Law enforcement agencies increasingly rely on social media data to perform criminal investigations. An agency typically serves a search warrant, national security letter, subpoena, or another type of legal process on a social media platform administrator which provides a legal process return to the agency in response to the legal process. Legal process returns may be provided as electronic data files in a number of formats including, for example, PDF files, text files, spreadsheets, and database files. They can include information such as, for example, contact information, friend lists, private messages, public posts, “tag” and “like” or “favourite” history, phone numbers, login history, and IP address information.
Problems arise when a legal process return is received as an electronic data file that includes unstructured data. The unstructured data, for example, may need to be manually processed by law enforcement agencies in order to aggregate the data and produce useful reports. Such manual processing may require significant amounts of time to accomplish (e.g., weeks or months) and can reduce the value of the acquired information, as the information may become stale or irrelevant during that time. Moreover, the size of unstructured electronic data files can make it difficult or impossible to view the files using native files viewers. For example, legal process returns that include unstructured data can include several hundreds of thousands of pages of data. These electronic data files may exceed sizes of 500 Mb, making it impossible for agencies to view and search the files on conventional data management systems.
Reference will now be made to the accompanying drawings, which illustrate exemplary embodiments of the present disclosure and in which:
Reference will now be made in detail to exemplary embodiments, the examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The disclosed embodiments describe improved methods and systems for structuring data from unstructured electronic data files. The improved data structuring systems and methods can receive electronic data files including unstructured social media content in excess of 500 Mb in size, parse the unstructured content, structure the parsed content by assigning object types and property types to the parsed content, and stored the structured content in a database. The disclosed data structuring systems and methods may aggregate the structured content to generate various types of data reports. The reports may include, for example, reconstructed conversations between a subject and their contacts, a list of normalized phone numbers associated with the subject, a geographic mapping of IP addresses associated with the subject, a list of IP addresses shared between the subject and other persons, a timeline of specific events (logins, subject movement, etc.), and other reports. The data structuring systems and methods may also present the aggregated structured content in an interactive graphical user interface that allows for free-form customization and exploration of the aggregated structured content.
Accordingly, the systems and methods described herein are capable of filtering large amounts of data in a quick, logical, and visually associative way. More specifically, the systems and methods can, among other things, provide the ability to display information about events and entities both temporally and geographically, and allow for the selection and grouping of different entities and events on the graphical representation. Furthermore, the disclosed systems and methods are capable of resolving multiple instances of object and property references across enterprise databases into a canonical format based on a database ontology.
As shown in the example embodiment of
Network 150 may include any combination of communications networks. For example, network 150 may include the Internet and/or any type of wide area network, an intranet, a metropolitan area network, a local area network (LAN), a wireless network, a cellular communications network, etc. In some embodiments, client 110, 120 may be configured to transmit data and information through network 150 to an appropriate data importer, such as, for example, data importer 130. For example, client 110, 120 may be configured to transmit electronic data files including various types of content to data importer 130. In some aspects, client 110, 120 may also be configured to receive information from data importer 130 through network 150.
Data structuring system 130 may be configured to communicate and interact with social media platform 110, 120, and database 140. In certain embodiments, data structuring system 130 may be standalone system or apparatus, or it may be part of a subsystem, which may be part of a larger system. For example, data structuring system 130 may represent a distributed system that includes remotely located sub-system components that communicate over a communications medium (e.g., network 150) or over a dedicated network, for example, a LAN.
In some embodiments, data structuring system 130 may be configured to receive data and information through network 150 from various devices and systems, such as, for example, social media platform 110, 120. For example, data structuring system 130 may be configured to receive legal process returns in the form of electronic data files from social media platform 110, 120, and other devices and systems. The electronic data files may be received in various file formats and may include content that is provided by social media platform 110, 120 in response to a legal process such as warrant, national security letter, subpoena, etc., relating to a criminal investigation conducted by a law enforcement agency. The content may include social media content associated with a subject of the criminal investigation such as, for example, contact information, friend lists, private messages, phone numbers, login information, IP address information, photos, photo albums, profiles of persons associated with the subject, email addresses, public social media posts (e.g., wall posts, microblog posts such as Tweets, and status updates), location updates (e.g., check-ins and public posts regarding the subject's location), etc. Data structuring system 130 may be configured to structure and import the content included in the received electronic data files into one or more structured databases such as, for example, database 140.
Database 140 may include one or more logically and/or physically separate databases configured to store data. The data stored in database 140 may be received from data structuring system 130, from social media platform 110, 120 and/or may be provided as input using conventional methods (e.g., data entry, data transfer, data uploading, etc.). The data stored in the database 140 may take or represent various forms including, but not limited to, electronic data files, object mappings, property mappings, report templates, user profile information, and a variety of other electronic data or any combination thereof. In some embodiments, database 140 may include separate databases that store electronic data files, object and property mappings, and report templates, respectively. In still some other embodiments, the databases that store electronic data files, object and property mappings, and report templates can be combined into various combinations. In still some other embodiments, database 140 includes a single database that stores electronic data files, object and property mappings, and report templates.
In some embodiments, database 140 may be implemented using any suitable form of a computer-readable storage medium. In some embodiments, database 140 may be maintained in a network attached storage device, in a storage area network, or combinations thereof, etc. Furthermore, database 140 may be maintained and queried using numerous types of database software and programming languages, for example, SQL, MySQL, IBM DB2®, Microsoft Access®, PERL, C/C++, Java®, etc. Although
As shown in
Examples of communications interface 210 may include a modem, a wired or wireless communications interface (e.g., an Ethernet, Wi-Fi, Bluetooth, Near Field Communication, WiMAX, WAN, LAN, etc.), a communications port (e.g., USB, IEEE 1394, DisplayPort, DVI, HDMI, VGA, Serial port, etc.), a PCMCIA slot and card, etc. Communications interface 210 may receive data and information in the form of signals, which may be electronic, electromagnetic, optical, or other signals capable of being received by communications interface 210. These signals may be provided to communications interface 210 via a communications path (not shown), which may be implemented using wireless, wire, cable, fiber optics, radio frequency (“RF”) link, and/or other communications channels.
Data structuring system 130 may also include one or more file databases 220. File database 220 may be configured to store electronic data files received by data structuring system 130 at communications interface 210.
Data structuring system 130 may also include one or more structuring components 230 that may parse the unstructured social media content included the electronic data files stored in file database 220 and structure the parsed data according to a database ontology 240. Exemplary embodiments for defining an ontology (such as database ontology 240) are described in U.S. Pat. No. 7,962,495 (the '495 Patent), issued Jun. 14, 2011, the entire contents of which are expressly incorporated herein by reference. Among other things, the '495 patent describes embodiments that define a dynamic ontology for use in creating data in a database. For creating a database ontology 240, for example, one or more object types may be created where each object type can include one or more properties. The attributes of object types or property types of the database ontology 240 can be edited or modified at any time.
In some embodiments, object types may be further divided into a number of sub-categories. For example, object types may be divided into entity types, event types and document types. Entity types may define a person, place, thing, or idea. Examples, of entity types include social media platform profile (e.g., Facebook™, or Twitter™ user profile), IP address, email address, photo album, friend's list, and location. Event types may define a type of social media platform event associated with the subject of a criminal investigation. Event types may include, for example, the subject logging into their social media platform profile, posting a photo to the subject's social media platform profile, sending friend requests, and accepting friend requests. Document types may define a type of social media platform document created by the subject or the subject's contacts. Examples of document types include private messages, status updates, microblog posts (e.g., Facebook™ wall posts Twitter™ Tweets), comments on other users' microblog posts, pictures, and videos.
In some embodiments, each property type is declared to be representative of one or more object types. A property type is representative of an object type when the property type is intuitively associated with the object type. For example, a property type of “Text/Description” may be representative of an object type “Private Message” but not representative of an object type “Photo Album.” In some embodiments, each property type has one or more components and a base type. In some embodiments, a property type may comprise a string, a date, a number, or a composite type consisting of two or more string, date, or number elements. Thus, property types are extensible and can represent complex data structures. Further, a parser definition can reference a component of a complex property type as a unit or token.
An example of a property having multiple components is a Name property having a Last Name component and a First Name component. An example of raw input data is “Smith, Jane.” An example parser definition specifies an association of imported input data to object property components as follows: {LAST_NAME}, {FIRST_NAME}→Name:Last, Name:First. In some embodiments, the association {LAST_NAME}, {FIRST_NAME} is defined in a parser definition using regular expression symbology. The association {LAST_NAME}, {FIRST_NAME} indicates that a last name string followed by a first name string comprises valid input data for a property of type Name. In contrast, input data of “Smith Jane” would not be valid for the specified parser definition, but a user could create a second parser definition that does match input data of “Smith Jane.” The definition Name:Last, Name:First specifies that matching input data values map to components named “Last” and “First” of the Name property. As a result, parsing the unstructured data in an electronic data file using the parser definition results in assigning the value “Smith” to the Name:Last component of the Name property, and the value “Jane” to the Name:First component of the Name property.
In some embodiments, object types and property types may be specific to each social media platform. For example, database ontology 240 may include sets of object types and property types that are specific to Facebook™, Twitter™, Instagram™, etc. In order to determine which set of object/property types to use for an electronic data file, structuring component 230 may scan a header included in the electronic data file to detect a social media platform identifier. For example, the header may include the name Facebook™ and the warrant or subpoena number. Structuring component 230 may detect the name Facebook™ in the file and select the set of Facebook™ object/property types in response.
In some embodiments, parser 232 may parse the unstructured content included in electronic data files stored in files database 220 to identify one or more objects based on the set of object/property types selected by structuring component 230. In order to parse the unstructured content, parser 232 may scan the unstructured content using natural language processing techniques to identify one or more words or strings of words. In some embodiments, where the electronic data files includes text that is unrecognizable by parser 232 (e.g., where the file includes PDF images of text), structuring component 230 may extract the text using techniques such as, for example, optical character recognition, optical word recognition, intelligent character recognition, and intelligent word recognition. Parser 232 may compare the identified words or strings of words to the selected set of object types defined in database ontology 240 to identify object types included in the electronic data file. Once an object type has been identified, parser 232 may identify objects included in the electronic data file of that object type. As an example, parser 232 may identify the string “Registered Email Address” and compare the string to object types defined in database ontology 240. If the string matches a known object type, parser 232 may identify the next string of text as the subject's email address (e.g., johndoe@email.com). A mapper 234 may assign object types and property types to the identified objects. The objects, assigned object types, and assigned property types make up a structured object model of the electronic data file. Each object model may correspond to a legal process return received in response to a legal process for social media platform content associated with a subject. The subject may be, for example, a subject of a criminal investigation conducted by a law enforcement agency. Object models may be stored in an object model database 250 and are described in more detail below in reference to
In some embodiments, an object explorer 260 may generate an interactive graphical user interface (GUI) that allows for the customization and exploration of the structured objects and properties. For example, the interactive GUI may include various content filters that aggregate the structured objects and properties based on various filter properties. The content filters may, for example, filter objects based on entity type (e.g., IP address, email address, friend's list, etc.), event type (e.g., login events, phot post events, etc.), and document types (e.g., private message, social media profile status update, wall posts, etc.). The content filters may also filter properties based on, for example, property types (e.g., warrant number, online identifier, date range, location, etc.).
Once the structured objects and/or properties have been filtered based on one or more content filters, the interactive GUI may allow for customized data visualizations of the filtered data to be displayed. For example, a timeline of login events may be presented in the interactive GUI when the structured objects are filtered by a login event type. The timeline may display when the login events occurred. When unstructured content associated with multiple subjects have been structured and aggregated, the timeline presentation on the interactive GUI can display how many login events occurred at a given time and which subject logged in at a particular time so that conclusions about real-world interactions between the subjects can be deduced or inferred. In some embodiments, the customized data visualizations of the filtered data can be further customized, or a subset of the visualized data can be selected so that another customized data visualization can be displayed. For example, based on the login timeline example above, a subset of the visualized login data can be selected, geocoded (using a MaxMind database, for example), and used to generate a customized data visualization of a map showing the geographic locations associated with each selected login event. Accordingly, the interactive GUI allows for free-form interaction and customization of the structured objects and properties to generate useful visualizations of the structured objects and properties so that various conclusions and extrapolations can be performed.
As another example of the above interactive GUI, structured photograph objects may be filtered by a MD5 hash property type so that photograph objects stored in object model database 250 with same or similar MD5 hashes can be aggregated and their properties analysed. For example, a photograph with an MD5 hash may have been posted on a social media profile of a subject. The interactive GUI can filter structured photograph objects based on the MD5 hash of the posted photograph to identify other social media profiles associated with subjects that have also posted the same photograph, therefore allowing conclusions and inferences of interactions between subjects who have posted the same photograph to be drawn.
Object explorer may also generate various types of data reports based on the object models stored in object model database 250. The data reports may include data models of objects and properties defined in an object model such as, for example, timelines and geographic mappings of events, histograms of objects and properties, reconstruction of social media conversations (e.g., private message conversations between two or more users), mappings of shared IP addresses between two or more users, picture matching, friends list graphs, and other types of data models.
In order to generate a data report, object explorer may provide instructions to a GUI generator 290 to generate a GUI of object explorer 260. In response to the received instructions, GUI generator 290 may generate an interactive GUI for display on a display 295. Data structuring system 130 may also include one or more input/output (I/O) devices 270 (e.g., physical keyboards, virtual touch-screen keyboards, mice, joysticks, styluses, etc.) that are configured to receive user instructions in the form of user input. The received instructions may include instructions to generate data reports based on objected models stored in object model database 250. Object explorer 260 may receive the user input from I/O 270, generate the request data report based on a report template associated with the requested data report, and may provide instructions to GUI generator 290 for generating a display of the generated data report on display 295.
In some embodiments, object explorer 260 may include a template selector 262 that selects a report template among the report templates stored in a report template database 280. The template selection may be selected based on user input received from I/O 270. For example, the user input received at object explorer 260 may identify a data report type requested by the user, and template selector 262 may retrieve the report template corresponding to the requested data report type. As an example, if the user requests a data report of all the telephone numbers included in an object model, template selector 262 may select a telephone number histogram report template from report template database 280. As another example, if the user requests a data report including a geographic mapping of a subject's social media platform login activity between 10:30 p.m., Jul. 15, 2013 and 3:15 a.m., Jul. 16, 2013, template selector 262 may select the appropriate template from report template database 280.
Once template selector 262 has selected the appropriate report template for the requested data report, a template applicator 264 may obtain objects and properties included in the object model that are required by the report template. Template applicator 264 may generate the requested report using the obtained objects and properties based on the selected report template. Template applicator 264 may provide instructions for GUI generator 290 to display the generated data report on display 295.
Structuring component 230, object explorer 260, and GUI generator 290 may be implemented as hardware modules configured to execute the functions described herein. Alternatively, one or more processors suitable for the execution of instructions may be configured to execute the functions of structuring component 230, object explorer 260, and GUI generator 290. For example, suitable processors include both general and special purpose microprocessors, programmable logic devices, field programmable gate arrays, specialized circuits, and any one or more processors of any kind of digital computer that may be communicatively coupled to a physical memory (not shown) storing structuring component 230, object explorer 260, and GUI generator 290 in the form of instructions executable by the processor. Suitable memories may include, for example, NOR or NAND flash memory devices, Read Only Memory (ROM) devices, Random Access Memory (RAM) devices, storage mediums such as, for example, hard drives, solid state drives, tape drives, RAID arrays, etc. As another example, the functions of structuring component 230, object explorer 260, and GUI generator 290 may be included in the processor itself such that the processor is configured to implement these functions.
File database 220, database ontology 240, object model database 250, and report template database 280 may be implemented by database 140 of
Display 295 may be implemented using devices or technology, such as a cathode ray tube (CRT) display, a liquid crystal display (LCD), a plasma display, a light emitting diode (LED) display, a touch screen type display such as capacitive or resistive touchscreens, and/or any other type of display known in the art.
Object model 300 can include, among other things, entities 310A-C, event 320A, and documents 330A-B. Each entity 310, event 320, and document 330 can further contain properties including, without limitation, representative properties, base properties, or complex properties (e.g., transcript property 350A) made up of multiple sub properties or components. Complex properties can be used to provide detailed information about entities, events, and documents.
As illustrated in
Private message documents 330A and 330B may include various properties such as, for example, a transcript property, an IP address property, “TO” and “FROM” properties, and a “date/time” property. The transcript property, such as transcript property 350A, may contain the text of private message documents (e.g., private message document 330A) as well as additional properties. The additional properties may include, for example, the name of the transcript, the character count, read receipt information, telephone numbers included in the message, and/or any attachments in the message. For example, transcript property 350A may include telephone number property 350E, which may be assigned as a property of private message document 330A. In some embodiments, the transcript property could be in an audio format or some other format instead of written. It is appreciated that many different formats can be commonly used and would be known to one of ordinary skill in the art that could replace a written or audio property.
Additionally, events, documents, and entities can contain notes and media. Notes can provide a container for textual information related to the event, document, or entity. Media can represent binary data associated with the events, documents, or entities. Media data can take the form of, for example, text documents, images, videos, or specialized formats.
Moreover, both objects and properties can contain geospatial and temporal metadata. Geospatial metadata can provide a physical location associated with an object or property. For example, private message document 330A can have an IP address property 350B which can be used to obtain the geographic location of the subject associated with social media profile entity 330A that sent the private message. As another example, login event 320A can have an IP address property 350C associated with the person associated with social media profile entity 310A logging into a social media platform. It is appreciated that the geospatial data can also be in any form that represents a location and is understood by the users of object model 300. Temporal metadata can represent either a specific point in time or a duration having a start time and an end time. For example, private message document 330A can contain a “TIME” property 350D indicating a specific date and time when the message was sent. In some embodiments duration can be indicated by including a start property and end property allowing calculation of the duration. The temporal data can be in any form (e.g., epoch time, UTC time, or local time) that represents the time of the event or the duration of the event. Moreover, in some embodiments, geospatial and temporal metadata can be correlated. For example, the geospatial and temporal metadata can correspond to one or more locations and times when a person visited those one or more locations.
Entities 310, events 320, and documents 330 can serve as links indicating relationships between the various objects. For example, private message document 330A can contain “FROM” and “TO” properties. The “FROM” property links social media profile 310A to private message document 330A and the “TO” property links social media profile 310B to private message document 330A. Thus private message document 330A, while still containing its own relevant properties (e.g., temporal properties, geospatial properties, and transcript property 350A), can act as a complex link between social media profiles 310A and 310B.
In some embodiments, GUI 400 may allow for customized data visualizations of data filtered by content filters 410-416 and 420 to be displayed. GUI 400 may include various visualization types 430 that can be used to generate displays of the filtered data. In the example illustrated in
A customized data visualization may be generated using various techniques. For example, input may be received (from I/O 270 of
In some embodiments, the customized data visualizations displayed on GUI 400 can be further customized, or a subset of the visualized data can be selected so that another customized data visualization can be displayed.
In some embodiments, a user may interact with telephone numbers 510A-D via an I/O (e.g., I/O 270 of
Data report 600 allows users to interact with private messages 610A-D. For example, a user may select a private message 610A-D via an I/O. In the example illustrated in
In some embodiments, data report 700 may be an interactive data report. For example, the data structuring system may be configured to receive input from a user corresponding to a selection of a subset of login data 620. The user may highlight a time interval of login data 720 along timeline 710. As shown in the example illustrated in
A data report illustrating the subset 730 of login data 720 geographically mapped may be displayed in response to the data structuring system receiving the user's selection of subset 730. For example, mapped login information data report 740 illustrated in
Data report 740 may illustrate the subject's locations 760 at the time of each login event included in the subset 730 of login data 720. In other words, locations 760 correspond to the subject's geographic location at the time the subject logged into the social media platform. In order to superimpose the subset 730 of login data 720 over map 750, the IP address properties associated with each login event may be traced by the data structuring system to obtain a set of geographic coordinates or other location data associated with the login event. Data structuring system may display the obtained location data as locations 760 over map 750.
It is to be understood that the example data reports illustrated in
Another data report may include a shared IP address data report. The shared IP address data report may include all the social media platform profiles associated with login events having the same IP address property. For example, a user may select an IP address associated with a subject of a criminal investigation logging into a social media platform. The data structuring system may determine all the social media platform profile logins using the same IP address, and display the identified profiles as a graph, histogram, or any other format of data report.
In some embodiments, example method 800 may include receiving an electronic data file at 810. For example, the data structuring system may receive legal process returns in the form of electronic data files from one or more social media platforms via a communications interface (e.g., communications interface 210 of
In some embodiments, example method 800 may include parsing the electronic data file to identify one or more objects included in the electronic data file at 820. For example, when the content included in the electronic data file received at 810 is unstructured content, the data structuring system may parse the unstructured data so that the data can be converted to a structured format. In some embodiments, the data structuring system includes a parser (e.g., parser 232 of
In some embodiments, example method 800 may include processing the unstructured content to identify one or more properties associated with the identified objects at 830. For example, the data structuring system may include a mapper (e.g., mapper 234 of
In some embodiments, example method 800 may include generating a data report at 840. For example, the data report may be generated by an object explorer of the data structuring system (e.g., object explorer 260 of
Embodiments of the present disclosure have been described herein with reference to numerous specific details that can vary from implementation to implementation. Certain adaptations and modifications of the described embodiments can be made. Other embodiments can be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present disclosure being indicated by the following claims. It is also intended that the sequence of steps shown in figures are only for illustrative purposes and are not intended to be limited to any particular sequence of steps. As such, it is appreciated that these steps can be performed in a different order while implementing the exemplary methods or processes disclosed herein.
This application claims the benefit of U.S. Provisional Patent Application No. 62/214,856, filed Sep. 4, 2015, entitled “SYSTEMS AND METHODS FOR STRUCTURING DATA FROM UNSTRUCTURED ELECTRONIC DATA FILES,” which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5241625 | Epard et al. | Aug 1993 | A |
5826021 | Mastors et al. | Oct 1998 | A |
5832218 | Gibbs et al. | Nov 1998 | A |
5845300 | Comer | Dec 1998 | A |
5878434 | Draper et al. | Mar 1999 | A |
5897636 | Kaeser | Apr 1999 | A |
5966706 | Biliris et al. | Oct 1999 | A |
5999911 | Berg et al. | Dec 1999 | A |
6006242 | Poole et al. | Dec 1999 | A |
6057757 | Arrowsmith et al. | May 2000 | A |
6065026 | Cornelia et al. | May 2000 | A |
6134582 | Kennedy | Oct 2000 | A |
6232971 | Haynes | May 2001 | B1 |
6237138 | Hameluck et al. | May 2001 | B1 |
6243706 | Moreau et al. | Jun 2001 | B1 |
6243717 | Gordon et al. | Jun 2001 | B1 |
6370538 | Lamping et al. | Apr 2002 | B1 |
6430305 | Decker | Aug 2002 | B1 |
6463404 | Appleby | Oct 2002 | B1 |
6519627 | Dan et al. | Feb 2003 | B1 |
6523019 | Borthwick | Feb 2003 | B1 |
6665683 | Meltzer | Dec 2003 | B1 |
6820135 | Dingman | Nov 2004 | B1 |
6850317 | Mullins et al. | Feb 2005 | B2 |
6944821 | Bates et al. | Sep 2005 | B1 |
6967589 | Peters | Nov 2005 | B1 |
6978419 | Kantrowitz | Dec 2005 | B1 |
6980984 | Huffman et al. | Dec 2005 | B1 |
7058648 | Lightfoot et al. | Jun 2006 | B1 |
7086028 | Davis et al. | Aug 2006 | B1 |
7089541 | Ungar | Aug 2006 | B2 |
7168039 | Bertram | Jan 2007 | B2 |
7174377 | Bernard et al. | Feb 2007 | B2 |
7194680 | Roy et al. | Mar 2007 | B1 |
7213030 | Jenkins | May 2007 | B1 |
7392254 | Jenkins | Jun 2008 | B1 |
7403942 | Bayliss | Jul 2008 | B1 |
7441182 | Beilinson et al. | Oct 2008 | B2 |
7441219 | Perry et al. | Oct 2008 | B2 |
7461077 | Greenwood | Dec 2008 | B1 |
7461158 | Rider et al. | Dec 2008 | B2 |
7617232 | Gabbert et al. | Nov 2009 | B2 |
7627489 | Schaeffer et al. | Dec 2009 | B2 |
7739246 | Mooney et al. | Jun 2010 | B2 |
7756843 | Palmer | Jul 2010 | B1 |
7757220 | Griffith et al. | Jul 2010 | B2 |
7765489 | Shah et al. | Jul 2010 | B1 |
7877421 | Berger et al. | Jan 2011 | B2 |
7880921 | Dattilo et al. | Feb 2011 | B2 |
7899796 | Borthwick et al. | Mar 2011 | B1 |
7912842 | Bayliss | Mar 2011 | B1 |
7917376 | Bellin et al. | Mar 2011 | B2 |
7941321 | Greenstein et al. | May 2011 | B2 |
7941336 | Robin-Jan | May 2011 | B1 |
7966199 | Frasher | May 2011 | B1 |
7958147 | Turner et al. | Jun 2011 | B1 |
7962495 | Jain | Jun 2011 | B2 |
8010507 | King et al. | Aug 2011 | B2 |
8036971 | Aymeloglu et al. | Oct 2011 | B2 |
8037046 | Udezue et al. | Oct 2011 | B2 |
8046283 | Burns | Oct 2011 | B2 |
8054756 | Chand et al. | Nov 2011 | B2 |
8073857 | Sreekanth | Dec 2011 | B2 |
8117022 | Linker | Feb 2012 | B2 |
8126848 | Wagner | Feb 2012 | B2 |
8147715 | Bruckhaus et al. | Apr 2012 | B2 |
8191005 | Baier et al. | May 2012 | B2 |
8214490 | Vos et al. | Jul 2012 | B1 |
8229902 | Vishniac et al. | Jul 2012 | B2 |
8290838 | Thakur et al. | Oct 2012 | B1 |
8302855 | Ma et al. | Nov 2012 | B2 |
8364642 | Garrod | Jan 2013 | B1 |
8386377 | Xiong et al. | Feb 2013 | B1 |
8429527 | Arbogast | Apr 2013 | B1 |
8473454 | Evanitsky et al. | Jun 2013 | B2 |
8484115 | Aymeloglu et al. | Jul 2013 | B2 |
8489641 | Seefeld et al. | Jul 2013 | B1 |
8527949 | Pleis et al. | Sep 2013 | B1 |
8554719 | McGrew | Oct 2013 | B2 |
8577911 | Stepinski et al. | Nov 2013 | B1 |
8589273 | Creeden et al. | Nov 2013 | B2 |
8601326 | Kim | Dec 2013 | B1 |
8639552 | Chen et al. | Jan 2014 | B1 |
8682696 | Shanmugam | Mar 2014 | B1 |
8683322 | Cooper | Mar 2014 | B1 |
8688573 | Rukonic et al. | Apr 2014 | B1 |
8732574 | Burr et al. | May 2014 | B2 |
8744890 | Bernier | Jun 2014 | B1 |
8798354 | Bunzel et al. | Aug 2014 | B1 |
8799313 | Satlow | Aug 2014 | B2 |
8799799 | Cervelli et al. | Aug 2014 | B1 |
8806355 | Twiss et al. | Aug 2014 | B2 |
8807948 | Luo et al. | Aug 2014 | B2 |
8812444 | Garrod et al. | Aug 2014 | B2 |
8812960 | Sun et al. | Aug 2014 | B1 |
8838538 | Landau et al. | Sep 2014 | B1 |
8855999 | Elliot | Oct 2014 | B1 |
8903717 | Elliot | Dec 2014 | B2 |
8924388 | Elliot et al. | Dec 2014 | B2 |
8924389 | Elliot et al. | Dec 2014 | B2 |
8930874 | Duff et al. | Jan 2015 | B2 |
8938434 | Jain et al. | Jan 2015 | B2 |
8938686 | Erenrich et al. | Jan 2015 | B1 |
8949164 | Mohler | Feb 2015 | B1 |
8984390 | Aymeloglu et al. | Mar 2015 | B2 |
9049117 | Nucci | Jun 2015 | B1 |
9058315 | Burr et al. | Jun 2015 | B2 |
9069842 | Melby | Jun 2015 | B2 |
9100428 | Visbal | Aug 2015 | B1 |
9105000 | White et al. | Aug 2015 | B1 |
9111281 | Stibel et al. | Aug 2015 | B2 |
9129219 | Robertson et al. | Sep 2015 | B1 |
9165100 | Begur et al. | Oct 2015 | B2 |
9230060 | Friedlander et al. | Jan 2016 | B2 |
9256664 | Chakerian et al. | Feb 2016 | B2 |
20020032677 | Moregenthaler et al. | Mar 2002 | A1 |
20020035590 | Eibach et al. | Mar 2002 | A1 |
20020065708 | Senay et al. | May 2002 | A1 |
20020095360 | Joao | Jul 2002 | A1 |
20020095658 | Shulman | Jul 2002 | A1 |
20020103705 | Brady | Aug 2002 | A1 |
20020147805 | Leshem et al. | Oct 2002 | A1 |
20020194058 | Eldering | Dec 2002 | A1 |
20020196229 | Chen et al. | Dec 2002 | A1 |
20030036927 | Bowen | Feb 2003 | A1 |
20030088438 | Maughan et al. | May 2003 | A1 |
20030093401 | Czahowski et al. | May 2003 | A1 |
20030093755 | O'Carroll | May 2003 | A1 |
20030105759 | Bess et al. | Jun 2003 | A1 |
20030115481 | Baird et al. | Jun 2003 | A1 |
20030126102 | Borthwick | Jul 2003 | A1 |
20030171942 | Gaito | Sep 2003 | A1 |
20030177112 | Gardner | Sep 2003 | A1 |
20030182313 | Federwisch et al. | Sep 2003 | A1 |
20030212718 | Tester | Nov 2003 | A1 |
20040003009 | Wilmot | Jan 2004 | A1 |
20040006523 | Coker | Jan 2004 | A1 |
20040034570 | Davis | Feb 2004 | A1 |
20040044648 | Anfindsen et al. | Mar 2004 | A1 |
20040083466 | Dapp et al. | Apr 2004 | A1 |
20040088177 | Travis et al. | May 2004 | A1 |
20040111480 | Yue | Jun 2004 | A1 |
20040117387 | Civetta et al. | Jun 2004 | A1 |
20040153418 | Hanweck | Aug 2004 | A1 |
20040153451 | Philips et al. | Aug 2004 | A1 |
20040205492 | Newsome | Oct 2004 | A1 |
20040210763 | Jonas | Oct 2004 | A1 |
20040236688 | Bozeman | Nov 2004 | A1 |
20040236711 | Nixon et al. | Nov 2004 | A1 |
20050010472 | Quatse et al. | Jan 2005 | A1 |
20050028094 | Allyn | Feb 2005 | A1 |
20050039116 | Slack-Smith | Feb 2005 | A1 |
20050086207 | Heuer et al. | Apr 2005 | A1 |
20050091186 | Alon | Apr 2005 | A1 |
20050097441 | Herbach et al. | May 2005 | A1 |
20050102328 | Ring et al. | May 2005 | A1 |
20050125715 | Di Franco et al. | Jun 2005 | A1 |
20050131935 | O'Leary et al. | Jun 2005 | A1 |
20050154628 | Eckart et al. | Jul 2005 | A1 |
20050154769 | Eckart et al. | Jul 2005 | A1 |
20050262512 | Schmidt et al. | Nov 2005 | A1 |
20060010130 | Leff et al. | Jan 2006 | A1 |
20060026120 | Carolan et al. | Feb 2006 | A1 |
20060026170 | Kreitler et al. | Feb 2006 | A1 |
20060026561 | Bauman et al. | Feb 2006 | A1 |
20060031779 | Theurer et al. | Feb 2006 | A1 |
20060053097 | King et al. | Mar 2006 | A1 |
20060053170 | Hill et al. | Mar 2006 | A1 |
20060059423 | Lehmann et al. | Mar 2006 | A1 |
20060080139 | Mainzer | Apr 2006 | A1 |
20060080283 | Shipman | Apr 2006 | A1 |
20060080316 | Gilmore et al. | Apr 2006 | A1 |
20060129746 | Porter | Jun 2006 | A1 |
20060136513 | Ngo et al. | Jun 2006 | A1 |
20060143034 | Rothermel | Jun 2006 | A1 |
20060143075 | Carr et al. | Jun 2006 | A1 |
20060143079 | Basak et al. | Jun 2006 | A1 |
20060155654 | Plessis et al. | Jul 2006 | A1 |
20060178915 | Chao | Aug 2006 | A1 |
20060178954 | Thukral et al. | Aug 2006 | A1 |
20060218206 | Bourbonnais et al. | Sep 2006 | A1 |
20060218941 | Grossman et al. | Sep 2006 | A1 |
20060253502 | Raman et al. | Nov 2006 | A1 |
20060265417 | Amato et al. | Nov 2006 | A1 |
20060277460 | Forstall et al. | Dec 2006 | A1 |
20070000999 | Kubo et al. | Jan 2007 | A1 |
20070011304 | Error | Jan 2007 | A1 |
20070038646 | Thota | Feb 2007 | A1 |
20070043686 | Teng et al. | Feb 2007 | A1 |
20070061752 | Cory | Mar 2007 | A1 |
20070067285 | Blume | Mar 2007 | A1 |
20070113164 | Hansen et al. | May 2007 | A1 |
20070136095 | Weinstein | Jun 2007 | A1 |
20070150801 | Chidlovskii et al. | Jun 2007 | A1 |
20070156673 | Maga | Jul 2007 | A1 |
20070162454 | D'Albora et al. | Jul 2007 | A1 |
20070168871 | Jenkins | Jul 2007 | A1 |
20070178501 | Rabinowitz et al. | Aug 2007 | A1 |
20070185850 | Walters et al. | Aug 2007 | A1 |
20070185867 | Maga | Aug 2007 | A1 |
20070192122 | Routson et al. | Aug 2007 | A1 |
20070233756 | D'Souza et al. | Oct 2007 | A1 |
20070245339 | Bauman et al. | Oct 2007 | A1 |
20070271317 | Carmel | Nov 2007 | A1 |
20070284433 | Domenica et al. | Dec 2007 | A1 |
20070295797 | Herman et al. | Dec 2007 | A1 |
20070299697 | Friedlander et al. | Dec 2007 | A1 |
20080005063 | Seeds | Jan 2008 | A1 |
20080016155 | Khalatian | Jan 2008 | A1 |
20080065655 | Chakravarthy et al. | Mar 2008 | A1 |
20080077642 | Carbone et al. | Mar 2008 | A1 |
20080091693 | Murthy | Apr 2008 | A1 |
20080109714 | Kumar et al. | May 2008 | A1 |
20080126344 | Hoffman et al. | May 2008 | A1 |
20080126951 | Sood et al. | May 2008 | A1 |
20080140387 | Linker | Jun 2008 | A1 |
20080172607 | Baer | Jul 2008 | A1 |
20080177782 | Poston et al. | Jul 2008 | A1 |
20080186904 | Koyama et al. | Aug 2008 | A1 |
20080195672 | Hamel et al. | Aug 2008 | A1 |
20080208735 | Balet et al. | Aug 2008 | A1 |
20080222295 | Robinson et al. | Sep 2008 | A1 |
20080228467 | Womack et al. | Sep 2008 | A1 |
20080249820 | Pathria et al. | Oct 2008 | A1 |
20080255973 | El Wade et al. | Oct 2008 | A1 |
20080267386 | Cooper | Oct 2008 | A1 |
20080270316 | Guidotti et al. | Oct 2008 | A1 |
20080281580 | Zabokritski | Nov 2008 | A1 |
20080294663 | Heinley et al. | Nov 2008 | A1 |
20080301042 | Patzer | Dec 2008 | A1 |
20080313132 | Hao et al. | Dec 2008 | A1 |
20080313243 | Poston et al. | Dec 2008 | A1 |
20090031401 | Cudich et al. | Jan 2009 | A1 |
20090043801 | LeClair et al. | Feb 2009 | A1 |
20090055487 | Moraes et al. | Feb 2009 | A1 |
20090089651 | Herberger et al. | Apr 2009 | A1 |
20090094270 | Alirez et al. | Apr 2009 | A1 |
20090106178 | Chu | Apr 2009 | A1 |
20090106242 | McGrew et al. | Apr 2009 | A1 |
20090112678 | Luzardo | Apr 2009 | A1 |
20090112745 | Stefanescu | Apr 2009 | A1 |
20090125359 | Knapic | May 2009 | A1 |
20090125459 | Norton et al. | May 2009 | A1 |
20090132953 | Reed, Jr. et al. | May 2009 | A1 |
20090150868 | Chakra et al. | Jun 2009 | A1 |
20090157732 | Hao et al. | Jun 2009 | A1 |
20090164387 | Armstrong et al. | Jun 2009 | A1 |
20090177962 | Gusmorino et al. | Jul 2009 | A1 |
20090187546 | Whyte et al. | Jul 2009 | A1 |
20090187548 | Ji et al. | Jul 2009 | A1 |
20090199106 | Jonsson et al. | Aug 2009 | A1 |
20090228365 | Tomchek et al. | Sep 2009 | A1 |
20090248757 | Havewala et al. | Oct 2009 | A1 |
20090249178 | Ambrosino et al. | Oct 2009 | A1 |
20090249244 | Robinson et al. | Oct 2009 | A1 |
20090254842 | Leacock et al. | Oct 2009 | A1 |
20090271343 | Vaiciulis et al. | Oct 2009 | A1 |
20090281839 | Lynn et al. | Nov 2009 | A1 |
20090282068 | Shockro et al. | Nov 2009 | A1 |
20090299830 | West et al. | Dec 2009 | A1 |
20090307049 | Elliott et al. | Dec 2009 | A1 |
20090313311 | Hoffmann et al. | Dec 2009 | A1 |
20090313463 | Pang et al. | Dec 2009 | A1 |
20090319418 | Herz | Dec 2009 | A1 |
20090319891 | MacKinlay | Dec 2009 | A1 |
20100030722 | Goodson et al. | Feb 2010 | A1 |
20100031141 | Summers et al. | Feb 2010 | A1 |
20100042922 | Bradeteanu et al. | Feb 2010 | A1 |
20100057622 | Faith et al. | Mar 2010 | A1 |
20100070531 | Aymeloglu et al. | Mar 2010 | A1 |
20100070842 | Aymeloglu et al. | Mar 2010 | A1 |
20100070844 | Aymeloglu et al. | Mar 2010 | A1 |
20100082541 | Kottomtharayil | Apr 2010 | A1 |
20100082671 | Li et al. | Apr 2010 | A1 |
20100098318 | Anderson | Apr 2010 | A1 |
20100106752 | Eckardt et al. | Apr 2010 | A1 |
20100114817 | Gilbert et al. | May 2010 | A1 |
20100114887 | Conway et al. | May 2010 | A1 |
20100131502 | Fordham | May 2010 | A1 |
20100145909 | Ngo | Jun 2010 | A1 |
20100161735 | Sharma | Jun 2010 | A1 |
20100191563 | Schlaifer et al. | Jul 2010 | A1 |
20100204983 | Chung et al. | Aug 2010 | A1 |
20100211535 | Rosenberger | Aug 2010 | A1 |
20100223260 | Wu | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100238174 | Haub et al. | Sep 2010 | A1 |
20100262688 | Hussain et al. | Oct 2010 | A1 |
20100262901 | DiSalvo | Oct 2010 | A1 |
20100280851 | Merkin | Nov 2010 | A1 |
20100293174 | Bennett et al. | Nov 2010 | A1 |
20100306285 | Shah et al. | Dec 2010 | A1 |
20100306722 | LeHoty et al. | Dec 2010 | A1 |
20100312837 | Bodapati et al. | Dec 2010 | A1 |
20100313239 | Chakra et al. | Dec 2010 | A1 |
20110004626 | Naeymi-Rad et al. | Jan 2011 | A1 |
20110047540 | Williams et al. | Feb 2011 | A1 |
20110061013 | Billicki et al. | Mar 2011 | A1 |
20110066497 | Gopinath et al. | Mar 2011 | A1 |
20110074788 | Regan et al. | Mar 2011 | A1 |
20110078173 | Seligmann et al. | Mar 2011 | A1 |
20110093327 | Fordyce et al. | Apr 2011 | A1 |
20110099133 | Chang et al. | Apr 2011 | A1 |
20110153384 | Horne et al. | Jun 2011 | A1 |
20110161409 | Nair et al. | Jun 2011 | A1 |
20110173093 | Psota et al. | Jul 2011 | A1 |
20110179048 | Satlow | Jul 2011 | A1 |
20110202555 | Cordover | Aug 2011 | A1 |
20110208565 | Ross et al. | Aug 2011 | A1 |
20110208724 | Jones et al. | Aug 2011 | A1 |
20110208822 | Rathod | Aug 2011 | A1 |
20110213655 | Henkin | Sep 2011 | A1 |
20110218955 | Tang | Sep 2011 | A1 |
20110225482 | Chan et al. | Sep 2011 | A1 |
20110225586 | Bentley et al. | Sep 2011 | A1 |
20110252282 | Meek et al. | Oct 2011 | A1 |
20110258216 | Supakkul et al. | Oct 2011 | A1 |
20110270604 | Qi et al. | Nov 2011 | A1 |
20110270834 | Sokolan et al. | Nov 2011 | A1 |
20110289397 | Eastmond et al. | Nov 2011 | A1 |
20110295649 | Fine | Dec 2011 | A1 |
20110314007 | Dassa et al. | Dec 2011 | A1 |
20110314024 | Chang et al. | Dec 2011 | A1 |
20120004894 | Butler et al. | Jan 2012 | A1 |
20120004904 | Shin et al. | Jan 2012 | A1 |
20120011238 | Rathod | Jan 2012 | A1 |
20120011245 | Gillette et al. | Jan 2012 | A1 |
20120013684 | Lucia | Jan 2012 | A1 |
20120022945 | Falkenborg et al. | Jan 2012 | A1 |
20120054284 | Rakshit | Mar 2012 | A1 |
20120059853 | Jagota | Mar 2012 | A1 |
20120066166 | Curbera et al. | Mar 2012 | A1 |
20120078595 | Balandin et al. | Mar 2012 | A1 |
20120079363 | Folting et al. | Mar 2012 | A1 |
20120084117 | Tavares et al. | Apr 2012 | A1 |
20120084184 | Raleigh et al. | Apr 2012 | A1 |
20120084287 | Lakshminarayan et al. | Apr 2012 | A1 |
20120123989 | Yu et al. | May 2012 | A1 |
20120131512 | Takeuchi et al. | May 2012 | A1 |
20120144335 | Abein et al. | Jun 2012 | A1 |
20120158527 | Cannelongo et al. | Jun 2012 | A1 |
20120159362 | Brown et al. | Jun 2012 | A1 |
20120173381 | Smith | Jul 2012 | A1 |
20120188252 | Law | Jul 2012 | A1 |
20120191446 | Binsztok et al. | Jul 2012 | A1 |
20120197657 | Prodanovic | Aug 2012 | A1 |
20120197660 | Prodanovich | Aug 2012 | A1 |
20120215784 | King et al. | Aug 2012 | A1 |
20120221553 | Wittmer et al. | Aug 2012 | A1 |
20120226523 | Weiss | Sep 2012 | A1 |
20120226590 | Love et al. | Sep 2012 | A1 |
20120245976 | Kumar et al. | Sep 2012 | A1 |
20120284670 | Kashik et al. | Nov 2012 | A1 |
20120323888 | Osann, Jr. | Dec 2012 | A1 |
20130006947 | Akinyemi et al. | Jan 2013 | A1 |
20130016106 | Yip et al. | Jan 2013 | A1 |
20130054306 | Bhalla | Feb 2013 | A1 |
20130057551 | Ebert et al. | Mar 2013 | A1 |
20130085745 | Koister | Apr 2013 | A1 |
20130096968 | Van Pelt et al. | Apr 2013 | A1 |
20130096988 | Grossman et al. | Apr 2013 | A1 |
20130097130 | Bingol et al. | Apr 2013 | A1 |
20130110746 | Ahn | May 2013 | A1 |
20130124193 | Holmberg | May 2013 | A1 |
20130132348 | Garrod | May 2013 | A1 |
20130151305 | Akinola et al. | Jun 2013 | A1 |
20130151453 | Bhanot et al. | Jun 2013 | A1 |
20130166348 | Scotto | Jun 2013 | A1 |
20130166480 | Popescu et al. | Jun 2013 | A1 |
20130185245 | Anderson | Jul 2013 | A1 |
20130185307 | El-Yaniv et al. | Jul 2013 | A1 |
20130208565 | Orji et al. | Aug 2013 | A1 |
20130226318 | Procyk | Aug 2013 | A1 |
20130226879 | Talukder et al. | Aug 2013 | A1 |
20130226944 | Baid et al. | Aug 2013 | A1 |
20130238616 | Rose et al. | Sep 2013 | A1 |
20130246170 | Gross et al. | Sep 2013 | A1 |
20130246316 | Zhao et al. | Sep 2013 | A1 |
20130246537 | Gaddala | Sep 2013 | A1 |
20130246597 | Iizawa et al. | Sep 2013 | A1 |
20130263019 | Castellanos et al. | Oct 2013 | A1 |
20130268520 | Fisher et al. | Oct 2013 | A1 |
20130282696 | John et al. | Oct 2013 | A1 |
20130290825 | Arndt et al. | Oct 2013 | A1 |
20130297619 | Chandrasekaran et al. | Nov 2013 | A1 |
20130304770 | Boero et al. | Nov 2013 | A1 |
20130325826 | Agarwal et al. | Dec 2013 | A1 |
20140006404 | McGrew et al. | Jan 2014 | A1 |
20140012796 | Petersen et al. | Jan 2014 | A1 |
20140040371 | Gurevich et al. | Feb 2014 | A1 |
20140058914 | Song et al. | Feb 2014 | A1 |
20140068487 | Steiger et al. | Mar 2014 | A1 |
20140095363 | Caldwell | Apr 2014 | A1 |
20140095509 | Patton | Apr 2014 | A1 |
20140108074 | Miller et al. | Apr 2014 | A1 |
20140108380 | Gotz et al. | Apr 2014 | A1 |
20140108985 | Scott et al. | Apr 2014 | A1 |
20140123279 | Bishop et al. | May 2014 | A1 |
20140129936 | Richards | May 2014 | A1 |
20140136285 | Carvalho | May 2014 | A1 |
20140143009 | Brice et al. | May 2014 | A1 |
20140156527 | Grigg et al. | Jun 2014 | A1 |
20140157172 | Peery et al. | Jun 2014 | A1 |
20140164502 | Khodorenko et al. | Jun 2014 | A1 |
20140189536 | Lange et al. | Jul 2014 | A1 |
20140195515 | Baker et al. | Jul 2014 | A1 |
20140208281 | Ming | Jul 2014 | A1 |
20140222521 | Chait | Aug 2014 | A1 |
20140222793 | Sadkin et al. | Aug 2014 | A1 |
20140229422 | Jain | Aug 2014 | A1 |
20140229554 | Grunin et al. | Aug 2014 | A1 |
20140244284 | Smith | Aug 2014 | A1 |
20140344230 | Krause et al. | Nov 2014 | A1 |
20140358829 | Hurwitz | Dec 2014 | A1 |
20140366132 | Stiansen et al. | Dec 2014 | A1 |
20150012509 | Kirn | Jan 2015 | A1 |
20150025977 | Doyle | Jan 2015 | A1 |
20150026622 | Roaldson et al. | Jan 2015 | A1 |
20150039565 | Lucas | Feb 2015 | A1 |
20150046481 | Elliot | Feb 2015 | A1 |
20150073929 | Psota et al. | Mar 2015 | A1 |
20150073954 | Braff | Mar 2015 | A1 |
20150089353 | Folkening | Mar 2015 | A1 |
20150095773 | Gonsalves et al. | Apr 2015 | A1 |
20150100897 | Sun et al. | Apr 2015 | A1 |
20150106170 | Bonica | Apr 2015 | A1 |
20150106379 | Elliot et al. | Apr 2015 | A1 |
20150134599 | Banerjee et al. | May 2015 | A1 |
20150135256 | Hoy et al. | May 2015 | A1 |
20150186483 | Tappan et al. | Jul 2015 | A1 |
20150188872 | White | Jul 2015 | A1 |
20150212663 | Papale et al. | Jul 2015 | A1 |
20150242401 | Liu | Aug 2015 | A1 |
20150248563 | Alfarano | Sep 2015 | A1 |
20150254220 | Burr et al. | Sep 2015 | A1 |
20150338233 | Cervelli et al. | Nov 2015 | A1 |
20150379413 | Robertson et al. | Dec 2015 | A1 |
20160004764 | Chakerian et al. | Jan 2016 | A1 |
20160062555 | Ward et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2013251186 | Nov 2015 | AU |
102546446 | Jul 2012 | CN |
103167093 | Jun 2013 | CN |
102054015 | May 2014 | CN |
102014204827 | Sep 2014 | DE |
102014204830 | Sep 2014 | DE |
102014204834 | Sep 2014 | DE |
102014213036 | Jan 2015 | DE |
1672527 | Jun 2006 | EP |
2487610 | Aug 2012 | EP |
2778913 | Sep 2014 | EP |
2778914 | Sep 2014 | EP |
2858018 | Apr 2015 | EP |
2869211 | May 2015 | EP |
2889814 | Jul 2015 | EP |
2892197 | Jul 2015 | EP |
2963595 | Jan 2016 | EP |
2993595 | Mar 2016 | EP |
2366498 | Mar 2002 | GB |
2513472 | Oct 2014 | GB |
2513721 | Nov 2014 | GB |
2517582 | Feb 2015 | GB |
2013134 | Jan 2015 | NL |
WO 2001025906 | Apr 2001 | WO |
WO 2001088750 | Nov 2001 | WO |
WO 20050116851 | Dec 2005 | WO |
WO 2007133206 | Nov 2007 | WO |
WO 2009051987 | Apr 2009 | WO |
WO 2010030913 | Mar 2010 | WO |
WO 2010030914 | Mar 2010 | WO |
WO 2010030919 | Mar 2010 | WO |
WO 2012119008 | Sep 2012 | WO |
Entry |
---|
Chaudhuri et al., “An Overview of Business Intelligence Technology,” Communications of the ACM, Aug. 2011, vol. 54, No. 8. |
Wikipedia, “Multimap,” Jan. 1, 2013, https://en.wikipedia.org/w/index.php?title=Multimap&oldid=530800748. |
Notice of Allowance for U.S. Appl. No. 14/323,935 dated Oct. 1, 2015. |
Notice of Allowance for U.S. Appl. No. 12/556,307 dated Jan. 4, 2016. |
Notice of Allowance for U.S. Appl. No. 14/746,671 dated Jan. 21, 2016. |
Notice of Allowance for U.S. Appl. No. 14/094,418 dated Jan. 25, 2016. |
Notice of Allowance for U.S. Appl. No. 14/676,621 dated Feb. 10, 2016. |
Notice of Allowance for U.S. Appl. No. 14/858,647 dated Mar. 4, 2016. |
Notice of Allowance for U.S. Appl. No. 12/556,307 dated Mar. 21, 2016. |
Notice of Acceptance for Australian Patent Application No. 2013251186 dated Nov. 6, 2015. |
Notice of Acceptance for Australian Patent Application No. 2014203669 dated Jan. 21, 2016. |
Official Communication for U.S. Appl. No. 12/556,307 dated Sep. 2, 2011. |
Official Communication for U.S. Appl. No. 12/556,307 dated Feb. 13, 2012. |
Official Communication for U.S. Appl. No. 12/556,307 dated Oct. 1, 2013. |
Official Communication for U.S. Appl. No. 12/556,307 dated Mar. 14, 2014. |
Official Communication for U.S. Appl. No. 14/746,671 dated Nov. 12, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 3, 2015. |
Official Communication for U.S. Appl. No. 14/463,615 dated Dec. 9, 2015. |
Official Communication for U.S. Appl. No. 14/222,364 dated Dec. 9, 2015. |
Official Communication for U.S. Appl. No. 14/800,447 dated Dec. 10, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Dec. 21, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Dec. 24, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 24, 2015. |
Official Communication for U.S. Appl. No. 14/883,498 dated Dec. 24, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Jan. 4, 2016. |
Official Communication for U.S. Appl. No. 14/526,066 dated Jan. 21, 2016. |
Official Communication for U.S. Appl. No. 14/225,160 dated Jan. 25, 2016. |
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 1, 2016. |
Official Communication for U.S. Appl. No. 14/929,584 dated Feb. 4, 2016. |
Official Communication for U.S. Appl. No. 14/871,465 dated Feb. 9, 2016. |
Official Communication for U.S. Appl. No. 14/741,256 dated Feb. 9, 2016. |
Official Communication for U.S. Appl. No. 14/841,338 dated Feb. 18, 2016. |
Official Communication for U.S. Appl. No. 14/715,834 dated Feb. 19, 2016. |
Official Communication for U.S. Appl. No. 14/571,098 dated Feb. 23, 2016. |
Official Communication for U.S. Appl. No. 12/556,321 dated Feb. 25, 2016. |
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 26, 2016. |
Official Communication for U.S. Appl. No. 14/014,313 dated Feb. 26, 2016. |
Official Communication for U.S. Appl. No. 14/961,481 dated Mar. 2, 2016. |
Official Communication for U.S. Appl. No. 14/883,498 dated Mar. 17, 2016. |
Official Communication for U.S. Appl. No. 13/827,491 dated Mar. 30, 2016. |
Official Communication for European Patent Application No. 14200246.8 dated May 29, 2015. |
Official Communication for Netherlands Patents Application No. 2012421 dated Sep. 18, 2015. |
Official Communication for Netherlands Patents Application No. 2012417 dated Sep. 18, 2015. |
Official Communication for Netherlands Patent Application 2012438 dated Sep. 21, 2015. |
Official Communication for European Patent Application No. 15184764.7 dated Dec. 14, 2015. |
Official Communication for Great Britain Patent Application No. 1411984.6 dated Jan. 8, 2016. |
Official Communication for European Patent Application No. 15188106.7 dated Feb. 3, 2016. |
Official Communication for European Patent Application No. 15190307.7 dated Feb. 19, 2016. |
Official Communication for European Patent Application No. 14187996.5 dated Feb. 19, 2016. |
Official Communication for European Patent Application No. 14158977.0 dated Mar. 11, 2016. |
Official Communication for European Patent Application No. 14158958.0 dated Mar. 11, 2016. |
“A Real-World Problem of Matching Records,” Nov. 2006, <http://grupoweb.upf.es/bd-web/slides/ullman.pdf< pp. 1-16. |
“A Tour of Pinboard,” <http://pinboard.in/tour> as printed May 15, 2014 in 6 pages. |
Abbey, Kristen, “Review of Google Docs,” May 1, 2007, pp. 2. |
Adams et al., “Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows,” R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS, 4275, pp. 291-308, 2006. |
Amnet, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html. |
Appacts, “Smart Thinking for Super Apps,” <http://www.appacts.com> Printed Jul. 18, 2013 in 4 pages. |
Apsalar, “Data Powered Mobile Advertising,” “Free Mobile App Analytics” and various analytics related screen shots <http://apsalar.com> Printed Jul. 18, 2013 in 8 pages. |
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286. |
Brandel, Mary, “Data Loss Prevention Dos and Don'ts,” <http://web.archive.org/web/20080724024847/http://www.csoonline.com/article/221272/Dos_and_Don_ts_for_Data_Loss_Prevention>, Oct. 10, 2007, pp. 5. |
Capptain—Pilot Your Apps, <http://www.capptain.com> Printed Jul. 18, 2013 in 6 pages. |
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015. |
Cohn et al., “Semi-supervised Clustering with User Feedback,” Constrained Clustering: Advances in Algorithms, Theory, and Applications 4.1, 2003, pp. 17-32. |
Conner, Nancy, “Google Apps: The Missing Manual,” May 1, 2008, pp. 15. |
Countly Mobile Analytics, <http://count.ly/> Printed Jul. 18, 2013 in 9 pages. |
Delicious, <http://delicious.com/> as printed May 15, 2014 in 1 page. |
Distimo—App Analytics, <http://www.distimo.com/app-analytics> Printed Jul. 18, 2013 in 5 pages. |
“E-MailRelay,” <http://web.archive.org/web/20080821175021/http://emailrelay.sourceforge.net/> Aug. 21, 2008, pp. 2. |
Flurry Analytics, <http://www.flurry.com/> Printed Jul. 18, 2013 in 14 pages. |
Galliford, Miles, “SnagIt Versus Free Screen Capture Software: Critical Tools for Website Owners,” <http://www.subhub.com/articles/free-screen-capture-software>, Mar. 27, 2008, pp. 11. |
Google Analytics Official Website—Web Analytics & Reporting, <http://www.google.com/analytics.index.html> Printed Jul. 18, 2013 in 22 pages. |
Gorr et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation,” Grant 98-IJ-CX-K005, May 6, 2002, 37 pages. |
“GrabUp—What a Timesaver!” <http://atlchris.com/191/grabup/>, Aug. 11, 2008, pp. 3. |
Gu et al., “Record Linkage: Current Practice and Future Directions,” Jan. 15, 2004, pp. 32. |
Hansen et al. “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010. |
Hua et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services” HiPC 2006, LNCS 4297, pp. 277-288, 2006. |
“HunchLab: Heat Map and Kernel Density Calculation for Crime Analysis,” Azavea Journal, printed from www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab/ on Sep. 9, 2014, 2 pages. |
JetScreenshot.com, “Share Screenshots via Internet in Seconds,” <http://web.archive.org/web/20130807164204/http://www.jetscreenshot.com/>, Aug. 7, 2013, pp. 1. |
Johnson, Maggie “Introduction to YACC and Bison”. |
Johnson, Steve, “Access 2013 on demand,” Access 2013 on Demand, May 9, 2013, Que Publishing. |
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf> downloaded May 12, 2014 in 8 pages. |
Keylines.com, “KeyLines Datasheet,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf> downloaded May 12, 2014 in 2 pages. |
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, <http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf> downloaded May 12, 2014 in 10 pages. |
Kontagent Mobile Analytics, <http://www.kontagent.com/> Printed Jul. 18, 2013 in 9 pages. |
Kwout, <http://web.archive.org/web/20080905132448/http://www.kwout.com/> Sep. 5, 2008, pp. 2. |
Lim et al., “Resolving Attribute Incompatibility in Database Integration: An Evidential Reasoning Approach,” Department of Computer Science, University of Minnesota, 1994, <http://reference.kfupm.edu.sa/content/r/e/resolving_attribute_incompatibility_in_d_531691.pdf> pp. 1-10. |
Litwin et al., “Multidatabase Interoperability,” IEEE Computer, Dec. 1986, vol. 19, No. 12, http://www.lamsade.dauphine.fr/˜litwin/mdb-interoperability.pdf, pp. 10-18. |
Localytics—Mobile App Marketing & Analytics, <http://www.localytics.com/> Printed Jul. 18, 2013 in 12 pages. |
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10. |
Microsoft, “Registering an Application to a URI Scheme,” <http://msdn.microsoft.com/en-us/library/aa767914.aspx>, printed Apr. 4, 2009 in 4 pages. |
Microsoft, “Using the Clipboard,” <http://msdn.microsoft.com/en-us/library/ms649016.aspx>, printed Jun. 8, 2009 in 20 pages. |
Microsoft Windows, “Microsoft Windows Version 2002 Print Out 2,” 2002, pp. 1-6. |
Mixpanel—Mobile Analytics, <https://mixpanel.com/> Printed Jul. 18, 2013 in 13 pages. |
Nadeau et al., “A Survey of Named Entity Recognition and Classification,” Jan. 15, 2004, pp. 20. |
Nin et al., “On the Use of Semantic Blocking Techniques for Data Cleansing and Integration,” 11th International Database Engineering and Applications Symposium, 2007, pp. 9. |
Nitro, “Trick: How to Capture a Screenshot As PDF, Annotate, Then Share It,” <http://blog.nitropdf.com/2008/03/04/trick-how-to-capture-a-screenshot-as-pdf-annotate-it-then-share/>, Mar. 4, 2008, pp. 2. |
Online Tech Tips, “Clip2Net—Share files, folders and screenshots easily,” <http://www.online-tech-tips.com/free-software-downloads/share-files-folders-screenshots/>, Apr. 2, 2008, pp. 5. |
Open Web Analytics (OWA), <http://www.openwebanalytics.com/> Printed Jul. 19, 2013 in 5 pages. |
O'Reilly.com, <http://oreilly.com/digitalmedia/2006/01/01/mac-os-x-screenshot-secrets.html> published Jan. 1, 2006 in 10 pages. |
Piwik—Free Web Analytics Software. <http://piwik.org/> Printed Jul. 19, 2013 in18 pages. |
Pythagoras Communications Ltd., “Microsoft CRM Duplicate Detection,” Sep. 13, 2011, https://www.youtube.com/watch?v=j-7Qis0D0Kc. |
Qiang et al., “A Mutual-Information-Based Approach to Entity Reconciliation in Heterogeneous Databases,” Proceedings of 2008 International Conference on Computer Science & Software Engineering, IEEE Computer Society, New York, NY, Dec. 12-14, 2008, pp. 666-669. |
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015. |
Schroder, Stan, “15 Ways to Create Website Screenshots,” <http://mashable.com/2007/08/24/web-screenshots/>, Aug. 24, 2007, pp. 2. |
Sekine et al., “Definition, Dictionaries and Tagger for Extended Named Entity Hierarchy,” May 2004, pp. 1977-1980. |
Sigrist et al., “Prosite, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research 38.Suppl 1, 2010, pp. D161-D166. |
SnagIt, “SnagIt Online Help Guide,” <http://download.techsmith.com/snagit/docs/onlinehelp/enu/snagit_help.pdf>, TechSmith Corp., Version 8.1, printed Feb. 7, 2007, pp. 284. |
SnagIt, “SnagIt 8.1.0 Print Out,” Software release date Jun. 15, 2006, pp. 6. |
SnagIt, “SnagIt 8.1.0 Print Out 2,” Software release date Jun. 15, 2006, pp. 1-3. |
StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, <http://statcounter.com/> Printed Jul. 19, 2013 in 17 pages. |
TestFlight—Beta Testing on the Fly, <http://testflightapp.com/> Printed Jul. 18, 2013 in 3 pages. |
Trak.io, <http://trak.io/> printed Jul. 18, 2013 in 3 pages. |
UserMetrix, <http://usermetrix.com/android-analytics> printed Jul. 18, 2013 in 3 pages. |
Valentini et al., “Ensembles of Learning Machines,” M. Marinaro and R. Tagliaferri (Eds.): Wirn Vietri 2002, LNCS 2486, pp. 3-20. |
Vose et al., “Help File for ModelRisk Version 5,” 2007, Vose Software, pp. 349-353. [Uploaded in 2 Parts]. |
Wang et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter,” IEEE 2010, 5 pages. |
Warren, Christina, “TUAW Faceoff: Screenshot apps on the firing line,” <http://www.tuaw.com/2008/05/05/tuaw-faceoff-screenshot-apps-on-the-firing-line/>, May 5, 2008, pp. 11. |
Zhao et al., “Entity Matching Across Heterogeneous Data Sources: An Approach Based on Constrained Cascade Generalization,” Data & Knowledge Engineering, vol. 66, No. 3, Sep. 2008, pp. 368-381. |
Notice of Allowance for U.S. Appl. No. 14/265,637 dated Feb. 13, 2015. |
Notice of Allowance for U.S. Appl. No. 14/479,863 dated Mar. 31, 2015. |
Notice of Allowance for U.S. Appl. No. 14/304,741 dated Apr. 7, 2015. |
Notice of Allowance for U.S. Appl. No. 14/225,084 dated May 4, 2015. |
Notice of Allowance for U.S. Appl. No. 14/319,161 dated May 4, 2015. |
Notice of Allowance for U.S. Appl. No. 14/552,336 dated Nov. 3, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Jul. 29, 2014. |
Official Communication for U.S. Appl. No. 14/304,741 dated Aug. 6, 2014. |
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 2, 2014. |
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 10, 2014. |
Official Communication for U.S. Appl. No. 14/451,221 dated Oct. 21, 2014. |
Official Communication for U.S. Appl. No. 14/225,160 dated Oct. 22, 2014. |
Official Communication for U.S. Appl. No. 14/463,615 dated Nov. 13, 2014. |
Official Communication for U.S. Appl. No. 13/827,491 dated Dec. 1, 2014. |
Official Communication for U.S. Appl. No. 14/479,863 dated Dec. 26, 2014. |
Official Communication for U.S. Appl. No. 14/319,161 dated Jan. 23, 2015. |
Official Communication for U.S. Appl. No. 14/483,527 dated Jan. 28, 2015. |
Official Communication for U.S. Appl. No. 14/463,615 dated Jan. 28, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Feb. 11, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 20, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Feb. 27, 2015. |
Official Communication for U.S. Appl. No. 14/304,741 dated Mar. 3, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Mar. 11, 2015. |
Official Communication for U.S. Appl. No. 13/669,274 dated May 6, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated May 20, 2015. |
Official Communication for U.S. Appl. No. 14/463,615 dated May 21, 2015. |
Official Communication for U.S. Appl. No. 12/556,307 dated Jun. 9, 2015. |
Official Communication for U.S. Appl. No. 14/014,313 dated Jun. 18, 2015. |
Official Communication for U.S. Appl. No. 13/827,491 dated Jun. 22, 2015. |
Official Communication for U.S. Appl. No. 14/483,527 dated Jun. 22, 2015. |
Official Communication for U.S. Appl. No. 12/556,321 dated Jul. 7, 2015. |
Official Communication for U.S. Appl. No. 14/552,336 dated Jul. 20, 2015. |
Official Communication for U.S. Appl. No. 14/676,621 dated Jul. 30, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 5, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Aug. 12, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 24, 2015. |
Official Communication for U.S. Appl. No. 13/669,274 dated Aug. 26, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 2, 2015. |
Official Communication for U.S. Appl. No. 14/631,633 dated Sep. 10, 2015. |
Official Communication for U.S. Appl. No. 14/463,615 dated Sep. 10, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 11, 2015. |
Official Communication for U.S. Appl. No. 14/562,524 dated Sep. 14, 2015. |
Official Communication for U.S. Appl. No. 14/813,749 dated Sep. 28, 2015. |
Official Communication for U.S. Appl. No. 14/746,671 dated Sep. 28, 2015. |
Official Communication for U.S. Appl. No. 14/141,252 dated Oct. 8, 2015. |
Official Communication for U.S. Appl. No. 13/827,491 dated Oct. 9, 2015. |
Official Communication for U.S. Appl. No. 14/483,527 dated Oct. 28, 2015. |
Official Communication for U.S. Appl. No. 14/676,621 dated Oct. 29, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Nov. 10, 2015. |
Official Communication for U.S. Appl. No. 14/562,524 dated Nov. 10, 2015. |
Official Communication for U.S. Appl. No. 14/842,734 dated Nov. 19, 2015. |
Official Communication for Australian Patent Application No. 2014201506 dated Feb. 27, 2015. |
Official Communication for Australian Patent Application No. 2014201507 dated Feb. 27, 2015. |
Official Communication for Australian Patent Application No. 2013251186 dated Mar. 12, 2015. |
Official Communication for Australian Patent Application No. 2014203669 dated May 29, 2015. |
Official Communication for Canadian Patent Application No. 2831660 dated Jun. 9, 2015. |
European Search Report for European Patent Application No. 09813700.3 dated Apr. 3, 2014. |
Extended European Search Report for European Patent Application No. 14158958.0 dated Jun. 3, 2014. |
Extended European Search Report for European Patent Application No. 14158977.0 dated Jun. 10, 2014. |
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015. |
Official Communication for European Patent Application No. 14158977.0 dated Apr. 16, 2015. |
Official Communication for European Patent Application No. 14158958.0 dated Apr. 16, 2015. |
Official Communication for European Patent Application No. 14200298.9 dated May 13, 2015. |
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015. |
Official Communication for European Patent Application No. 12181585.6 dated Sep. 4, 2015. |
Official Communication for European Patent Application No. 15181419.1 dated Sep. 29, 2015. |
Official Communication for Great Britain Patent Application No. 1404499.4 dated Aug. 20, 2014. |
Official Communication for Great Britain Patent Application No. 1404486.1 dated Aug. 27, 2014. |
Official Communication for Great Britain Patent Application No. 1404489.5 dated Aug. 27, 2014. |
Official Communication for Great Britain Patent Application No. 1404499.4 dated Sep. 29, 2014. |
Official Communication for Great Britain Patent Application No. 1404489.5 dated Oct. 6, 2014. |
Official Communication for Great Britain Patent Application No. 1411984.6 dated Dec. 22, 2014. |
Official Communication for Great Britain Patent Application No. 1404486.1 dated May 21, 2015. |
Official Communication for Great Britain Patent Application No. 1404489.5 dated May 21, 2015. |
Official Communication for Great Britain Patent Application No. 1404499.4 dated Jun. 11, 2015. |
Official Communication for Netherlands Patent Application No. 2013134 dated Apr. 20, 2015. |
Official Communication for Netherlands Patent Application No. 2011729 dated Aug. 13, 2015. |
Official Communication for New Zealand Patent Application No. 622389 dated Mar. 20, 2014. |
Official Communication for New Zealand Patent Application No. 622404 dated Mar. 20, 2014. |
Official Communication for New Zealand Patent Application No. 622439 dated Mar. 24, 2014. |
Official Communication for New Zealand Patent Application No. 622473 dated Mar. 27, 2014. |
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014. |
Official Communication for New Zealand Patent Application No. 622439 dated Jun. 6, 2014. |
Official Communication for New Zealand Patent Application No. 622473 dated Jun. 19, 2014. |
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014. |
Number | Date | Country | |
---|---|---|---|
20170069043 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62214856 | Sep 2015 | US |