The present disclosure relates to repair analysis methods and systems, and more particularly, the repair analysis systems and methods for bladed rotors of gas turbine engines utilizing a structural assessment for large repair blend profiles.
Gas turbine engines (such as those used in electrical power generation or used in modern aircraft) typically include a compressor, a combustor section, and a turbine. The compressor and the turbine typically include a series of alternating rotors and stators. A rotor generally comprises a rotor disk and a plurality of blades. The rotor may be an integrally bladed rotor (“IBR”) or a mechanically bladed rotor.
The rotor disk and blades in the IBR are one piece (i.e., monolithic, or nearly monolithic) with the blades spaced around the circumference of the rotor disk. Conventional IBRs may be formed using a variety of technical methods including integral casting, machining from a solid billet, or by welding or bonding the blades to the rotor disk.
Repair methods for IBRs may be limited to maintaining the IBR within tolerances of a product definition for a design of the IBR, a volume or thickness of material addition, and/or a volume or thickness of material removal. Additionally, repair analysis methods for IBRs may fail to consider loads and/or boundary conditions encountered during engine operation included in the aerodynamic, structural, or other functional assessment of the IBR. In this regard, a damaged IBR may be scrapped because it is believed to unrepairable within the geometric assessment constraints (e.g., tolerances, material removal, material addition, etc.) without consideration of the functional assessment constraints (e.g., aerodynamic stability, structural durability, etc.). By being limited in this manner, less expensive repair options and/or more optimal repairs (e.g., in terms of aerodynamic or structural capability, etc.) that could otherwise be acceptable may be avoided.
A method is disclosed herein. In various embodiments, the method comprises: performing a finite element static analysis of an inspected blade of an inspected bladed rotor, the inspected blade having a repair blend profile modeled thereon, the repair blend profile exceeding a threshold repair size; performing a finite element modal analysis of the inspected blade having the repair blend profile; performing a fatigue assessment based on results from the finite element static analysis and the finite element modal analysis, the fatigue assessment including limits based on material properties of the inspected blade, the material properties based on test results at a threshold significance level; and repairing the inspected bladed rotor with the repair blend profile in response to the fatigue assessment meeting a deterministic criteria.
In various embodiments, the finite element modal analysis includes at least one of a dynamic analysis and a mistuning analysis.
In various embodiments, the method further comprises scaling stress results from the finite element modal analysis based on engine test data.
In various embodiments, performing the fatigue assessment further comprises plotting an alternating stress as a function of a mean stress on a modified Goodman diagram, the alternating stress determined from the finite element modal analysis, the mean stress determined from the finite element static analysis.
In various embodiments, the method further comprises: initiating the repair blend profile prior to the performing the finite element static analysis and the performing the finite element modal analysis; and determining the repair blend profile exceeds the threshold repair size, the threshold repair size based on prior repair blend sizes.
In various embodiments, the threshold repair size is based on at least one of a longitudinal length, a width, and a depth of a maximum experience-based repair blend profile.
In various embodiments, the method further comprises: scanning the inspected bladed rotor; and determining the repair blend profile based on data from the scanning. The method can further comprise: performing a simulation on a digital model prior to performing the finite element modal analysis and the finite element static analysis; and comparing a result from the simulation to an experience-based criteria.
In various embodiments, the method further comprises determining the experience-based criteria is not met.
A method is disclosed herein. In various embodiments, the method comprises: receiving, via a processor, a digital representation of an inspected blade from an inspection system and boundary conditions for a static analysis from a load data database, the digital representation including a repair blend profile; generating, via the processor, a finite element structural model based on the digital representation of the inspected blade and the boundary conditions; simulating, via the processor, a modal analysis of the finite element structural model; simulating, via the processor, the static analysis of the finite element structural model; and conducting, via the processor, a fatigue assessment of the inspected blade with the repair blend profile based on a material data from a material data database and results from the modal analysis of the finite element structural model and the static analysis of the finite element structural model.
In various embodiments, the material data includes a yield stress, an endurance limit, and an ultimate tensile stress of a material, the inspected blade comprising the material. In various embodiments, the yield stress, the endurance limit, and the ultimate tensile stress are a function of temperature. In various embodiments, the yield stress is based on number of flight cycles that remain for an inspected bladed rotor with the inspected blade after a repair.
In various embodiments, the method further comprises determining, via the processor and prior to generating the finite element structural model, that the repair blend profile exceeds a threshold repair blend size, the threshold repair blend size based on an experience-based criteria.
A system is disclosed herein. In various embodiments, the system comprises: an analysis system in electronic communication with an inspection system, the analysis system comprising a tangible, non-transitory computer-readable storage medium having instructions stored thereon that, in response to execution by a processor, cause the processor to perform operations comprising: receive, via the processor, a data set based on a point cloud generated from the inspection system; generate, via the processor, a finite element structural model of an inspected blade with a repair blend profile based on the data set; determine, via the processor, the repair blend profile exceeds a size of a threshold repair blend profile; simulate, via the processor, a modal analysis of the finite element structural model; simulate, via the processor, a static analysis of the finite element structural model; and conduct, via the processor, a fatigue assessment of the inspected blade with the repair blend profile.
In various embodiments, the operations further comprise determining whether results of the modal analysis and the static analysis meet a deterministic-criteria for the inspected blade based on the fatigue assessment.
In various embodiments, the system further comprises the inspection system, wherein the inspection system comprises a structured scanner.
In various embodiments, the fatigue assessment is based on a material data from a material data database and results from the modal analysis of the finite element structural model and the static analysis of the finite element structural model. In various embodiments, the material data includes a yield stress, an endurance limit, and an ultimate tensile stress of a material, the inspected blade comprising the material.
The foregoing features and elements may be combined in any combination, without exclusivity, unless expressly indicated herein otherwise. These features and elements as well as the operation of the disclosed embodiments will become more apparent in light of the following description and accompanying drawings.
The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the following detailed description and claims in connection with the following drawings. While the drawings illustrate various embodiments employing the principles described herein, the drawings do not limit the scope of the claims.
The following detailed description of various embodiments herein refers to the accompanying drawings, which show various embodiments by way of illustration. While these various embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that changes may be made without departing from the scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected, or the like may include permanent, removable, temporary, partial, full or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. It should also be understood that unless specifically stated otherwise, references to “a,” “an”, or “the” may include one or more than one and that reference to an item in the singular may also include the item in the plural. Further, all ranges may include upper and lower values and all ranges and ratio limits disclosed herein may be combined.
As used herein, “aft” refers to the direction associated with the tail (e.g., the back end) of an aircraft, or generally, to the direction of exhaust of the gas turbine. As used herein, “forward” refers to the direction associated with the nose (e.g., the front end) of an aircraft, or generally, to the direction of flight or motion.
With reference to
Gas turbine engine 20 may generally comprise a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A-A′ relative to an engine static structure 36 or engine case via several bearing systems 38, 38-1, etc. Engine central longitudinal axis A-A′ is oriented in the Z direction on the provided X-Y-Z axes. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, including for example, bearing system 38, bearing system 38-1, etc.
Low speed spool 30 may generally comprise an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. Inner shaft 40 may be connected to fan 42 through a geared architecture 48 that can drive fan 42 at a lower speed than low speed spool 30. Geared architecture 48 may comprise a gear assembly 60 enclosed within a gear housing 62. Gear assembly 60 couples' inner shaft 40 to a rotating fan structure. High speed spool 32 may comprise an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 may be located between high pressure compressor 52 and high pressure turbine 54. A mid-turbine frame 57 of engine static structure 36 may be located generally between high pressure turbine 54 and low pressure turbine 46. Mid-turbine frame 57 may support one or more bearing systems 38 in turbine section 28. Inner shaft 40 and outer shaft 50 may be concentric and rotate via bearing systems 38 about the engine central longitudinal axis A-A′, which is collinear with their longitudinal axes. As used herein, a “high pressure” compressor or turbine experiences a higher pressure than a corresponding “low pressure” compressor or turbine.
The core airflow may be compressed by low pressure compressor 44 then high pressure compressor 52, mixed and burned with fuel in combustor 56, then expanded over high pressure turbine 54 and low pressure turbine 46. Turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
In various embodiments, and with reference to
The blades 103 extend radially outward from the rotor disk 102. The gas turbine engine 20 may further include an exit guide vane stage 106 that defines the aft end of the high pressure compressor 52. Although illustrated with respect to high pressure compressor 52, the present disclosure is not limited in this regard. For example, the low pressure compressor 44 may include a plurality of blade stages 101 and vane stages 105, each blade stage in the plurality of blade stages 101 including the IBR 100 and still be within the scope of this disclosure. In various embodiments, the plurality of blade stages 101 form a stack of IBRs 110, which define, at least partially, a rotor module 111 of the high pressure compressor 52 of the gas turbine engine 20.
Referring now to
When debris is ingested into the gas turbine engine 20, the debris can pass into the primary flowpath. Due to the rotation of the blades 103 in the primary flowpath, the debris can contact one or more of the blades 103. This contact can cause damage or wear to a blade 103, or a set of the blades 103. Disclosed herein are systems and methods for inspection, analysis, and repair of an IBR 100 and for returning an IBR 100 back to service after inspection (or after repair). The systems and methods disclosed herein facilitate faster dispositions the more the process is utilized. In this regard, the systems and methods disclosed herein provide a feedback system for continuous improvement of the repair process, in accordance with various embodiments.
With combined reference to
In order to repair the defect 140, a blending operation can be performed on the IBR 100. A blending operation uses a material removal process, such as milling or computer numerical control (CNC) machining, to remove the damaged portion of the IBR 100 and smooth the resulting voids such that the IBR 100 can be re-introduced into service for further use (i.e., meeting structural and/or aerodynamic criteria for further use in service).
Referring now to
Once the blending mask 150 has been applied, material is removed using the generally manual material removal operation resulting in a repaired blade portion 172 of a repaired IBR 170 including a plurality of repair blend profiles 160, as is illustrated in
In various embodiments, each repair blend profile in the plurality of repair blend profiles 160 is based, at least partially, on a defect shape of a respective defect 140 from
In various embodiments, explicit instructions are derived from the automated process and supplied to a computer numerical controlled (CNC) machine. In this instance, blending masks may not be utilized as the manual blending operation is replaced by the machine automated process. Blends of IBR 100 can be by either manual or automated processes, or a combination of those processes. In wholly automated processes, the creation of the mask can be omitted.
In addition to removing the locations of the defects 140, it is beneficial to remove material deeper than the observed damage in order to ensure that all damage is removed and to prevent the propagation of new damage. In various embodiments, a blend aspect ratio (e.g., a length-depth ratio) is maintained in order to ensure that there is a smooth and gradual transition from the edge of the undamaged blade 103 to the bottom of the deepest portion of the blend, and then back to the undamaged surface of the blade 103 on the other side of the blend.
Although
In order to assist with the blending process and, facilitate efficient determination of acceptability of an IBR 100 to return into service, a semi-automated (or fully automated) system is utilized to inspect, analyze, and repair an IBR 100, in accordance with various embodiments.
In various embodiments, repair blend profiles 160 can include a scallop shape (e.g., repair blend shape 162 from
For example, with reference now to
Although described herein as being substantially symmetrical, the present disclosure is not limited in this regard. For example, the repair blend profile can comprise a tear drop shape (e.g., repair blend profile 166 from
Referring now to
The process 200 comprises inspection of a bladed rotor (e.g., an IBR 100 from
In various embodiments, the three-dimensional model generated from step 202 includes a digital representation each defect of the IBR 100 from
In various embodiments, in response to the IBR 100 meeting serviceable limits in step 204, the process further comprises returning the IBR 100 to service (step 206). In this regard, the IBR 100 can be re-installed on a gas turbine engine 20 from
In various embodiments, in response to the IBR 100 not meeting serviceable limits in step 204, an initial blend profile (e.g., repair blend profile 162, repair blend profile 166, or repair blend profile 168 from
In various embodiments, the initial blend profile is based on consistent parameters and is generated automatically via the process 200. For example, each initial blend profile may be determined in step 208 to remove a predetermined amount of additional material and to generate a smooth blend across the entirety of the defect (e.g., transforming a digital representation of defects 140 to repair blend shapes 160). In various embodiments, a model is generated in step 208. The model generated in step 208 can be a three-dimensional model (e.g., a Computer Aided Design (CAD) model or Finite Element Model (FEM)), or a plurality of two-dimensional section models (e.g., defining various cross-sections of a blade 103).
In various embodiments, an initial model generated in step 208 is configured to greatly reduce a file size of inspection data from step 202 to transfer relevant inspection data to an external analysis system (e.g., analysis system 600 as described further herein. In this regard, instead of a three-dimensional model, the scanner data can be converted in section data for an airfoil at various span lengths from a root of the airfoil, as described further herein. Thus, by converting a point cloud generated from inspection data (e.g., from a structured scanner or CMM machine as described previously herein), excess data that may be irrelevant for analysis of the inspected IBR 100 can be removed, to facilitate a quick and/or easy transfer of the relevant data to the analysis system 600 as described further herein.
In various embodiments, the model generated in step 208 can be converted into a three-dimensional model for use in various third party software programs, such as ANSYS, ANSYS Workbench, ANSYS Computational Fluid Dynamics (CFD), or the like. In this regard, after transferring the model from step 208 from the inspection system to the analysis system, the model from step 208 can be converted to a finite element model (FEM) for a structural analysis, an aerodynamic model for aerodynamic analysis, or the like. In this regard, a file size of the model from step 208 can be relatively small compared to a model size used in the structural analysis and/or the aerodynamic analysis as described further herein.
In this regard, structural and aerodynamic simulations can be performed in step 210 for a digital representation of a repaired IBR 170 (a “repaired IBR digital model” as described further herein). The repaired IBR digital model can be a CAD model or an FEM model based on a specific analytical simulation being performed, in accordance with various embodiments. A repaired IBR as described herein refers to a repaired IBR 170 at least one repaired blade portion 172 having at least one repair blend profile 160 (e.g., repair blend profile 162, 166, or 168 from
In various embodiments, the process 200 further comprises analyzing the repaired IBR digital model (step 210). In various embodiments, the analysis in step 210 includes various simulations. For example, the various simulations can include simulations to evaluate a modal assurance criteria (MAC), a resonant frequency, an aerodynamic efficiency, a stall margin, damage tolerance, dynamic stress from vibration, or the like. In various embodiments, damage tolerance may be an optional criteria to analyze (e.g., if the bladed rotor is not an IBR but a bladed rotor having a distinct rotor disk and distinct blades). The simulations can be via various simulation software platforms described previously herein.
In various embodiments, analyzing the repaired IBR digital model can include optimizing the blend profile shape based on various parameters. For example, step 210 can include iterating the blend profile shape based on the various simulations and results of the various simulations. In various embodiments, the blend profile shape is only analyzed for the initial blend profile generated in step 208. However, the present disclosure is not limited in this regard.
In various embodiment, step 210 further comprises comparing the simulation results to experience based criteria.
For example, if an IBR 100 is known, based on prior test data during development, to have a resonant frequency that varies by a threshold percentage (e.g., 3%, 5%, 8%, etc.) from a nominal frequency, and if a threshold number of the IBR 100 have been in service for a threshold number of cycles (e.g., 2,000 flight cycles, 10,000 flight cycles, or the like), then an experience based criteria for the resonant frequency can be created. For example, if a modal analysis determines a resonant frequency for the repaired IBR digital model is within the threshold percentage, the experience based criteria for resonant frequency would be considered met because the experimental data from development that indicates that the IBR 100 varies in resonant frequency by the threshold percentage without issue has been validated by experience by the threshold number of the IBR 100 having been in service for the threshold number of cycles. Stated another way, the resonant frequency being acceptable within a threshold range of frequencies has been validated by experience in service.
Similarly, if an IBR 100 is known, based on prior test data during development, to have a MAC that varies by a threshold percentage (e.g., 3%, 5%, 8%, etc.) from a nominal MAC, and if the threshold number of the IBR 100 have each been in service for the threshold number of cycles, then an experience based-criteria for the MAC can be created. For example, if the simulation to determine the MAC for the for repaired IBR digital model is less than the nominal MAC plus the threshold percentage, the MAC can be determined acceptable as being validated by experience in a similar manner as the resonant frequency example provided above.
If an IBR 100 is known, based on prior test data during development, to have an aerodynamic efficiency that varies by a threshold percentage (e.g., 3%, 5%, 8%, etc.) from a nominal aerodynamic efficiency, and if the threshold number of the IBR 100 have each been in service for the threshold number of cycles, then an experience based-criteria for the aerodynamic efficiency can be created. For example, if the simulation for the repaired IBR digital model has a greater aerodynamic efficiency than the nominal aerodynamic efficiency less the threshold percentage, than the aerodynamic efficiency being acceptable has been validated by experience in the field.
In various embodiments, the acceptable experience based criteria for aerodynamic efficiency can be based on being greater than the aerodynamic efficiency determined from testing and validated by experience in service, as opposed to being based on nominal less the threshold percentage. In this regard, additional margin of error would be provided for the repaired IBR (i.e., a greater safety factor), in accordance with various embodiments. The present disclosure is not limited in this regard.
If an IBR 100 is known, based on prior test data during development, to have a stall margin that varies by a threshold percentage (e.g., 3%, 5%, 8%, etc.) from a nominal stall margin, and if the threshold number of the IBR 100 have each been in service for the threshold number of cycles, then an experience based-criteria for the stall margin can be created. For example, if the simulation to determine stall margin for the repaired IBR digital model has a greater stall margin than the nominal aerodynamic stall margin less the threshold percentage, than the stall margin being acceptable has been validated by experience in the field.
In various embodiments, the acceptable experience based criteria for stall margin can be based on being greater than the nominal stall margin determined from testing and validated by experience in service, as opposed to being based on nominal less the threshold percentage. In this regard, additional margin of error would be provided for the repaired IBR (i.e., a greater safety factor), in accordance with various embodiments. The present disclosure is not limited in this regard.
If an IBR 100 is known, based on prior test data during development, to have a damage tolerance (e.g., a threshold crack size that results in growth during operation) that varies by a threshold percentage (e.g., 3%, 5%, 8%, etc.) from a nominal damage tolerance, and if the threshold number of the IBR 100 have each been in service for the threshold number of cycles, then an experience based-criteria for the damage tolerance can be created. For example, if the simulation to determine damage tolerance for the repaired IBR digital model has a lower threshold crack growth size than the nominal threshold crack growth size plus the threshold percentage, than the damage tolerance being acceptable has been validated by experience in the field.
In various embodiments, step 210 further comprises comparing the repair blend profile (e.g., repair blend profile 162, 166, or 168 from
In various embodiments, if the initial blend definition (e.g., from step 208) is below a threshold blend size (e.g., a threshold depth, a threshold aspect ratio, etc.), then an experience based criteria for the repair blend shape can be considered met in step 212. In various embodiments, if the initial blend definition from step 208 is above the threshold blend size, the repair blend profile would not meet the experience-based criteria for the repair blend shape, and the process 200 would proceed to step 222 as described further herein. In this regard, the systems and methods disclosed herein can facilitate further analysis and potential approval of much larger blend profiles, in accordance with various embodiments. “Large blend profiles,” as referred to herein are blend profiles that exceed a threshold depth, a threshold aspect ratio, a threshold width, a threshold longitudinal length, or the like). In various embodiments, the threshold blend can be based on prior experience as described previously herein (i.e., a blend size known based on experience to meet the experience-based criteria in step 212 of process 200 from
Thus, after analyzing the repaired IBR digital model in step 210, the process 200 further comprises determining whether the experienced based criteria is met for each experience-based criteria parameter (step 212). In various embodiments, the experience based criteria described herein is exemplary, and not all experience based parameters may be analyzed for a respective repaired IBR.
In various embodiments, in response to the simulation data from the various simulations showing that the experience based criteria is met, the process further comprises performing the repair on the IBR 100 that was inspected in step 202 with a repair process that generates the initial blend profiles (e.g., repair blend profile 162, 166, or 168 from
In various embodiments, in response to the simulation data from the various simulations showing that the experience-based criteria is met, the process further comprises performing the repair on the IBR 100 that was inspected in step 202 with a repair process that generates the initial blend profiles (e.g., repair blend profile 162, 166, or 168 from
In various embodiments, with brief reference to
Referring back to
In various embodiments, in response to the experience based criteria not being met, additional analysis of the repaired IBR digital model can be performed in steps 222, 224, 226, and 228. In this regard, aerodynamic models with greater fidelity can be generated for the CFD analysis in step 222, and finite element models with greater fidelity (e.g., greater number of nodes or the like) can be generated for the forced response analysis and the structures assessment in step 228.
In various embodiments, the analysis performed in steps 222, 224, 226, and 228 are performed at a higher fidelity because they will be analyzed as if the repaired IBR is beyond the established experience based criteria. In this regard, the aerodynamic assessment in step 224 and the structures assessment in step 228 can be compared to deterministic criteria (i.e., design criteria or the like). For example, although a resonant frequency of the IBR may not be at a resonant frequency within the experience based range, the resonant frequency may result in a dynamic stress in stress limiting locations that is less than the dynamic stress induced by the IBR 100, which would result in an IBR 100 that is more robust with regards to dynamic stress relative to an ideal IBR (e.g., a nominally dimensioned IBR 100). In various embodiments, even if a resonant frequency that is not with the experience based range of resonant frequencies results in a greater dynamic stress in limiting locations, the dynamic stress can still be less than a threshold dynamic stress based on a Goodman diagram threshold. In various embodiments, the threshold dynamic stress can correspond to a maximum alternating stress for the material for a mean stress at the location of the dynamic stress. Thus, even if the resonant frequency is outside a range of resonant frequencies that are known to be acceptable based on experience, and the resonant frequency generates a greater dynamic stress relative to the ideal IBR 100, the repaired IBR 170 can still be acceptable based on the deterministic criteria, in accordance with various embodiments. In this regard, a greater number of acceptable repairs for IBRs can be generated and a greater fidelity can be created for the experience based criteria as the process 200 is repeated for numerous IBRs 100 over time.
In various embodiments, in response to the deterministic criteria being met in steps 230, subsequent steps 214, 216, 218, 220, and 206 mentioned previously herein can be repeated. In various embodiments, the criteria expansion of step 220 after going through steps 222, 224, 226, 228, 230 can greatly widen acceptable experience based criteria as more data of various repair shapes and sized can be gathered over time.
In various embodiments, in response to the deterministic criteria not being met, the process 200 ends at step 232. In various embodiments, in response to the process ending at step 232, the repaired IBR digital model can be stored in a database for later analysis, and the IBR 100 can be placed in storage. In this regard, the repaired IBR digital model could be utilized in later higher fidelity simulations analyzing the IBRs at a system level to determine if the IBR would be acceptable at a system level. Thus, the process 200 can further accommodate system level analysis of IBRs that don't meet the deterministic criteria in step 230, in accordance with various embodiments.
Referring now to
In various embodiments, the process 250 comprises receiving inputs for the various simulations described previously herein with respect to the analyzing step 210 from process 200 (step 252). For example, the inputs may include blade definition (e.g., determined from the inspection step 202 from process 200), blend definition (i.e., determined from step 208 from process 200), experience based criteria as described previously herein, high cycle fatigue conditions (i.e., boundary conditions for modal analysis), high cycle fatigue capability (e.g., material data described further herein), boundary conditions for fine particle modeling (FPM), a baseline FEM (e.g., a nominal finite element model of an ideal IBR 100), section files defining blade definition (i.e., two-dimensional cross-sectional contours of a blade determined from a digital point cloud received form the inspection step 202 from process 200), section files to FEM alignment parameters, aerodynamic analysis boundary conditions, structural analysis boundary conditions, etc. The present disclosure is not limited in this regard. In various embodiments, once the load inputs 252 are transferred to an analysis system, the process 250 can run upon receiving data from the inspection step 202 as described further herein.
The process 250 further comprises modifying an ideal finite element model (FEM) corresponding to an ideal IBR based on data received from the inspection step 202 (e.g., based on the digital point cloud and modified to reduce a data size to include mainly relevant data and limit irrelevant data for analysis) (step 254). In this regard, the ideal finite element model can be modified based on measured geometry of a respective blade 103 in step 202 of process 200 and an initial blend profile determined from step 208 of process 200, in accordance with various embodiments.
In various embodiments, step 254 further comprises comparing the relevant data received from the inspection system to the ideal digital representation of the model and modifying the digital representation of the ideal bladed rotor to a digital representation of the inspected bladed rotor with the initial blend profile determined from step 208 of process 200. In this regard, as described further herein, the digital representation of the ideal bladed rotor can be morphed to reflect the digital represent of the inspected bladed rotor with the initial blend profile for each respective defect based on a size of the defect 140 (e.g., a depth, a length, and a width of the defect 140 or the like) and a location of the defect 140 from
In various embodiments, the process 250 further comprises performing pre-stressed modal analysis with pre and post processing operations of the blended finite element model from step 256 (step 258). In this regard, steady state analysis, modal analysis, and/or any additional post-processing for the finite element analysis (FEA) and/or pre-stressed modal (PSM) can be performed prior to mode shape analysis and resonant frequency comparisons.
In various embodiments, the process 250 further comprises assessing mode shape shift relative to the ideal IBR (step 260). The mode shift can be assessed using mode match results. Magnitude of a respective mode shape can be compared to experience based criteria for MAC as described previously herein. In various embodiments, if the MAC does not meet the experience based criteria in step 260, the process 250 reverts to step 222 of process 200. In response to the experience criteria for MAC being met, the process 250 assesses frequency shift relative to experience based data as described previously herein (i.e., as described with respect to step 208 of process 200 above) (step 262). In response to the experience based criteria for frequency shift not being met, the process 250 reverts to step 222 of process 200 as described previously herein. In response to the experience based criteria for frequency shift being met, the process 250 proceeds to a tuned vibratory stress analysis in step 264 and a mistuned vibratory stress analysis in step 266.
In various embodiments, the tuned vibratory stress analysis is configured to account for any change in mode shape caused by geometric changes from the blend and specific geometry of adjacent blades to a blade being blended as described previously herein. In various embodiments, a tuned stress factor is calculated and applied to the vibratory stress prior to high cycle fatigue analysis. In various embodiments, the tuned vibratory stress analysis performs the comparison by pulling in the FEA and PSM analysis of the baseline from step 268 (i.e., an ideal IBR), in accordance with various embodiments.
In various embodiments, the mistuned vibratory stress analysis in step 266 is configured to account for frequency distribution for all the blades of the inspected IBR 100 from step 202 of process 200. In this regard, a mistuned stress correction factor can be calculated to adjust for mistuning effects prior to performing a high cycle fatigue assessment in step 276 as described further herein.
After the tuned vibratory stress analysis (step 264) and the mistuned vibratory stress analysis (step 266) are performed, a structures assessment, including the high cycle fatigue (HCF) assessment of the IBR 100 with potential repair blend profiles 160, can be analyzed (step 276). In various embodiments, the structures assessment performed in step 276 can also include a crack growth assessment (i.e., damage tolerance assessment) to determine a maximum flaw size that the IBR 100 with the potential repair blend profiles 160 can tolerate without growth.
In various embodiments, steps 264, 266, 276 are not limited to vibratory stress analysis, mistuning stress analysis, HCF assessment, or crack growth assessment as described previously herein. For example, flutter can also be analyzed by various simulations and be within the scope of this disclosure. Similarly, the analysis can be strictly physics based and/or scaled based on test data, in accordance with various embodiments. In various embodiments, structural simulations for unsteady CFD can also be performed an analyzed and be within the scope of this disclosure.
In various embodiments, the process 250 can extend directly from step 262 to step 212. For example, the structural simulations in steps 264, 266, and the structural assessment in step 276 can be optional, in accordance with various embodiments.
In various embodiments, while the structures analysis is being performed in steps 254, 256, 258, 260, 262, 264, 266, 268, an aerodynamic analysis can be performed simultaneously in steps 270, 272, 274. For example, in step 270 a cold to hot analysis of the IBR 100 can be performed prior to performing an aerodynamic analysis. A cold to hot analysis includes the change in the shape of IBR 100 from the conditions the airfoil was inspected at to the engine operating conditions of interest in the aerodynamic analysis based on structural boundary conditions.
In various embodiments, the aerodynamic model can be modified in step 272 to replicate the potential repair blend profile 160 and be as similar as possible to the potential repair blend profile model in step 256 (step 272). In various embodiments, the aerodynamic model with the potential repair blend profile modeled and the cold to hot analysis serving as inputs can be analyzed via computational fluid dynamics (e.g., via a fine particle model (FPM)) using aerodynamic boundary conditions as described previously herein.
In various embodiments, results from the HCF assessment and the crack growth assessment in step 276, and results from the CFD analysis from step 274 can be compared to experience-based criteria in step 212 of process 200 as described previously herein.
Thus, if the HCF assessment and the crack growth assessment meet the experience-based criteria in step 212, the process proceeds to step 214 of process 200. If the results from the HCF assessment and the crack growth assessment do not meet the experience-based criteria in step 212, then the process proceeds to step 222 in process 200 as described previously herein.
Referring now to
Similarly, although inspection system 285 and repair system 290 are illustrated as separate systems with separate processors, memories and user interfaces, the present disclosure is not limited in this regard. For example, the inspection system 285 and the repair system 290 may be combined into a single system that communicates with the analysis system 600, in accordance with various embodiments.
In various embodiments, the analysis system 600 may include one or more processors 602. The analysis system 600 may be configured to process a significant amount of data during an analysis step as described further herein. In this regard, the analysis system 600 may be configured for remote computing (e.g., cloud-based computing), or the like. Thus, a processing time and a volume of data analyzed may be greatly increased relative to typical repair systems, in accordance with various embodiments.
In various embodiments, the inspection system 285, the analysis system 600, and the repair system 290 each include a computer system comprising a processor (e.g., processor 286, processor(s) 602, and/or processor 292) and a memory (e.g., memory 287, memory 604, memory 294). The inspection system 285 and the repair system 290 may each comprise a user interface (UI) (e.g., UI 288, UI 296). In various embodiments, the inspection system 285 and the repair system 290 may utilize a single user interface to control both systems. The present disclosure is not limited in this regard.
The analysis system 600 may further comprise a database 606. In various embodiments, the database 606 comprises various stored data for use in the analysis system 600. The database 606 may include an inspected IBR database (e.g., with data from various prior inspected IBRs), a repair data database (e.g., with data from various prior repairs performed/approved), a load data database (e.g., with engine load data from structural and/or aerodynamic analysis), a test data database (e.g., with engine specific test data used for validation of structural and/or aerodynamic analysis), a design data database (e.g., with design models having nominal dimensions according to a product definition of the IBR 100), and/or a material data database (e.g., with material for each component utilized in an analysis step), in accordance with various embodiments.
System 280 may be configured for inspecting, analyzing, and repairing an IBR 100, in accordance with various embodiments. In this regard, a repair process for an IBR 100 may be fully automated, or nearly fully automated, in accordance with various embodiments, as described further herein.
In various embodiments, systems 285, 600, 290 may each store a software program configured to perform the methods described herein in a respective memory 287, 604, 294 and run the software program using the respective processor 286, 602, 292. The systems 285, 600, 290 may include any number of individual processors 286, 602, 292 and memories 287, 604, 294. Various data may be communicated between the systems 285, 600, 290 and a user via the user interfaces (e.g., UI 288, UI 296). Such information may also be communicated between the systems 285, 600, 290 and external devices, database 606, and/or any other computing device connected to the systems 285, 600, 290 (e.g., through any network such as a local area network (LAN), or wide area network (WAN) such as the Internet).
In various embodiments, for systems 285, 600, 290, each processor 286, 602, 292 may retrieve and executes instructions stored in the respective memory 287, 604, 294 to control the operation of the respective system 285, 600, 290. Any number and type of processor(s) (e.g., an integrated circuit microprocessor, microcontroller, and/or digital signal processor (DSP)), can be used in conjunction with the various embodiments. The processor 286, 602, 292 may include, and/or operate in conjunction with, any other suitable components and features, such as comparators, analog-to-digital converters (ADCs), and/or digital-to-analog converters (DACs). Functionality of various embodiments may also be implemented through various hardware components storing machine-readable instructions, such as application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs) and/or complex programmable logic devices (CPLDs).
The memory 287, 604, 294 may include a non-transitory computer-readable medium (such as on a CD-ROM, DVD-ROM, hard drive or FLASH memory) storing computer-readable instructions stored thereon that can be executed by the processor 286, 602, 292 to perform the methods of the present disclosure. The memory 287, 604, 294 may include any combination of different memory storage devices, such as hard drives, random access memory (RAM), read only memory (ROM), FLASH memory, or any other type of volatile and/or nonvolatile memory.
The system 285, 290 may receive and display information via a respective user interface (e.g., UI 288 and/or UI 296). The user interfaces (e.g., UI 288 and/or UI 296) include various peripheral output devices (such as monitors and printers), as well as any suitable input or control devices (such as a mouse and keyboard) to allow users to control and interact with the software program. Although illustrated as not including a user interface, the analysis system 600 is not limited in this regard. For example, a user interface for the analysis system 600 can have a user interface to facilitate load inputs, retrieval of information from the inspection system 285, or the like.
In various embodiments, inspection system 285 and repair system 290 may each be in electronic communication with analysis system 600, directly or via a respective user interface (e.g., UI 288 and/or UI 296). inspection system 285 and repair system 290 may comprise any suitable hardware, software, and/or database components capable of sending, receiving, and storing data. For example, inspection system 285 and/or repair system 290 may comprise a personal computer, personal digital assistant, cellular phone, smartphone (e.g., those running UNIX-based and/or Linux-based operating systems such as IPHONE®, ANDROID®, and/or the like), IoT device, kiosk, and/or the like. Inspection system 285 and/or repair system 290 may comprise an operating system, such as, for example, a WINDOWS® mobile operating system, an ANDROID® operating system, APPLE® IOS®, a LINUX® operating system, and the like. Inspection system 285 and/or repair system 290 may also comprise software components installed on inspection system 285 and/or repair system 290 and configured to enable access to various system 280 components. For example, inspection system 285 and/or repair system 290 may comprise a web browser (e.g., MICROSOFT INTERNET EXPLORER®, GOOGLE CHROME®, APPLE SAFARI® etc.), an application, a micro-app or mobile application, or the like, configured to allow the inspection system 285 and/or repair system 290 to access and interact with analysis system 600 (e.g., directly or via a respective UI, as discussed further herein).
Referring now to
The inspection system 285 comprises a controller 301, a support structure 302, a shaft 308, and a scanner 310. In various embodiments, the control system 400 comprises the controller 301, the scanner 310, a memory 402, a motor 404, a database 406, and sensor(s) 408, sensor(s) 410, and inspection component 412. In various embodiments, the inspection system 285 comprises a device 305 configured for bladed rotor repair and/or bladed rotor inspection.
In various embodiments, the support structure 302 comprises a base 303, a first vertical support 304, a second vertical support 306. In various embodiments, the base 303 may be annular in shape. Although illustrated as being annular, the present disclosure is not limited in this regard. For example, the base 303 may be semi-annular in shape, a flat plate, or the like. In various embodiments, the vertical supports 304, 306 extend vertically upward from the base 303 on opposite sides of the base (e.g., 180 degrees apart, or opposite sides if the base 303 where a square plate). The shaft 308 extends from the first vertical support 304 to the second vertical support 306. The shaft 308 may be rotatably coupled to the motor 404, which may be disposed within the first vertical support 304, in accordance with various embodiments. The shaft 308 may be restrained vertically and horizontally at the second vertical support 306 but free to rotate relative to the second vertical support about a central longitudinal axis of the shaft 308. In various embodiments, a bearing assembly may be coupled to the second vertical support 306 to facilitate rotation of the shaft, in accordance with various embodiments.
In various embodiments, the IBR 100 to be inspected in accordance with the inspection step 202 of the process 200 via the inspection system 285 may be coupled to the shaft 308 (e.g., via a rigid coupling, or the like). The present disclosure is not limited in this regard, and the shaft 308 may be coupled to the IBR 100 to be inspected by any method known in the art and be within the scope of this disclosure.
In various embodiments, the scanner 310 is operably coupled to a track system 312. In various embodiments, the track system 312 may comprise a curved track 314 and a vertical track 316. The vertical track 316 may slidingly couple to the vertical track 316 (e.g., via rollers or the like). The scanner 310 may be slidingly coupled to the vertical track 316 (e.g., via a conveyor belt, linkages, or the like). In various embodiments, the scanner 310 is configured to extend from the track system 312 towards the IBR 100 during inspection of the IBR 100 in accordance with step 202 of the process 200. In this regard, the inspection system 285 may further comprise a control arm 322 (e.g., a robot arm), an actuator (e.g., in combination with the track system 312) or the like. Although described herein with tracks 314, 316. a control arm 322, and/or an actuator of track system 312, the present disclosure is not limited in this regard. For example, any electronically controlled (e.g., wireless or wired) component configured to move the scanner 310, a machining tool (e.g., a mill, a cutter, a lathe, etc.), or the like in six degrees of freedom relative to the IBR 100 is within the scope of this disclosure.
In various embodiments, the inspection component 412 comprises rollers for the curved track, a conveyor belt for the vertical track, and/or a robotic arm coupled to the scanner 310. In various embodiments, the inspection component 412 comprises only a control arm 322 (e.g., a robot arm). In various embodiments, the inspection component 412 comprises only the rollers for the curved track 314 and the conveyor belt or linkages for the vertical track 316. The present disclosure is not limited in this regard. In various embodiments, the inspection component 412 is stationary and the IBR 100 being inspected is moveable along three-axis, five-axis, or the like. The present disclosure is not limited in this regard.
In various embodiments, the scanner 310 comprises a coordinate measuring machine (CMM), a mechanical scanner, a laser scanner, a structured scanner (e.g., a white light scanner, a blue light scanner, etc.), a non-structured optical scanner, a non-visual scanner (e.g., computed tomography), or the like. In various embodiments, the scanner 310 is a blue light scanner. In various embodiments, the scanner 310 may be swapped with another scanner at any point during an inspection step 202 as described further herein. In various embodiments, the inspection system 285 may be configured to swap the scanner 310 with a different scanner during the inspection step 202 of process 200 as described further herein.
A “blue light scanner” as disclosed herein refers to a non-contact structure light scanner. The blue light scanner may have a scan range of between 100×75 mm2-400×300 mm2, in accordance with various embodiments. In various embodiments, an accuracy of the blue light scanner may be between 0.005 and 0.015 mm. In various embodiments, the blue light scanner be able to determine distances between adjacent points in the point cloud of between 0.04 and 0.16 mm as measured across three axes. In various embodiments, a volume accuracy of the blue light scanner may be approximately 0.8 mm/m. In various embodiments, a scan depth may be between approximately 100 and 400 mm. In various embodiments, the blue light scanner may comprise a light source including a blue LED. In this regard, the blue light scanner may be configured to emit an average wavelength between 400 and 450 nm, in accordance with various embodiments. Although described with various specifications herein, the blue light scanner is not limited in this regard, and one skilled in the art may recognize the parameters of the blue light scanner may extend outside the exemplary ranges. Use of a blue light scanner provides a high resolution point cloud for a three dimensional object.
In various embodiments, the inspection system 285 further comprises a control arm 320 of the repair system 290. In various embodiments the control arm 320 comprises a tool holder 321. The tool holder 321 is configured to couple to a subtractive component 323 (e.g., a mill, a lathe, a cutter, etc.). In various embodiments, the control arm 322 of inspection system 285 may be a control arm for the repair system 290 as well. In various embodiments, the control arms 320, 322 may be used in both the repair system 290 and the inspection system 285. The present disclosure is not limited in this regard.
The controller 301 may be integrated into computer system of the inspection system 285 (e.g., in processor 286 and/or memory 287 from
System program instructions and/or controller instructions may be loaded onto a non-transitory, tangible computer-readable medium having instructions stored thereon that, in response to execution by a controller, cause the controller to perform various operations. The term “non-transitory” is to be understood to remove only propagating transitory signals per se from the claim scope and does not relinquish rights to all standard computer-readable media that are not only propagating transitory signals per se. Stated another way, the meaning of the term “non-transitory computer-readable medium” and “non-transitory computer-readable storage medium” should be construed to exclude only those types of transitory computer-readable media which were found in In Re Nuijten to fall outside the scope of patentable subject matter under 35 U.S.C. § 101.
In various embodiments, the motor 404 of the control system 400 is operably coupled to the shaft 308 of the control system 400. In various embodiments, the motor 404 may comprise a direct current (DC) stepper, an alternating current (AC) motor or the like. The present disclosure is not limited in this regard. In various embodiments, the sensor(s) 408 include Hall effect sensor(s), optical sensor(s), resolver(s), or the like. In various embodiments, sensor(s) 408 may include sensor(s) configured to detect an angular position of the shaft 308 during an inspection step for an IBR 100 (e.g., step 202 from the process 200). In this regard, during inspection of the IBR 100, the controller 301 receives sensor data from the sensor(s) 408. The controller 301 can utilize the sensor data received from the sensor(s) 408 to correlate an angular position of the IBR 100 being inspected with a location of the scanner 310 as described further herein. In various embodiments, the IBR 100 may remain stationary throughout an inspection process (e.g., inspection step 202 of process 200) and only a control arm (e.g., control arm 320 and/or control arm 322) may move. Thus, coordinates of the control arm(s) may be determined via sensor(s) 408 in a similar manner to orient and construct the IBR 100 being inspected.
In various embodiments, the sensor(s) 410 are configured to detect a position of the scanner 310 during the inspection step 202 of process 200. In this regard, sensor(s) 410 may be position sensors (e.g., capacitive displacement sensors, eddy-current sensors, Hall effect sensors, inductive sensors, optical sensors, linear variable differential transformer (LVDT) sensors, photodiode array sensors, piezoelectric sensors, encoders, potentiometer sensors, ultrasonic sensors or the like). The present disclosure is not limited in this regard. Thus, during inspection of the IBR 100 in accordance with step 202 of process 200, controller 301 is able to determine a location of the scanner 310 and an angular position of the IBR 100 throughout the inspection. Thus, based on the location of the scanner 310, an angular location of the IBR 100 and scanning data received from the scanner 310, a digital map (e.g., a robust point cloud) can be generated during the inspection step 202 of process 200 for the IBR 100 being inspected. In various embodiments, the point cloud encompasses the entire IBR 100 (e.g., between 95% and 100% of a surface area of the IBR 100, or between 99% and 100% of the surface area of the IBR 100).
Referring now to
The processor 602 is configured to receive an input 603 from the inspection system 285 (e.g., via the control system 400 from
In various embodiments, the analysis system 600 may include a port configured to couple to a hard drive, or any other device configured to transfer data obtained from inspecting the IBR 100 in step 202 of process 200. In various embodiments, the processor 602 may be in direct electronic (e.g., wireless or wired) communication with the inspection system 285 from step 202 of process 200. In various embodiments, the processor 602 is configured to communicate with the IBR inspection system over a network, or the like. The present disclosure is not limited in this regard.
In various embodiments, the processor 602 is in communication with a user interface (“UI”) 630, which includes a user device 640. The analysis system 600 can be configured for determining a repaired IBR 170 having repair blend profiles 160 as shown in
In various embodiments, the database 606 includes an inspected IBR database 612 including available IBRs 100 for use in a stack of IBRs 110. In this regard, the analysis system 600 may be configured to mix and match IBRs 100, which were on different gas turbine engines 20 from
In various embodiments, the analysis system 600 may store a software program configured to perform the methods described herein in the memory 604 and run the software program using the processor 602. The analysis system 600 may include any number of individual processors 602 and memories 604. Various data may be communicated between the analysis system 600 and a user via the UI 630 and/or the inspection system 285. Such information may also be communicated between the analysis system 600 and any other external devices (e.g., a computer numerical control (CNC) machine, an additive manufacturing machine, such as a directed energy deposition (DED) machine, etc.), and/or any other computing device connected to the analysis system 600 (e.g., through any network such as a local area network (LAN), or wide area network (WAN) such as the Internet).
In various embodiments, the processor 602 of the analysis system 600 retrieves and executes instructions stored in the memory 604 to control the operation of the analysis system 600.
In various embodiments, the database 606 comprises various stored data for use in the analysis system 600 as described further herein. The database 606 may include an inspected IBR database 612, a repair data database 614, a load data database 616, a test data database 618, a design data database 620, and/or a material data database 622, in accordance with various embodiments.
In various embodiments, the inspected IBR database 612 comprises one of a point cloud or a three-dimensional model of inspected IBRs 100 received from the inspection system 285 that are awaiting repair in step 214 of the process 200. In this regard, the inspected IBR database 612 may include unrepaired IBRs 100 for use in the simulation and analysis steps of process 200 (e.g., steps 210, 222, 224, 226, and/or 228). Although described herein as including the inspected IBR database 612, the present disclosure is not limited in this regard. For example, repair options may be determined for an IBR 100 individually without analysis related to other IBRs 100 in the stack of IBRs 110 from
In various embodiments, the repair data database 614 includes previously performed repairs (e.g., blend shapes, additive repair shapes, etc.). In this regard, the repair data database 614 may include any structural debits, aerodynamic debits or the like associated with the previously performed repairs for other IBRs (i.e., not the IBR being inspected). As such, as more repairs are determined, performed, and tested, the repair data database may become more robust, improving the analysis system 600 the more the analysis system 600 is utilized, in accordance with various embodiments.
In various embodiments, the load data database 616 comprises boundary conditions for the gas turbine engine 20 for use in structural analysis and aerodynamic analysis as described further herein. In this regard, for structural analysis, the boundary conditions may include temperature (i.e., highest expected blade temperature, lowest expected blade temperature, etc.), rotor speed (e.g., max rotor speed, typical rotor speed, rotor speed as a function of flight cycle, etc., rotor speed generating modal response, etc.), or any other boundary condition for the IBR 100, the stack of IBRs 110, or the high pressure compressor 52. In various embodiments, module level boundary conditions may include stack stiffness, clocking, clearances (cases, tips, back-bone bending, etc.), blade counts, axial gapping, imbalance, secondary flow influence, or the like.
In various embodiments, the test data database 618 includes engine test data associated with the IBR 100, the stack of IBRs 110, and/or the rotor module 111. For example, prior to certifying a gas turbine engine 20 from
In various embodiments, the design data database 620 comprises three-dimensional models of surrounding components (e.g., blade stages 101, exit guide vane stage 106, outer engine case 120, etc.). In this regard, the analysis system 600 may be configured to prepare a structural model (e.g., via ANSYS, ANSYS Workbench, etc.) and/or a computational fluid dynamics (CFD) model with the surrounding components and the input 603 received from the inspection system 285 and run various simulations with various repair options to determine an optimal repair for an IBR 100, for each IBR 100 in a stack of IBRs 110, or for matching repairs of IBRs 100 for various performance parameters (e.g., aerodynamic operability, mistuning, etc.). In various embodiments, the design data database further comprises an original design of the IBR being inspected. In this regard, an original three-dimensional model of the IBR 100 being inspected with nominal dimensions (i.e., nominal in accordance with a product definition of the IBR), in accordance with various embodiments.
In various embodiments, the material data database 622 comprises material data corresponding to a material of the IBR 100. In various embodiments, the IBR 100 is made of an iron-based alloy (e.g., stainless steel), nickel-based alloy, a titanium alloy, or the like. The present disclosure is not limited in this regard. In various embodiments, material properties for the material the IBR 100 is made of are stored in the material data database 622. In this regard, in response to performing a structural analysis via the IBR analysis system, the empirical results (after being scaled based on test data from the test data database 618) may be compared to a threshold zone of acceptance (e.g., a Goodman diagram with steady state stress compared to vibratory stress), where the threshold zone of acceptance is based on the material properties and a margin of safety, in accordance with various embodiments.
In various embodiments, after the processor 602 performs the various processes disclosed further herein, the processor 602 may output at least one repair process for a respective IBR 100 to the user device (e.g., through the UI 630, directly to the user device 640, or the like). In various embodiments, the output may comprise manual instructions for a blend repair process, a computer numerical control (“CNC”) machining process (e.g., blending or the like). In various embodiments, the processor 602 sends CNC machining instructions to the repair system 290 directly, and the repair system 290 repairs the IBR 100 to generate a repaired IBR 170 from
In various embodiments, the database 606 includes an inspected IBR database 612 including available IBRs 100 for use in a stack of IBRs 110 (i.e., as determined in step 232 of process 200). In this regard, the analysis system 600 may be configured to mix and match IBRs 100, which were on different gas turbine engines 20 from
In various embodiments, the analysis system 600 may store a software program configured to perform the methods described herein in the memory 604 and run the software program using the processor 602. The analysis system 600 may include any number of individual processors 602 and memories 604. Various data may be communicated between the analysis system 600 and a user via the UI 630 and/or the inspection system 285. Such information may also be communicated between the analysis system 600 and any other external devices (e.g., a computer numerical control (“CNC”) machine, etc.), and/or any other computing device connected to the analysis system 600 (e.g., through any network such as a local area network (LAN), or wide area network (WAN) such as the Internet).
In various embodiments, the processor 602 of the analysis system 600 retrieves and executes instructions stored in the memory 604 to control the operation of the analysis system 600.
In various embodiments, the database 606 comprises various stored data for use in the analysis system 600 as described further herein. The database 606 may include an inspected IBR database 612, a repair data database 614, a load data database 616, a test data database 618, a design data database 620, a material data database 622, and/or a quality data database 624 in accordance with various embodiments.
In various embodiments, the inspected IBR database 612 comprises one of a point cloud or a three-dimensional model of inspected IBRs 100 received from the inspection system 285 that are awaiting repair in step 214 of process 200 or did not meet deterministic criteria in step 230 of process 200. In this regard, the inspected IBR database 612 may include unrepaired IBRs 100 for use in system level analysis of a stack of IBRs 110, in accordance with various embodiments. In various embodiments by increasing the scope to the IBR 100 component level and/or to the rotor module 111 level, inspected IBRs that would otherwise be scrapped could potentially be combined in a stack of IBRs to meet satisfy structural criteria and system level aerodynamic criteria, in accordance with various embodiments.
In various embodiments, the repair data database 614 includes previously performed repairs (e.g., blend shapes). In this regard, the repair data database 614 may include any structural debits, aerodynamic debits or the like associated with the previously performed repairs for other IBRs (i.e., not the IBR being inspected). As such, as more repairs are determined, performed, and tested, the repair data database may become more robust, improving the analysis system 600 the more the analysis system 600 is utilized, in accordance with various embodiments.
In various embodiments, the load data database 616 comprises boundary conditions for the gas turbine engine 20 for use in structural analysis and aerodynamic analysis as described further herein. In this regard, for structural analysis, the boundary conditions may include temperature (i.e., highest expected blade temperature, lowest expected blade temperature, etc.), rotor speed (e.g., max rotor speed, typical rotor speed, rotor speed as a function of flight cycle, etc., rotor speed generating modal response, etc.), or any other boundary condition for the IBR 100, the stack of IBRs 110, or the high pressure compressor 52. In various embodiments, module level boundary conditions may include stack stiffness, clocking, clearances (cases, tips, back-bone bending, etc.), blade counts, axial gapping, imbalance, secondary flow influence, or the like.
In various embodiments, the test data database 618 includes engine test data associated with the IBR 100, the stack of IBRs 110, and/or the rotor module 111. For example, prior to certifying a gas turbine engine 20 from
In various embodiments, the design data database 620 comprises three-dimensional models of surrounding components (e.g., blade stages 101, exit guide vane stage 106, outer engine case 120, etc.). In this regard, the analysis system 600 may be configured to prepare a structural model (e.g., via ANSYS, ANSYS Workbench, etc.) and/or a computational fluid dynamics (CFD) model with the surrounding components and the input 603 received from the inspection system 285 and run various simulations with various repair options to determine an optimal repair for an IBR 100, for each IBR 100 in a stack of IBRs 110, or for matching repairs of IBRs 100 for various performance parameters (e.g., aerodynamic operability, mistuning, etc.) (i.e., for component level analysis in steps 222, 224, 226228, and/or for system level analysis performed after step 232 in process 200). In various embodiments, the design data database further comprises an original design of the IBR being inspected. In this regard, an original three-dimensional model of the IBR 100 being inspected with nominal dimensions (i.e., nominal in accordance with a product definition of the IBR), in accordance with various embodiments.
In various embodiments, the material data database 622 comprises material data corresponding to a material of the IBR 100. In various embodiments, the IBR 100 is made of an iron-based alloy (e.g., stainless steel), nickel-based alloy, a titanium alloy, or the like. The present disclosure is not limited in this regard. In various embodiments, material properties for the material the IBR 100 is made of are stored in the material data database 622. In this regard, in response to performing a structural analysis via the analysis system 600 (e.g., steps 210, 222, 224), the empirical results (after being scaled based on test data from the test data database 618) may be compared to a threshold zone of acceptance (e.g., a Goodman diagram with steady state stress compared to vibratory stress), where the threshold zone of acceptance is based on the material properties and a margin of safety, in accordance with various embodiments.
In various embodiments, the quality data database 624 comprises quality data associated with various quality information/dispositions for a known defect shapes, sizes, etc. For example, quality data (e.g., an estimated remaining life, or the like), associated with a known defect can be used for a defect having a size and shape corresponding to a known defect associated with a prior quality determination. In this regard, historical quality data can be utilized by the analysis system 600 for making dispositions and determinations for an inspected IBR as described further herein, in accordance with various embodiments.
Referring now to
In various embodiments, in response to an experience based criteria not being met (e.g., an initial repair blend profile exceeding a size of an experience based repair blend profile as described previously herein) in step 212 from process 200, the process 1100 can be initiated. Although process 1100 is shown having various steps, some of these steps could have been performed prior to process 1100 and still be within the scope of this disclosure.
In various embodiments, the process 1100 comprises generating a structural model 1102 (step 1101). In various embodiments, the structural model 1102 that is generated in step 1101 can be generated from various inputs (e.g., a flight envelope and/or loading from the load data database 616, a measured geometry from an inspected IBR provided by input 603, and/or a repair blend profile generated from input 603 in step 208 of process 200). In various embodiments, the repair blend profile can be generated based on specific defect parameters from the measured defect of the IBR provided by input 603.
In various embodiments, the process 1100 further comprises performing structural simulations on the structural model 1102 (step 1103). In various embodiments, the structural simulations can include a mistuning analysis 1104 (e.g., in accordance with step 266 from process 250), a dynamic analysis 1108 (e.g., a modal analysis), and a static analysis 1110. In various embodiments, the mistuning analysis 1104, the dynamic analysis 1108, and the static analysis 1110 can be performed via any structural simulation software, such as ANSYS, ANSYS Workbench, or the like. The present disclosure is not limited in this regard.
In various embodiments, boundary conditions of the static analysis includes inputs from the load data database 616. In this regard, worst case flight conditions (i.e., flight conditions that generate the greatest loads and/or induce the greatest amount of stress in an IBR) can be input into the static analysis 1110 as boundary conditions. In various embodiments, the dynamic analysis 1108 includes the forced response analysis 226 described previously herein.
In various embodiments, the process 1100 further comprises analyzing results generated from the structural simulations in step 1103 (step 228). In various embodiments, step 228 comprises stress scaling 1112 for the dynamic analysis 1108. In various embodiments, stress scaling 1112 is based on data from test data database 618. For example, test data database 618 can include engine test data for the IBR being repaired. In this regard, the engine test data can be actual dynamic loads measured on a test engine or rig, in accordance with various embodiments. During certification of an aircraft, various tests are performed to correlate simulated dynamic stress to actual dynamic stress. In this regard, the test data database 618 can include scale factors used to correlate results from the dynamic analysis 1108 to an expected stress that the simulated IBR would see on an engine.
In various embodiments, step 228 further comprises a fatigue assessment 1114 based on these various simulations. The fatigue assessment 1114 is performed with various inputs. For example, results from the static analysis 1110 provide steady state stress that the repaired IBR with the large blend profile would be expected to experience during operation of a gas turbine engine. Similarly, results from the dynamic analysis and the mistuning analysis (after stress scaling 1112), can be expected to be experienced by the repaired IBR with the large blend profile during operation of the gas turbine engine in response to being excited at a respective frequency. In various embodiments, the dynamic analysis 1108 and mistuning analysis 1104 after stress scaling 1112 can provide an expected alternating stress for various locations along a surface of a repaired IBR (e.g., various nodes in an FEA simulation). Similarly, the static analysis 1110 can provide an expected mean stress for various locations along a surface of repaired IBR under worst case loading as described previously herein (e.g., thermal loading, structural loading, or the like).
In various embodiments, each node of a respective FEA model (e.g., from structural model 1102) can be analyzed with respect to modified Goodman diagram (as shown in
In various embodiments, yield stress can be determined through experimentation of the material where an axial force is applied to a sample material and a resulting deformation is measured. In this regard, as described above, this testing can be performed on a statistically significant material samples and the respective data can be placed in the material data database 622 as described previously herein.
In various embodiments, an endurance limit can be determined via an axial testing machine, a bending fatigue machine, and/or a torsional fatigue machine. The present disclosure is not limited in this regard. This testing can be performed on a statistically significant material samples and the respective data can be placed in the material data database 622 as described previously herein.
In various embodiments, an ultimate tensile strength can be determined by pulling a material being tested in tension until fracture of the material occurs. An amount of force applied to the sample and an elongation of the sample can be measured to calculate the ultimate tensile stress of the material.
In various embodiments, the material can also be tested at various temperatures (i.e., expected operating temperatures, expected maximum operating temperatures, expected minimum operating temperatures, expected worst case operating temperatures of related components, or the like). The present disclosure is not limited in this regard. As a temperature of the IBR can effect the various material properties, expected temperature data can also be utilized for the fatigue assessment 1114 in step 228.
In various embodiments, based on results from the step 1103 and stress scaling 1112, the fatigue assessment 1114 can include plotting stresses from the mistuning analysis and/or the dynamic analysis (i.e., alternating stresses) with stress results from the static analysis 1110 (i.e., mean stresses) for the repaired IBR with the large repair blend profile under various loading conditions. For example, a worst case alternating stress for each node can be plotted with a mean stress for the same node under each loading condition on the modified goodman diagram shown in
In various embodiments, the modified Goodman diagram as shown in
Referring back to
Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to “at least one of A, B, or C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Different cross-hatching is used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
Systems, methods, and apparatus are provided herein. In the detailed description herein, references to “one embodiment,” “an embodiment,” “various embodiments,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Numbers, percentages, or other values stated herein are intended to include that value, and also other values that are about or approximately equal to the stated value, as would be appreciated by one of ordinary skill in the art encompassed by various embodiments of the present disclosure. A stated value should therefore be interpreted broadly enough to encompass values that are at least close enough to the stated value to perform a desired function or achieve a desired result. The stated values include at least the variation to be expected in a suitable industrial process, and may include values that are within 10%, within 5%, within 1%, within 0.1%, or within 0.01% of a stated value. Additionally, the terms “substantially,” “about” or “approximately” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the term “substantially,” “about” or “approximately” may refer to an amount that is within 10% of, within 5% of, within 1% of, within 0.1% of, and within 0.01% of a stated amount or value.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Finally, it should be understood that any of the above described concepts can be used alone or in combination with any or all of the other above described concepts. Although various embodiments have been disclosed and described, one of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. Accordingly, the description is not intended to be exhaustive or to limit the principles described or illustrated herein to any precise form. Many modifications and variations are possible in light of the above teaching.
This application is a non-provisional of, and claims priority to, and the benefit of U.S. Provisional Application No. 63/327,748, entitled “BLADED ROTOR INSPECTION, ANALYSIS AND REPAIR SYSTEMS AND METHODS,” filed on Apr. 5, 2022, which is hereby incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
63327748 | Apr 2022 | US |