Vagotomy,” Journal of Neuroimmunology, vol. 86, Jun. 1998, pp. 134-141. |
Gaykema R.P.A. et al., “Subdiaphragmatic Vagotomy Suppresses Endotoxin-Induced Activation of Hypothalamic Corticotropin-Releasing Hormone Neurons and ACTH Secretion,” Endocrinology, The Endocrine Society, vol. 136 (10), 1995, pp. 4717-4720. |
Gupta A.K., “Respiration Rate Measurement Based on Impedance Pneumography,” Data Acquisition Products, Texas Instruments, Application Report, SBAA181, Feb. 2011, 11 pages. |
Guslandi M., “Nicotine Treatment for Ulcerative Colitis,” The British Journal of Clinical Pharmacology, Blackwell Science Ltd, vol. 48, 1999, pp. 481-484. |
Japanese Office Action in corresponding Japanese Application No. 2014-560202, dated Dec. 6, 2016, 4 pages. |
Kawashima K., et al., “Extraneuronal Cholinergic System in Lymphocytes,” Pharmacology & Therapeutics, Elsevier, vol. 86, 2000, pp. 29-48. |
Madretsma, G.S., et al., “Nicotine Inhibits the In-vitro Production of Interleukin 2 and Tumour Necrosis Factor-α by Human Mononuclear Cells,” Immunopharmacology, Elsevier, vol. 35 (1), Oct. 1996, pp. 47-51. |
Nabutovsky, Y., et al., “Lead Design and Initial Applications of a New Lead for Long-Term Endovascular Vagal Stimulation,” Pace, Blackwell Publishing, Inc, vol. 30(1), Jan. 2007, pp. S215-S218. |
Pavlovic D., et al., “Diaphragm Pacing During Prolonged Mechanical Ventilation of the Lungs could Prevent from Respiratory Muscle Fatigue,” Medical Hypotheses, vol. 60 (3), 2003, pp. 398-403. |
Planas R.F., et al., “Diaphragmatic Pressures: Transvenous vs. Direct Phrenic Nerve Stimulation,” Journal of Applied Physiology, vol. 59(1), 1985, pp. 269-273. |
Romanovsky, A.A., et al., “The Vagus Nerve in the Thermoregulatory Response to Systemic Inflammation,” American Journal of Physiology, vol. 273 (1 Pt 2), 1997, pp. R407-R413. |
Salmela L., et al., “Verification of the Position of a Central Venous Catheter by Intra-Atrial ECG. When does this method fail?,” Acta Anasthesiol Scand, vol. 37 (1), 1993, pp. 26-28. |
Sandborn W.J., “Transdermal Nicotine for Mildly to Moderately Active Ulcerative Colitis,” Annals of Internal Medicine, vol. 126 (5), Mar. 1, 1997, pp. 364-371. |
Sato E., et al., “Acetylcholine Stimulates Alveolar Macrophages to Release Inflammatory Cell Chemotactic Activity,” American Journal of Physiology, vol. 274 (Lung Cellular and Molecular Physiology 18), 1998, pp. L970-979. |
Sato, K.Z., et al., “Diversity of mRNA Expression for Muscarinic Acetylcholine Receptor Subtypes and Neuronal Nicotinic Acetylcholine Receptor Subunits in Human Mononuclear Leukocytes and Leukemic Cell Lines,” Neuroscience Letters, vol. 266 (1), 1999, pp. 17-20. |
Schauerte P., et al., “Transvenous Parasympathetic Nerve Stimulation in the Inferior Vena Cava and Atrioventricular Conduction,” Journal of Cardiovascular Electrophysiology, vol. 11 (1), Jan. 2000, pp. 64-69. |
Schauerte P.N., et al., “Transvenous Parasympathetic Cardiac Nerve Stimulation: An Approach for Stable Sinus Rate Control,” Journal of Cardiovascular Electrophysiology, vol. 10 (11), Nov. 1999, pp. 1517-1524. |
Scheinman R.I., et al., “Role of Transcriptional Activation of IκBα in Mediation of Immunosuppression by Glucocorticoids,” Science, vol. 270, Oct. 13, 1995, pp. 283-286. |
Sher, M.E., et al., “The Influence of Cigarette Smoking on Cytokine Levels in Patients with Inflammatory Bowel Disease,” Inflammatory Bowel Diseases, vol. 5 (2), May 1999, pp. 73-78. |
Steinlein, O., “New Functions for Nicotinic Acetylcholine Receptors?,” Behavioural Brain Research, vol. 95, 1998, pp. 31-35. |
Sternberg E.M., (Series Editor) “Neural-Immune Interactions in Health and Disease,” The Journal of Clinical Investigation, vol. 100 (11), Dec. 1997, pp. 2641-2647. |
Sykes., A.P., et al., “An Investigation into the Effect and Mechanisms of Action of Nicotine in Inflammatory Bowel Disease,” Inflammation Research, vol. 49, 2000, pp. 311-319. |
Toyabe S., et al., “Identification of Nicotinic Acetylcholine Receptors on Lymphocytes in the Periphery as well as Thymus in Mice,” Immunology, vol. 92, 1997, pp. 201-205. |
Van Dijk A.P.M., et al., “Transdermal Nicotine Inhibits Interleukin 2 Synthesis by Mononuclear Cells Derived from Healthy Volunteers,” European Journal of Clinical Investigation, vol. 28, 1998, pp. 664-671. |
Watkins L.R., et al., “Blockade of Interleukin-1 Induced Hyperthermia by Subdiaphragmatic Vagotomy: Evidence for Vagal Mediation of Immune-Brain Communication,” Neuroscience Letters, vol. 183, 1995, pp. 27-31. |
Watkins L.R., et al., “Implications of Immune-to-Brain Communication for Sickness and Pain,” PNAS (Proceedings of the National Academy of Sciences of the USA), vol. 96 (14), Jul. 6, 1999, pp. 7710-7713. |
Number | Date | Country | |
---|---|---|---|
20220134095 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15837519 | Dec 2017 | US |
Child | 17474646 | US |