1. Field of the Invention
The illustrative embodiments of the invention relate generally to a disc pump system for pumping fluid and, more specifically, but without limitation to, a disc pump having an electrostatic drive mechanism.
2. Description of Related Art
The generation of high amplitude pressure oscillations in closed cavities has received significant attention in the fields of disc pump type compressors. Recent developments in non-linear acoustics have allowed the generation of pressure waves with higher amplitudes than previously thought possible.
It is known to use acoustic resonance to achieve fluid pumping from defined inlets and outlets. This can be achieved using a cylindrical cavity with an acoustic driver at one end, which drives an acoustic standing wave. In such a cylindrical cavity, the acoustic pressure wave has limited amplitude. Varying cross-section cavities, such as cone, horn-cone, and bulb have been used to achieve high amplitude pressure oscillations, thereby significantly increasing the pumping effect. In such high amplitude waves, the non-linear mechanisms with energy dissipation have been suppressed. However, high amplitude acoustic resonance has not been employed within disc-shaped cavities in which radial pressure oscillations are excited until recently. International Patent Application No. PCT/GB2006/001487, published as WO 2006/111775, discloses a disc pump having a substantially disc-shaped cavity with a high aspect ratio, i.e., the ratio of the radius of the cavity to the height of the cavity.
Such a disc pump has a substantially cylindrical cavity comprising a side wall closed at each end by end walls. The disc pump also comprises an actuator that drives either one of the end walls to oscillate in a direction substantially perpendicular to the surface of the driven end wall. The spatial profile of the motion of the driven end wall is described as being matched to the spatial profile of the fluid pressure oscillations within the cavity, a state described herein as mode-matching. When the disc pump is mode-matched, work done by the actuator on the fluid in the cavity adds constructively across the driven end wall surface, thereby enhancing the amplitude of the pressure oscillation in the cavity and delivering high disc pump efficiency. The efficiency of a mode-matched disc pump is dependent upon the interface between the driven end wall and the side wall. It is desirable to maintain the efficiency of such a disc pump by structuring the interface to not decrease or dampen the motion of the driven end wall, thereby mitigating any reduction in the amplitude of the fluid pressure oscillations within the cavity.
The actuator of the disc pump described above causes an oscillatory motion of the driven end wall (“displacement oscillations”) in a direction substantially perpendicular to the end wall or substantially parallel to the longitudinal axis of the cylindrical cavity, referred to hereinafter as “axial oscillations” of the driven end wall within the cavity. The axial oscillations of the driven end wall generate substantially proportional “pressure oscillations” of fluid within the cavity creating a radial pressure distribution approximating that of a Bessel function of the first kind as described in International Patent Application No. PCT/GB2006/001487, which is incorporated by reference herein. Such oscillations are referred to hereinafter as “radial oscillations” of the fluid pressure within the cavity. A portion of the driven end wall between the actuator and the side wall provides an interface with the side wall of the disc pump that decreases dampening of the displacement oscillations to mitigate any reduction of the pressure oscillations within the cavity. The portion of the driven end wall that provides such an interface is referred to hereinafter as an “isolator” as described more specifically in U.S. patent application Ser. No. 12/477,594, which is incorporated by reference herein. The illustrative embodiments of the isolator are operatively associated with the peripheral portion of the driven end wall to reduce dampening of the displacement oscillations.
Such disc pumps also have one or more valves for controlling the flow of fluid through the disc pump and, more specifically, valves being capable of operating at high frequencies. Conventional valves typically operate at lower frequencies below 500 Hz for a variety of applications. For example, many conventional compressors typically operate at 50 or 60 Hz. Linear resonance compressors known in the art operate between 150 and 350 Hz. Yet many portable electronic devices, including medical devices, require disc pumps for delivering a positive pressure or providing a vacuum. The disc pumps are relatively small in size and it is advantageous for such disc pumps to be inaudible in operation to provide discrete operation. To achieve these objectives, such disc pumps must operate at very high frequencies requiring valves capable of operating at about 20 kHz and higher. To operate at these high frequencies, the valve must be responsive to a high frequency oscillating pressure that can be rectified to create a net flow of fluid through the disc pump.
Such a valve is described more specifically in International Patent Application No. PCT/GB2009/050614, which is incorporated by reference herein. Valves may be disposed in either the first or second aperture, or both apertures, for controlling the flow of fluid through the disc pump. Each valve comprises a first plate having apertures extending generally perpendicular therethrough and a second plate also having apertures extending generally perpendicular therethrough, wherein the apertures of the second plate are substantially offset from the apertures of the first plate. The valve further comprises a sidewall disposed between the first and second plate, wherein the sidewall is closed around the perimeter of the first and second plates to form a cavity between the first and second plates in fluid communication with the apertures of the first and second plates. The valve further comprises a flap disposed and moveable between the first and second plates, wherein the flap has apertures substantially offset from the apertures of the first plate and substantially aligned with the apertures of the second plate. The flap is motivated between the first and second plates in response to a change in direction of the differential pressure of the fluid across the valve.
According to an illustrative embodiment, a disc pump system includes a pump body having a substantially cylindrical shape defining a cavity for containing a fluid. The cavity is formed by a side wall closed at both ends by substantially circular end walls. At least one of the end walls is a driven end wall having a central portion and a peripheral portion extending radially outwardly from the central portion of the driven end wall. An electrostatically-driven actuator is operatively associated with the central portion of the driven end wall to cause an oscillatory motion of the driven end wall and generate displacement oscillations of the driven end wall in a direction substantially perpendicular thereto. A conductive plate is operatively associated with the cavity and substantially parallel to the electrostatically-driven actuator. A first aperture is disposed in either one of the end walls and extending through the pump body. In addition, one or more second apertures are disposed in the pump body and extend through the pump body. The disc pump system also includes a valve disposed in at least one of the first aperture and second apertures.
According to another illustrative embodiment, A disc pump system has a pump body and has a substantially cylindrical shape defining a cavity for containing a fluid. The cavity is formed by a side wall closed at both ends by substantially circular end walls. At least one of the end walls is a driven end wall having a central portion and a peripheral portion extending radially outwardly from the central portion. The system includes an actuator, which has a conductive layer and is operatively associated with the central portion of the driven end wall to cause an oscillatory motion of the driven end wall. The oscillatory motion of the driven end wall generates displacement oscillations of the driven end wall in a direction substantially perpendicular thereto. A conductive plate is operatively associated with the cavity and substantially parallel to the electrostatically-driven actuator, and a first aperture is disposed in either one of the end walls. The first aperture extends through the pump body. One or more second apertures are disposed in the pump body and extend through the pump body. A valve is disposed in at least one of said first aperture and second apertures.
In another illustrative embodiment, a method for operating a disc pump includes applying a drive signal to a conductive plate of a disc pump to cause the conductive plate to switch between a positive and a negative charge. The method also includes driving an actuator of the disc pump and generating displacement oscillations of the actuator in a direction substantially perpendicular to its surface. In addition, the method includes generating pressure oscillations of fluid within the cavity to cause fluid flow through a valve of the disc pump, the pressure oscillations corresponding to the displacement oscillations.
Other features and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
The description of the art included above indicates that, in a typical disc pump, the spatial profile of the motion of the driven end wall is matched to the spatial profile of the fluid pressure oscillations within the cavity. This state is described as mode-matching. Yet mode-matching may constrain many characteristics of a disc pump because, in the case of a piezo-electric disc pump, mode matching establishes a relationship between the geometry of a pump cavity, the resonant frequency of a piezo-electric actuator (including the material and shape of the actuator) and the operating temperatures of the pump. To enhance the flexibility of a disc pump, it may be desirable to provide a disc pump that does not require a piezo-electric actuator.
In the following detailed description of several illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. By way of illustration, the accompanying drawings show specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
The cylindrical wall 18 and the end wall 20 may be a single component comprising the disc pump body 11 or separate components. The end wall 20 defining the cavity 16 is shown, as being generally frusto-conical, yet in another embodiment, the end wall 20 may include a generally planar surface that is parallel to the actuator 30. A disc pump comprising frusto-conical surfaces is described in more detail in the WO2006/111775 publication, which is incorporated by reference herein. The end wall 20 and the cylindrical wall 18 of the pump body 11 may be formed from suitable rigid materials including, without limitation, metal, ceramic, glass, or plastic including, without limitation, inject-molded plastic.
The actuator 30 is operatively associated with the end wall 22 and may be constructed of a thin Mylar film, or a similar material, to which a conductive coating has been applied. In another embodiment, the actuator 30 comprises a dielectric membrane, such as polyethylene or a silicone rubber. To enhance the actuator's ability to be driven by an electrostatic force, the actuator 30 may be placed in series with a power supply, such as a battery, that applies a constant charge to the actuator 30. To conduct and hold the charge, the actuator 30 may include a conductive coating or inner layer. In an embodiment, a resistor, capacitor, or other circuit element may be connected in series between the actuator 30 and the battery to maintain a constant charge on the surface of the actuator 30. To facilitate the electrical coupling of the actuator 30 and the conductive plate 40 to other electronic elements, circuit elements, including circuit paths and conductive traces, may be incorporated within the pump body 11 and the substrate 28 of the disc pump 10.
The disc pump 10 further comprises at least one aperture 27 extending from the cavity 16 to the outside of the disc pump 10, wherein the at least one aperture 27 contains a valve to control the flow of fluid through the aperture 27. Although the aperture 27 may be located at any position in the cavity 16 where the actuator 30 generates a pressure differential, one embodiment of the disc pump 10 comprises the aperture 27, located at approximately the center of and extending through the end wall 20. The aperture 27 contains at least one valve 29 that regulates the flow of fluid in one direction, as indicated by the arrow 34, so that the valve 29 functions as an outlet valve for the disc pump 10.
The disc pump 10 further comprises at least one additional aperture 31 extending through the actuator 30 or through the end wall 20. The additional aperture(s) 31 may be located at any position in the pump body 11. For example, the disc pump 10 comprises additional apertures 31 located about the periphery of the cavity 16 in the end wall 20.
The dimensions of the cavity 16 described herein should preferably satisfy certain inequalities with respect to the relationship between the height (h) of the cavity 16 at the side wall 18 and its radius (r) which is the distance from the longitudinal axis of the cavity 16 to the interior sidewall. These equations are as follows:
r/h>1.2; and
h2/r>4×10−10 meters.
In one embodiment of the invention, the ratio of the cavity radius to the cavity height (r/h) is between about 10 and about 50 when the fluid within the cavity 16 is a gas. In this example, the volume of the cavity 16 may be less than about 10 ml. Additionally, the ratio of h2/r is preferably within a range between about 10−6 and about 10−7 meters where the working fluid is a gas as opposed to a liquid.
Additionally, the cavity 16 disclosed herein should preferably satisfy the following inequality relating the cavity radius (r) and operating frequency (f), which is the frequency at which the actuator 30 oscillates to generate axial displacement of the end wall 22. The inequality is as follows:
wherein the speed of sound (c) in the working fluid within the cavity 16 may range between a slow speed (cs) of about 115 m/s and a fast speed (cf) equal to about 1,970 m/s as expressed in the equation above, and k0 is a constant (k0=3.83).
The variance in the speed of sound in the working fluid within the cavity 16 may relate to a number of factors, including the type of fluid within the cavity 16 and the temperature of the fluid. For example, if the fluid in the cavity 16 is an ideal gas, the speed of sound of the fluid may be understood as a function of the square root of the absolute temperature of the fluid. Thus, the speed of sound in the cavity 16 will vary as a result of changes in the temperature of the fluid in the cavity 16, and the size of the cavity 16 may be selected (in part) based on the anticipated temperature of the fluid.
The radius of the cavity 16 and the speed of sound in the working fluid in the cavity 16 are factors in determining the resonant frequency of the cavity 16. The resonant frequency of the cavity 16, or resonant cavity frequency (fc), is the frequency at which the fluid (e.g., air) oscillates into and out of the cavity 16 when the pressure in the cavity 16 is increased relative to the ambient environment. In a preferred embodiment of the disc pump 10, the frequency (f) at which the actuator 30 oscillates is approximately equal to the resonant cavity frequency (fc). In the embodiment, the working fluid is assumed to be air at 60° C., and the resonant cavity frequency (fc) at an ambient temperature of 20° C. is 21 kHz. Although it is preferable that the cavity 16 disclosed herein should satisfy individually the inequalities identified above, the relative dimensions of the cavity 16 should not be limited to cavities having the same height and radius. For example, the cavity 16 may have a slightly different shape requiring different radii or heights creating different frequency responses so that the cavity 16 resonates in a desired fashion to generate the optimal output from the disc pump 10.
The disc pump 10 may function as a source of positive pressure adjacent the outlet valve 29 to pressurize a load or as a source of negative or reduced pressure adjacent the inlet aperture 31 to depressurize the load, as indicated by the arrows 36. The load may be, for example, a tissue treatment system that utilizes negative pressure for treatment. Here, the term reduced pressure generally refers to a pressure less than the ambient pressure where the disc pump 10 is located. Although the terms vacuum and negative pressure may be used to describe the reduced pressure, the actual pressure reduction may be significantly less than the pressure reduction normally associated with a complete vacuum. Here, the pressure is negative in the sense that it is a gauge pressure, i.e., the pressure is reduced below ambient atmospheric pressure. Unless otherwise indicated, values of pressure stated herein are gauge pressures. References to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.
In another embodiment, a disc pump 110 comprises an actuator 130 having a variable surface charge, as shown in
Referring again to
With further reference to
As indicated in
Referring to
The retention plate 64 and the sealing plate 66 both have holes 68 and 70, respectively, which extend through each plate. The flap 67 also has holes 72 that are generally aligned with the holes 68 of the retention plate 64 to provide a passage through which fluid may flow as indicated by the dashed arrows 74 in
The operation of the valve 60 is generally a function of the change in direction of the differential pressure (ΔP) of the fluid across the valve 60. In
When the differential pressure across the valve 60 changes from a positive differential pressure (+ΔP) back to a negative differential pressure (−ΔP) as indicated by the downward pointing arrow in
When the differential pressure across the valve 60 reverses to become a positive differential pressure (+ΔP) as shown in
As indicated above, the operation of the valve 60 may be a function of the change in direction of the differential pressure (ΔP) of the fluid across the valve 60. The differential pressure (ΔP) is assumed to be substantially uniform across the entire surface of the retention plate 64 because (1) the diameter of the retention plate 64 is small relative to the wavelength of the pressure oscillations in the cavity 65, and (2) the valve 60 is located near the center of the cavity 16 where the amplitude of the positive pressure peak 46 is relatively constant as indicated by the positive square-shaped portion of the positive central pressure peak 46 and the negative square-shaped portion of the negative central pressure peak 48 shown in
The retention plate 64 and the sealing plate 66 should be strong enough to withstand the fluid pressure oscillations to which they are subjected without significant mechanical deformation. The retention plate 64 and the sealing plate 66 may be formed from any suitable rigid material, such as glass, silicon, ceramic, or metal. The holes 68, 70 in the retention plate 64 and the sealing plate 66 may be formed by any suitable process including chemical etching, laser machining, mechanical drilling, powder blasting, and stamping. In one embodiment, the retention plate 64 and the sealing plate 66 are formed from sheet steel between 100 and 200 microns thick, and the holes 68, 70 therein are formed by chemical etching. The flap 67 may be formed from any lightweight material, such as a metal or polymer film. In one embodiment, when fluid pressure oscillations of 20 kHz or greater are present on either the retention plate side or the sealing plate side of the valve 60, the flap 67 may be formed from a thin polymer sheet between 1 micron and 20 microns in thickness. For example, the flap 67 may be formed from polyethylene terephthalate (PET) or a liquid crystal polymer film approximately three microns in thickness.
To generate the displacement and pressure oscillations described above with regard to
The drive circuit is coupled to at least one of the conductive plate 40 and the actuator 30 to apply a drive signal. In one embodiment, the drive signal applies a charge 42 to the conductive plate 40 such that the conductive plate 40 functions as a stator to drive the actuator 30. The actuator 30 includes a conductive coating and is directly or indirectly coupled to a battery, the drive circuit, or another source of potential to establish a constant surface charge 32 at the surface of the actuator 30. The constant surface charge 32 causes the actuator 30 to function as a charged diaphragm. To conduct the surface charge 32, the actuator 30 includes a metallic film, layer or coating, or a surface that includes carbon nanotubes to hold a fixed charge. To prevent a short circuit or arcing between the conductive plate 40 and actuator 30, an insulating layer is included on the actuator 30 or conductive plate 40.
In another embodiment, the actuator 30 is formed from an insulating material, such as PVC, without a conductive coating. In such an embodiment, the actuator 30 becomes polarized by the charges on the conductive plate 40 and an optional second conductive plate in the end wall 20 that encloses the cavity 16. The polarized actuator 30 is operable to move in response to the application of the electrostatic force. In another embodiment, the actuator 30 is made from a poled electret material, such as polyvinylidene fluoride (PVDF), having a constant polarity that renders the material susceptible to electrostatic forces.
In an embodiment, the drive signal is an alternating current signal applied by the drive circuit to charge the conductive plate 40 and generate an oscillatory electrostatic field across the actuator 30. The oscillatory electrostatic field exerts attractive and repulsive electrostatic forces on the actuator 30, which has a positive or negative charge. For example, the drive signal may charge the conductive plate 40 to generate an oscillating electrostatic field having an alternating polarity relative to the actuator 30. When the actuator 30 and conductive plate have positive surface charges, the electrostatic field motivates the charged actuator 30 away from the conductive plate 40, i.e., repulsing the actuator 30 away from the conductive plate 40. The positively charged actuator 30 is then attracted back toward the conductive plate 40 when the charge 42 on the conductive plate 40 reverses to become a negative charge. In this manner, the continuous switching of the polarity of the charge 42 on the conductive plate 40 drives the actuator 30 to generate pressure oscillations within the cavity 16.
The graph of
In other embodiments, as illustrated in
In one embodiment in which the surface charge 132 on the actuator 30 is passively generated, the membrane used to form the actuator 130 is selected from a group of materials towards the extremes of the triboelectric series, such as a polyethylene or silicone rubber. In such an embodiment, the surfaces of the actuator 130 may be charged, or polarized, by contact electrification or the photoelectric, thermionic work functions of the actuator material. The resultant polarization of the actuator surface increases the magnitude of the force that may be generated to attract the actuator 130 toward or to repulse the actuator 130 from the conductive plate 140. Where the actuator surface charge is generated through induction as described above, the actuator 130 may be constructed without the necessity for wired electrical connections to the actuator 130. Still, such an embodiment may include an actuator 130 that incorporates a laminate material that includes a metal layer or coating to enhance the electrostatic properties of the actuator 130.
In an embodiment in which the surface charge 132 of the actuator 130 is actively generated by the drive circuit, the actuator 130 incorporates a conductive layer that is coupled to an external power source by, for example, a flexible circuit material. The flexible circuit material may be a flexible printed circuit board or any similar material. In such an embodiment, the actuator 130 may have a fixed surface charge 132 while the charge 142 of the conductive plate is switched, as described above with regard to
In another embodiment, the drive circuit may switch the charges 132, 142 applied to both the actuator 130 and the conductive plate 40 to operate the pump 110 similarly to a pump 110 having a passively driven actuator 130. In such an embodiment, positive surface charges may first be applied to the actuator 130 and conductive plate 140 to repulse the actuator 130 away from the conductive plate 140 as shown in
The graph of
In another embodiment, the disc pump 110 includes the second conductive plate 141 to increase the magnitude of the electromagnetic forces applied to the actuator 30. The second conductive plate 141 may be included in the pump body end wall 112 on the opposite side of the actuator 130 from the conductive plate 140. Where the second conductive plate 141 is included, the drive signal is applied to the second conductive plate 141 to induce a second charge on the surface of the second conductive plate 141 of opposing polarity to the charge 142 applied to the conductive plate 140. The second charge of the second conductive plate 141 and the surface charge 142 of the conductive plate 140 both contribute to a directional electric field across the actuator 130. In an embodiment, the conductive plates 140, 141 have opposing fixed surface charges and the surface charge 132 of the actuator may be alternated by the drive signal to generate attractive and repulsive forces. In another embodiment, the actuator 130 may have a fixed surface charge while the surface charges of the conductive plates 140, 141 are alternated to reverse the polarity of the electric field and move the actuator 130.
A representative disc pump system 200 that includes an electrostatic drive mechanism is shown in
It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not so limited and is susceptible to various changes and modifications without departing from the spirit thereof.
The present invention claims the benefit, under 35 USC §119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/668,093, entitled “Systems and Methods for Supplying Reduced Pressure Using a Disc Pump with Electrostatic Actuation,” filed Jul. 5, 2012, by Locke et al., which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt et al. | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5336062 | Richter | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5503538 | Wiernicki | Apr 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5529465 | Zengerle et al. | Jun 1996 | A |
5542821 | Dugan | Aug 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5764258 | Hetzer | Jun 1998 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6179586 | Herb | Jan 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6261066 | Linnemann et al. | Jul 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6948918 | Hansen | Sep 2005 | B2 |
8308452 | Amirouche | Nov 2012 | B2 |
8353682 | Patrascu | Jan 2013 | B2 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20090087323 | Blakey | Apr 2009 | A1 |
20090130822 | Collet et al. | May 2009 | A1 |
20100310397 | Janse Van Rensburg | Dec 2010 | A1 |
20110190670 | Jaeb | Aug 2011 | A1 |
20120034109 | Tout et al. | Feb 2012 | A1 |
20140273796 | Giammattei | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Apr 1999 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Aug 2004 | EP |
2071189 | Jun 2009 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
4129536 | Apr 1992 | JP |
71559 | Mar 1999 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
9010424 | Sep 1990 | WO |
9309727 | May 1993 | WO |
9420041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
Entry |
---|
International Search Report and Written Opinion for corresponding PCT/US2013/049242 mailed Nov. 28, 2014. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (certified translation). |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies & Basic Foundation”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 553-562. |
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn, II, MD, et al; “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letters to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), vol. 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, vol. 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu. N., et al; “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu. A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu. A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, p. 1. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., vol. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al.: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovic, V. ukić, {hacek over (Z)}. Maksimović, . Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, “An Improved Sump Drain-Irrigation Device of Simple Construction,” Archives of Surgery 105 (1972) pp. 511-513. |
C.E. Tennant, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians (Jul. 2007). |
Number | Date | Country | |
---|---|---|---|
20140010673 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61668093 | Jul 2012 | US |